



**GFD**Top Inlet Hepa Filter Box



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

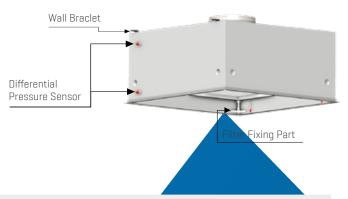
Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.





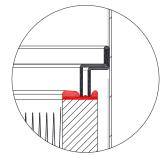







#### **TOP INLET HEPA FILTER BOX**

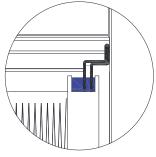



#### **GENERAL FEATURES**

- GFD Top Entry Hepa Filter Box is designed for sterile spaces, operating theaters and clean rooms (pharmaceutical, chemical, food industries).
- ♠ Hepa filter boxes have been tested according to DIN 1946/4 and are offered for use with a 100% impermeability quarantee.
- € Thanks to its wide product range, it fully meets the application requirements.
- As a standard, gasket leakproof test is applied to each product.
- € It has differential pressure measuring tips to measure filter pollution.
- € The inside of the box is resistant to disinfection processes.




#### **MATERIAL**


- € Hepa filter box is produced from DKP sheet or optional AISI 304 quality stainless sheet.
- All accessories are corrosion resistant.
- Flat profile type in Hepa filter is compatible with both EPDM and gel type filter gaskets.







MDF Frame with EPDM Gasket



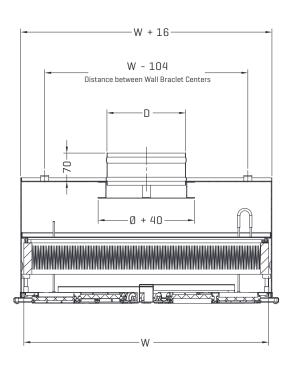
Aluminum Frame Gel Filled

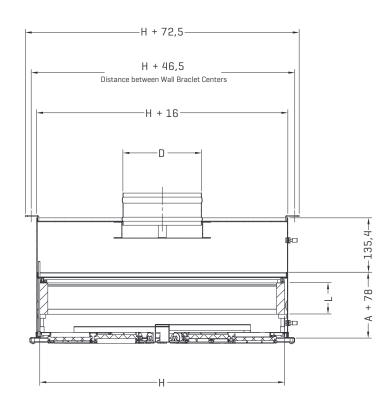
MDF and aluminum options are available for the frame of the HEPA filter. At the same time, filter pile heights can be selected as 50 mm or 125 mm depending on the dimensions of the Hepa filter.

#### **MATERIAL**

- RAL 9010 electrostatic powder paint as standard
- Optional
  - Different RAL color codes

#### **INSTALLATION OPTIONS**


- Bolted from Center
- Corner Mounting




#### **PRODUCT SELECTION**

After the target product and filter type are determined, the performance data is checked from the table.

#### **STANDARD DIMENSIONS**





**Table 1.** Standard Dimensions Table

| Standard Dimensions (W x H x Filter Height) (mm x mm x mm) |                 |  |  |  |  |  |  |  |
|------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|
| 305 x 305 x 78                                             | 305 x 305 x 149 |  |  |  |  |  |  |  |
| 305 x 610 x 78                                             | 305 x 610 x 149 |  |  |  |  |  |  |  |
| 457 x 457 x 78                                             | 457 x 457 x 149 |  |  |  |  |  |  |  |
| 457 x 610 x 78                                             | 457 x 610 x 149 |  |  |  |  |  |  |  |
| 535 x 535 x 78                                             | 535 x 535 x 149 |  |  |  |  |  |  |  |
| 575 x575 x 78                                              | 575 x 575 x 149 |  |  |  |  |  |  |  |
| 610 x 610 x 78                                             | 610 x 610 x 149 |  |  |  |  |  |  |  |
| 762 x 762 x 78                                             | 762 x 762 x 149 |  |  |  |  |  |  |  |

When L (Filter height) is 78 mm, A (Box height) = 300 mm. When L (Filter height) is 149 mm, A (Box height) = 370 mm.



#### **PERFORMANCE DATA**

**Table 2.** Performance Data Table

| Dimensions<br>(mm x mm x mm) | Pleat<br>Length | Flow Rate<br>[m³/h] |     | Filter<br>Drop [Pa] | Dirty<br>Pressure | Filter<br>Drop [Pa] | Recommended Flex Pipe Diameter [mm] |  |
|------------------------------|-----------------|---------------------|-----|---------------------|-------------------|---------------------|-------------------------------------|--|
| (11111 × 111111 × 111111)    | (mm)            | [,/]                | H13 | H14                 | H13               | H14                 | r ipo Biamotoi [iiiii]              |  |
| 305 x 305 x 78               | 50              | 150                 | 100 | 125                 | 200               | 250                 | Ø125                                |  |
| 305 x 610 x 78               | 50              | 300                 | 100 | 125                 | 200               | 250                 | Ø160                                |  |
| 457 x 457 x 78               | 50              | 340                 | 100 | 125                 | 200               | 250                 | Ø160                                |  |
| 457 x 610 x 78               | 50              | 450                 | 100 | 125                 | 200               | 250                 | Ø180                                |  |
| 535 x 535 x 78               | 50              | 465                 | 100 | 125                 | 200               | 250                 | Ø180                                |  |
| 575 x 575 x 78               | 50              | 535                 | 100 | 125                 | 200               | 250                 | Ø200                                |  |
| 610 x 610 x 78               | 50              | 600                 | 100 | 125                 | 200               | 250                 | Ø200                                |  |
| 762 x 762 x 78               | 50              | 940                 | 100 | 125                 | 200               | 250                 | Ø250                                |  |
| 305 x 305 x 149              | 125             | 150                 | 55  | 70                  | 110               | 140                 | Ø125                                |  |
| 305 x 610 x 149              | 125             | 300                 | 55  | 70                  | 110               | 140                 | Ø160                                |  |
| 457 x 457 x 149              | 125             | 340                 | 55  | 70                  | 110               | 140                 | Ø160                                |  |
| 457 x 610 x 149              | 125             | 450                 | 55  | 70                  | 110               | 140                 | Ø180                                |  |
| 535 x 535 x 149              | 125             | 465                 | 55  | 70                  | 110               | 140                 | Ø180                                |  |
| 575 x 575 x 149              | 125             | 535                 | 55  | 70                  | 110               | 140                 | Ø200                                |  |
| 610 x 610 x 149              | 125             | 600                 | 55  | 70                  | 110               | 140                 | Ø200                                |  |
| 762 x 762 x 149              | 125             | 940                 | 55  | 70                  | 110               | 140                 | Ø250                                |  |

Note: The values in the table are valid when the air velocity is 0.45 m/s at the filter surface.

**Table 3.** Air Distributor Data Table

| Hepa Filter Box<br>Dimensions [mm x mm] | Air Distributor Equipment      | Corresponding<br>Equipment Size<br>[mm x mm] | Maximum<br>Flow [m³/h] | Pressure Drop<br>[Pa] |
|-----------------------------------------|--------------------------------|----------------------------------------------|------------------------|-----------------------|
| 305x305                                 | OSB - Prismatic Swirl Diffuser | 355x355                                      | 150                    | 20                    |
| 3U3X3U3                                 | OAK - Kare Anemostat           | 201x201                                      | 150                    | 3                     |
| 305x610                                 | OSB - Prizmatik Swirl Difüzör  | 355x660                                      | 200                    | 38                    |
| 202XPT0                                 | OAP - Prizmatik Anemostat      | 201x506                                      | 300                    | 4                     |
| //57//57                                | OSB - Prizmatik Swirl Difüzör  | 507x507                                      | 0/10                   | 14                    |
| 457x457                                 | OAK - Kare Anemostat           | 353x353                                      | 340                    | 2                     |
| //E7010                                 | OSB - Prizmatik Swirl Difüzör  | 507×660                                      | 450                    | 25                    |
| 457x610                                 | OAP - Prizmatik Anemostat      | 353x506                                      | 450                    | 2                     |
| F0FF0F                                  | OSB - Prizmatik Swirl Difüzör  | 585x585                                      | //05                   | 13                    |
| 535x535                                 | OAK - Kare Anemostat           | 431x431                                      | 465                    | 2                     |
| F7F. F7F                                | OSB - Prizmatik Swirl Difüzör  | 625x625                                      | F0F                    | 18                    |
| 575x575                                 | OAK - Kare Anemostat           | 471×471                                      | 535                    | 2                     |
| 010-010                                 | OSB - Prizmatik Swirl Difüzör  | 660×660                                      | 000                    | 23                    |
| 610x610                                 | OAK - Kare Anemostat           | 506×506                                      | 600                    | 2                     |
| 700,700                                 | OSB - Prizmatik Swirl Difüzör  | 812x812                                      | 0/10                   | 20                    |
| 762x762                                 | OAK - Kare Anemostat           | 658x658                                      | 940                    | 4                     |

#### **INSTALLATION OPTIONS**

#### **INSTALLATION DETAIL**

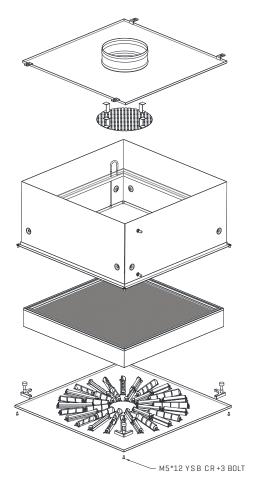



Figure 1. Bolted from Corners Installation

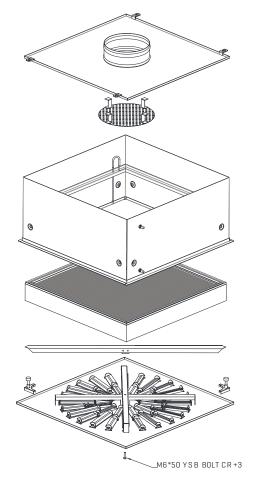
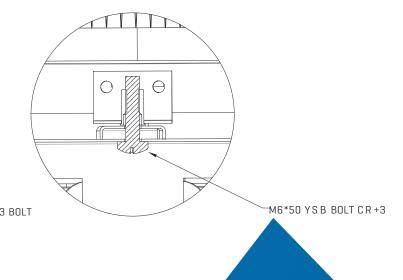
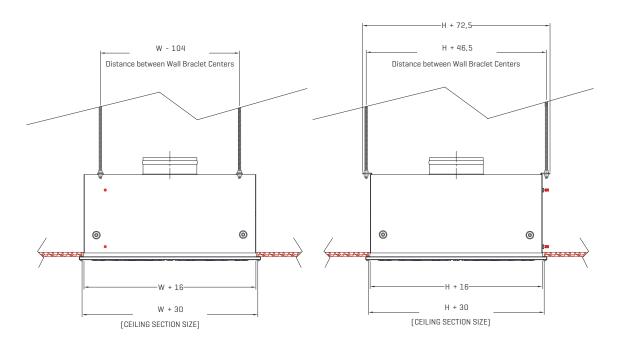




Figure 2. Bolted from Center Installation


#### Bolted from Corner Installation Detail

# M5\*12 YSB CR +3 BOLT

#### **Bolted from Center Installation Detail**



#### **WALL BRACLET INSTALLATION DETAIL**



#### **PRODUCT SELECTION**

**Example:** The supply air flow rate of the Hepa filter was determined as 450 m<sup>3</sup>/h. H13 filter type with a height of 50 mm will be selected. A swirl diffuser will be used as air distribution equipment. Make the product selection.

**Solution:** From the performance data table (Table 2) for a flow rate of 450 m<sup>3</sup>/h:

The appropriate size is selected:

457 x 610 x 78

The corresponding clean filter pressure drop is 100 Pa.

For the air distributor data to be used in the product, refer to the air distributor table (Table 3). For the swirl diffuser, there is a pressure loss of 20 Pa at an air flow rate of  $450 \text{ m}^3/\text{h}$ .

Total Pressure Loss = Filter Pressure Loss (Clean/Dirty) + Air Distributor Pressure Loss

From the formula

Total Pressure Drop = 100 Pa + 20 Pa = 120 Pa

#### **WALL BRACLET INSTALLATION DETAIL**

#### **FILTER ORDER CODE**

|                |              |                       | Dimensions [mm x mm] |           |           |           |           |           |           |           |  |  |
|----------------|--------------|-----------------------|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
| Filter<br>Type | Filter Frame | Filter Length<br>[mm] | 305 x 305            | 305 x 610 | 457 x 457 | 457 x 610 | 535 x 535 | 575 x 575 | 610 x 610 | 762 x 762 |  |  |
|                | MDF          | 78                    | F01                  | F09       | F02       | F94       | F03       | F04       | F05       | F20       |  |  |
|                | EPDM Gasket  | 149                   | F07                  | F48       | F06       | F94       | F08       | F14       | F17       | F20       |  |  |
| H13            | Aluminum     | 78                    | F21                  | H11       | F22       | H13       | F23       | F43       | F24       | F89       |  |  |
| птэ            | EPDM Gasket  | 149                   | H01                  | F46       | H02       | H17       | F93       | H03       | F91       | H19       |  |  |
|                | Aluminum     | 78                    | F27                  | H21       | F28       | H22       | F29       | F30       | F31       | H23       |  |  |
|                | Gel Gasket   | 149                   | H24                  | H25       | H26       | H27       | H28       | H29       | H30       | H31       |  |  |
|                | MDF          | 78                    | F60                  | F66       | F61       | H08       | F62       | F63       | F64       | F75       |  |  |
|                | EPDM Gasket  | 149                   | F68                  | H09       | F69       | H10       | H04       | F82       | F65       | F75       |  |  |
| H14            | Aluminum     | 78                    | F97                  | H12       | F96       | H14       | F95       | F18       | F15       | H15       |  |  |
| UTA            | EPDM Gasket  | 149                   | H05                  | H16       | H06       | H18       | F88       | H07       | F25       | H20       |  |  |
|                | Aluminum     | 78                    | H32                  | H33       | H34       | H35       | H36       | H37       | H38       | H39       |  |  |
|                | Gel Gasket   | 149                   | H40                  | H41       | H42       | H43       | H44       | H45       | H46       | H47       |  |  |

You can place your orders according to the coding format below.

#### GFD.<A>.<B>.<C>.<D>.<E>.<F>

| Α | Raw Material Type                             |                                           |
|---|-----------------------------------------------|-------------------------------------------|
|   | DKP                                           | Painted DKP Sheet                         |
|   | PAS                                           | AISI 304 Quality Stainless Steel          |
| В | Filter                                        |                                           |
|   | F00                                           | Without Filter                            |
|   | XXX                                           | You can check the Filter Order Code Table |
| С | Installation Option                           |                                           |
|   | GC                                            | Bolted from Center                        |
|   | КМ                                            | Bolted from Corners                       |
| D | Width (W) [mm]                                |                                           |
|   | 0000                                          | You can check the Standard Sizes Table    |
| E | Height (W) [mm]                               |                                           |
|   | 0000                                          | You can check the Standard Sizes Table    |
| F | Flex Diameter (Ø) [mm]                        |                                           |
|   | 100 - 125 - 150 - 160 - 180 - 200 - 229 - 250 | - 255 - 280 - 300 - 315 - 350 - 356       |

**Sample Coding;** GFD.DKP.F03.KM.0535.0535.0078.180

| NOTES |                              |  |
|-------|------------------------------|--|
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       | IKLIMLENDIRME I HVAC SYSTEMS |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |

| NOTES |                              |
|-------|------------------------------|
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       | IKLIMLENDIRME L HVAC SYSTEMS |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |







Tel.: +90 216 250 55 45 | Fax:+90 216 250 55 56

#### **Ankara Sales Office**

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A Blok Kat:11 Ofis:1104 06520 Söğütözü, Yenimahalle, Ankara/TURKEY Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

#### **Antalya Sales Office**

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel.: +90 242 505 87 77

#### **Adana Sales Office**

Mimar Selim Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301









FOUR BGK
Heat Recovery Units
With By-Pass Damper





# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45,000 sqm. in which 25,000 sqm. indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 3 sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

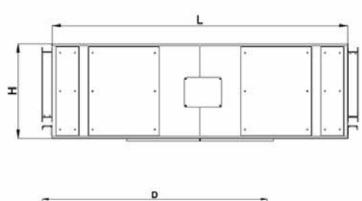
Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.

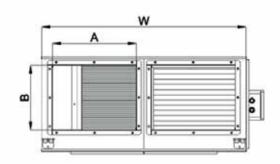


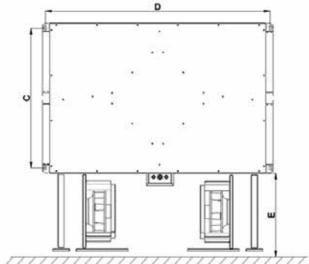










#### **GENERAL INFORMATION**

- **©** Low Energy Consumption
- Aluminum Heat Exchanger with High Efficiency
- € Low Sound Level
- ♥ High External Static Pressure
- **©** G4 Class Filter
- ♥ Voltage Control
- © Optional Water or Electric Heater
- © Optional Sound Attenuator
- © Optional Smart Control System

#### **DIMENSIONS**







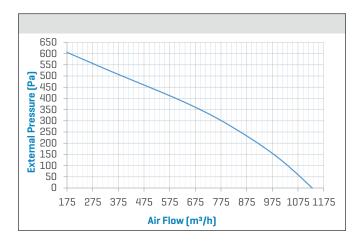
 $Q = V \times 0.36 \times [T_2 - T_1]$ 

**Q** = Power of Heater (Watt)

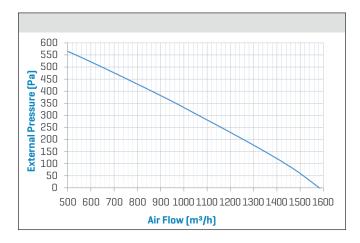
 $V = Air Flow (m^3/h)$ 

T<sub>2</sub> = Output Temperature (°C)

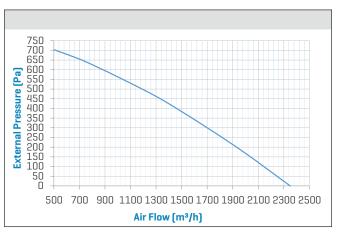
T<sub>1</sub> = Input Temperature (°C)


|        | CAPACITY |          |          |          |          |      |      |     |     |     |      |      |     |        |                    |
|--------|----------|----------|----------|----------|----------|------|------|-----|-----|-----|------|------|-----|--------|--------------------|
|        |          | Air Flow | Pressure | Air Flow | Pressure | L    | W    | Н   | A   | В   | С    | D    | E   | Weight | ELECTRIC<br>HEATER |
|        | Units    | m³/h     | Pa       | m³/h     | Pa       | mm   | mm   | mm  | mm  | mm  | mm   | mm   | mm  | kg     | Capacity           |
|        | BGK-09   | 910      | 0        | 800      | 150      | 1120 | 720  | 455 | 260 | 210 | 650  | 1086 | 400 | 55     | 3 Kw-2Kd           |
|        | BGK-11   | 1125     | 0        | 1000     | 150      | 1160 | 800  | 485 | 300 | 240 | 730  | 1126 | 440 | 60     | 4 Kw-2Kd           |
| လှ     | BGK-15   | 1570     | 0        | 1350     | 150      | 1430 | 980  | 550 | 390 | 300 | 910  | 1496 | 550 | 105    | 6 Kw-3Kd           |
| MODELS | BGK-25   | 2350     | 0        | 2000     | 150      | 1590 | 1100 | 610 | 450 | 350 | 1030 | 1656 | 610 | 130    | 9 Kw-3Kd           |
| Σ      | BGK-30   | 3100     | 0        | 2500     | 150      | 1900 | 1126 | 720 | 510 | 460 | 1156 | 1966 | 660 | 165    | 12 Kw-3Kd          |
|        | BGK-40   | 4155     | 0        | 3500     | 150      | 1930 | 1300 | 775 | 550 | 520 | 1230 | 1996 | 700 | 210    | 15 Kw-3Kd          |
|        | BGK-55   | 5550     | 0        | 5000     | 150      | 1930 | 1300 | 775 | 550 | 520 | 1230 | 1996 | 700 | 210    | 15 Kw-3Kd          |



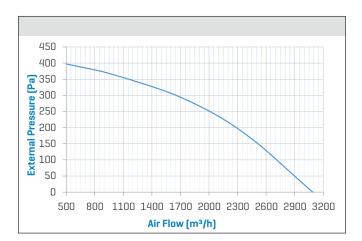

#### **BGK-09**

# 

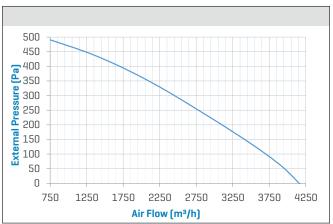

#### **BGK-11**



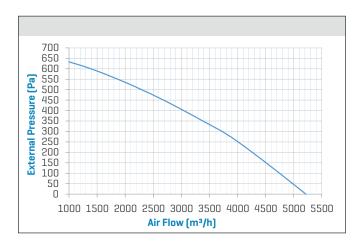
#### **BGK-15**




#### **BGK-25**







#### **BGK-30**



#### **BGK-40**




#### **BGK-55**






| NOTES                          |  |
|--------------------------------|--|
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
| iklimlendidme I III/MO OVOTEMO |  |
| iklimlendirme   HVAC SYSTEMS   |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### Istanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56









## **FOUR-HOME**

Residential Type Heat Recovery Unit

# FOUR-HOME CEILING

Ceiling Type Residential Heat Recovery Unit





# Venues Breathe with DOGU HVAC Systems!

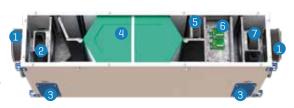
DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in Istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.














- 1- Supply Fan (EC Plug)
- 2- Extract Fan (EC Plug)
- 3- Counter Flow Heat Recovery Exchanger
- 4- Control Box
- 5- Supply Filter
- 6- Extract Filter
- 7- By-pass Damper Motor
- 8- Galvanized, Painted Isolated Condensation Drip Tray
- 9- Plastic Spigot TOP or SIDE Switchable Direction



- 1- Spigot
- 2- Extract Fan (EC Plug)
- 3- Filters
- 4- Counter Flow Heat Recovery Exchanger
- 5- By-pass Damper Motor
- 6- Control Box
- 7- EC Plug Supply Fan

#### FOUR HOME / FOUR HOME CEILING

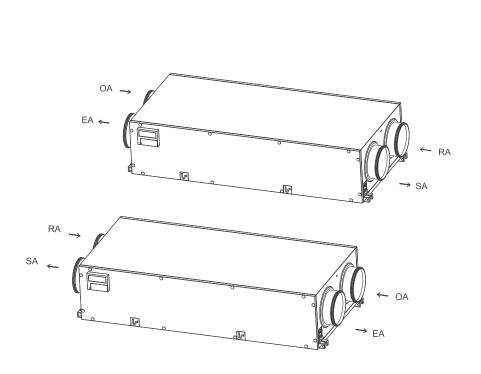
- € High efficient fans with low sound level
- € High efficient heat recovery
- © Optional electrical heater DX/heating/cooling coil
- Sensitive supply air temperature control
- € 19 mm acoustics insulation of the walls
- Easy mounting

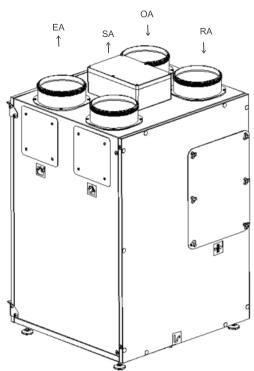
- © Galvanized, painted-isolated drip pan
- **©** By-pass damper
- Plug&Play
- Optional wireless temperature sensor, wireless CO<sub>2</sub> sensor, wireless differential pressure sensor, wireless control panel-display available

#### **Heat Exchanger**

- High-efficiency polypropylene counter flow heat exchanger
- Special application for the anti-freeze protection

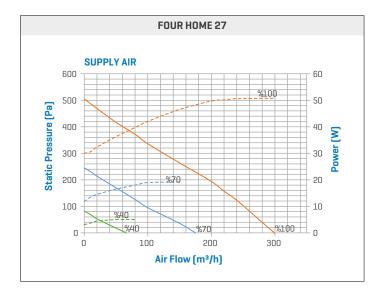
#### **Filters**

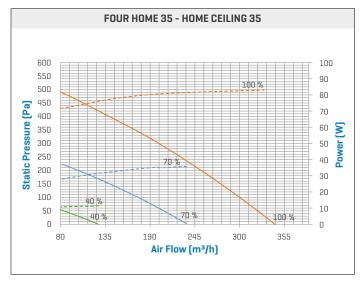

- Large filtering area for energy efficiency and long service period (up to 6 months)

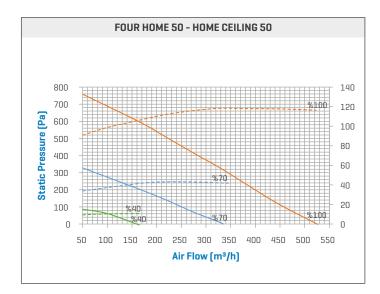

#### **Fans**

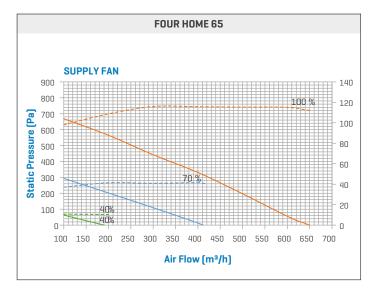
- New generation EC fans
- € Low power consumption
- Low sound level
- € 10 years product life time (40.000 hours)

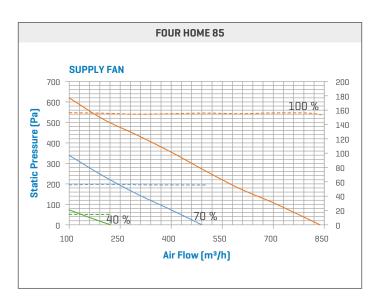
#### **Options**

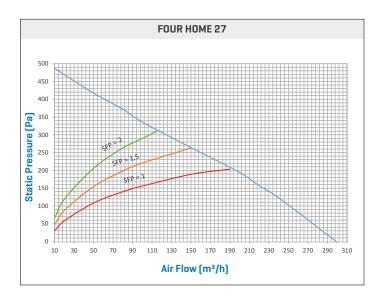

- © Optional electrical heater or DX/heating/cooling coil
- © Optional CO, or pressure sensor
- Optional wireless temperature sensor wireless CO<sub>2</sub> sensor, wireless differential pressure sensor, wireless control panel-display available

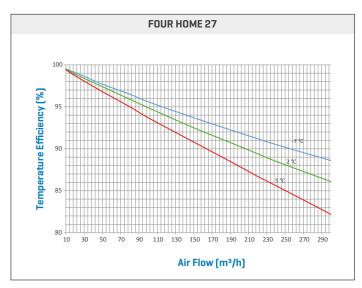




OA: OUTSIDE AIR SA: SUPPLY AIR RA: RETURN AIR EA: EXHAUST AIR

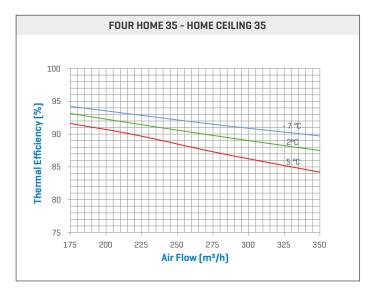

|                                |          | НОМ    | IE 27   | HOME 35      |       | HOME 50                   |              | HOME 65      |            | HOME 85     |            | HOME CEILING 35 |            | HOME CEILING 50 |            |  |
|--------------------------------|----------|--------|---------|--------------|-------|---------------------------|--------------|--------------|------------|-------------|------------|-----------------|------------|-----------------|------------|--|
|                                | warm     | -17,09 | E       | -16,37       | Е     | -16,9                     | E            | -16,8        | E          | -17,71      | E          | -16,37          | E          | -16,9           | E          |  |
| SEC [1]                        | mild     | -42,08 | А       | -41          | А     | -41,7                     | Α            | -41,14       | A+         | -42,61      | А          | -41             | А          | -41,7           | A          |  |
|                                | cold     | -81,11 | A+      | -79,39       | A+    | -80,39                    | A+           | -79,04       | A+         | -81,47      | A+         | -79,39          | A+         | -80,39          | A+         |  |
| Heat Recorvery System          |          | Recup  | erative | Recuperative |       | Recuperative Recuperative |              | Recuperative |            | Rekuperator |            | Rekuperator     |            |                 |            |  |
| SPI                            | W/[m³/h] | 0,2    | 95      | 0,2          | 0,277 |                           | 0,2975 0,267 |              | 0,2425     |             | 0,277      |                 | 0,2975     |                 |            |  |
| Thermal Efficiency             | %        | 87     | 7,6     | 84           | 1,4   | 85                        | 85,9 85,9    |              | 86,8       |             | 84,4       |                 | 85,9       |                 |            |  |
| Referanced Flow Rate (150 Pa)  | m³/h     | 24     | 42      | 275          |       | 40                        | 400          |              | 10         | 640         |            | 275             |            | 400             |            |  |
| Electrical Power Input         | W        | 10     | 00      | 11           | 66    | 23                        | 238          |              | 228,6      |             | 310,4      |                 | 166        |                 | 238        |  |
| Sound Power Level At Flow Rate | Lwa      | 4      | 3       | 3            | 9     | 4                         | 1            | 4            | 1          | 54          |            | 39              |            | 41              |            |  |
| Filters                        |          | G      | 4       | G            | G4    |                           | 4            | G            | 4          | G4          |            | G4              |            | G4              |            |  |
| Control System                 |          | Integ  | rated   | Integ        | rated | Integ                     | rated        | Integ        | Integrated |             | Integrated |                 | Integrated |                 | Integrated |  |

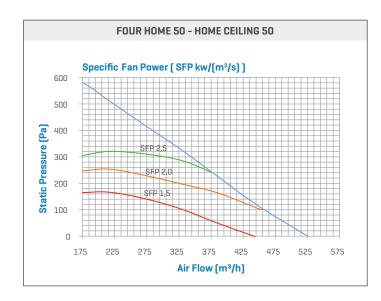


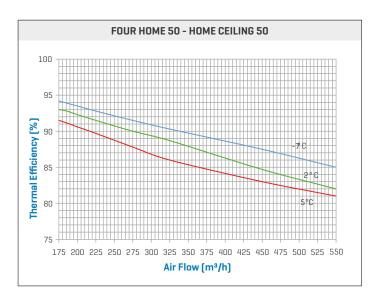



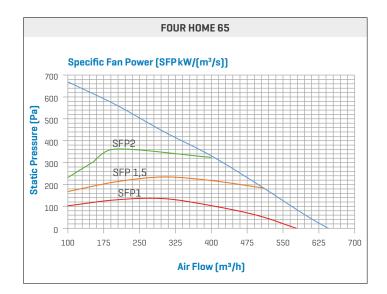


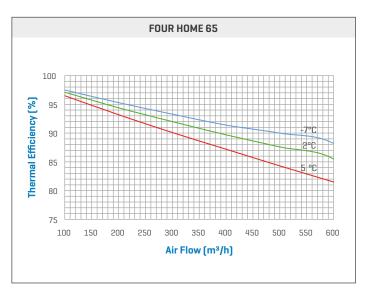


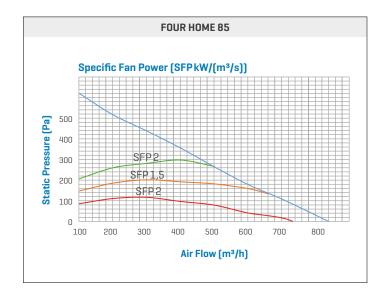


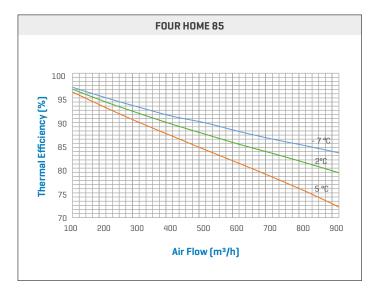



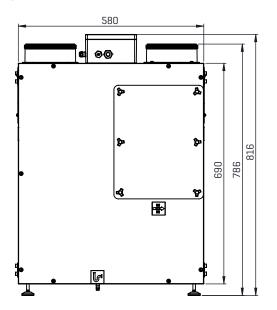



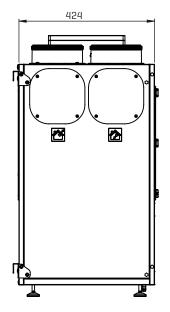



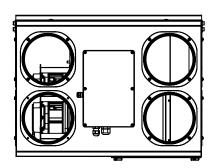



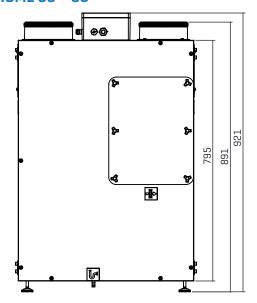


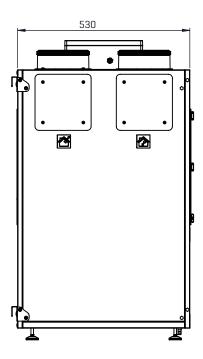



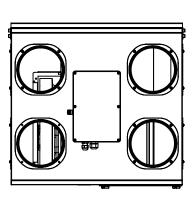



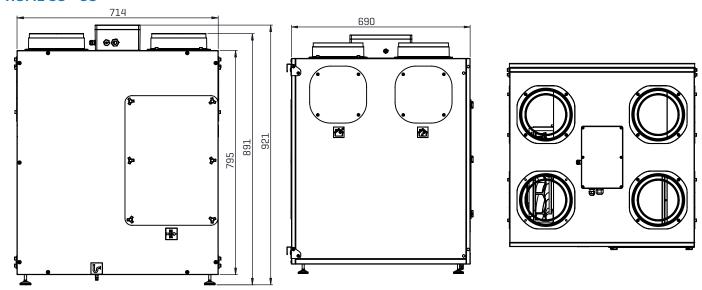




#### **HOME 27**

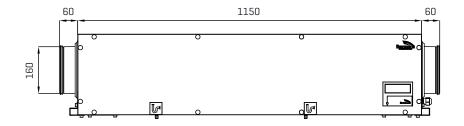


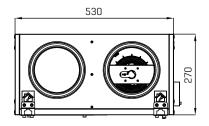







#### **HOME 35 + 50**






#### **HOME 65 - 85**



#### **HOME CEILING 35 - 50**





| Operation                 | Description                                                                                                                                                                                                                                                                                                                 | Availability |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| On / Off                  | Control panel or external start stop function is available.                                                                                                                                                                                                                                                                 | Standard     |
| Display                   | Digital control panel is available.                                                                                                                                                                                                                                                                                         | Standard     |
| Display                   | Wireless controller is available as option.                                                                                                                                                                                                                                                                                 | Optional     |
| Fan Speed Control         | 3 steps fan speed control of supply and exhaust fan is available.                                                                                                                                                                                                                                                           | Standard     |
| Fan Speed Control         | Constant air flow is available with pressure sensors.                                                                                                                                                                                                                                                                       | Optional     |
| Fan Speed Control         | Airflow control based on the air quality sensor is available.                                                                                                                                                                                                                                                               | Optional     |
| Bypass Damper Function    | Free cooling is available, by controlling the in door and outdoor air conditions.                                                                                                                                                                                                                                           | Standard     |
| Frost Protection Function | Where outdoor temperature is low, this function will beactive by receiving information via humidity and temperature sensors.                                                                                                                                                                                                | Standard     |
| ModBus                    | It controls all functions of unit via PC or BMS board.                                                                                                                                                                                                                                                                      | Standard     |
| Filter Function           | There are 2 alternatives to control filters:<br>1: It records run time of the unit and when set time expires,<br>control panel gives an alert for filter change.<br>2: Filter change time can be controlled with pressure switch mechanically.<br>By this way, control panel givesan alert when filter needs to be changed. | Standard     |
| Boost Function            | It is used in order to increase fan speed:<br>Alternative1: Via boast button on the control panel.<br>Alternative 2: Via dry contact or light power input (230V) on PCB board.                                                                                                                                              | Standard     |
| Safety                    | It automatically stops operatingin case of interfering to the unit while it is working.                                                                                                                                                                                                                                     | Standard     |
| Fire Alarm Function       | It will be active in case of fire.                                                                                                                                                                                                                                                                                          | Standard     |
| Control and Sensor        | Upon request, wireless CO <sub>2</sub> , differential pressure, temperature and humidity sensors are avaliable.                                                                                                                                                                                                             | Optional     |

#### **ACCESSORIES**



**Electrical Heater** Circular electric heaters have two thermostats as standard.

The first thermostat is set to 70  $^{\circ}$  C, the air in the electric heater cuts off the electric current when it reaches 70  $^{\circ}$  C, allowing the device to restart automatically when the temperature drops.

The second thermostat used for safety purposes is activated at 110  $^{\circ}$  C and cuts off the electric current.

The thermostat must be reset manually from the red button in order for the appliance to operate again.

|         |                 |               | ∆T=5 | ΔT=10 | ΔT=15 |
|---------|-----------------|---------------|------|-------|-------|
|         | Air Flow (m³/h) | Diameter (mm) | kW   | kW    | kW    |
| HOME 27 | 246             | 160           | 0,5  | 1     | 1,5   |
| HOME 35 | 275             | 160           | 0,5  | 1     | 1,5   |
| HOME 50 | 400             | 160           | 1    | 1,5   | 2     |
| HOME 65 | 540             | 200           | 1    | 2     | 3     |
| HOME 85 | 640             | 200           | 1    | 2     | 4     |

| NOTES |  |  |              |                       |       |      |     |     |   |  |
|-------|--|--|--------------|-----------------------|-------|------|-----|-----|---|--|
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     | R |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      | eve | TEM |   |  |
|       |  |  | ++1>-1-1-1-1 | · W   · · L. · · L. · | ₹-+¥- | V/=\ |     | ·   |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |
|       |  |  |              |                       |       |      |     |     |   |  |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477, Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### Istanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1, Ağaoğlu My Office, Kat: 4/18, Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56













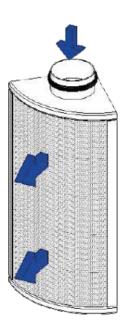


# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.

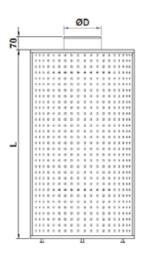












- © UDK Corner Type Displacement Flow Unit provides maximum comfort for residents with low flow rates in large spaces such as hotel lobbies, factory areas, atriums and airports.
- It is recommended to use low speed units in cooling applications between -1°C and -6°C.
- It can be easily mounted on the wall junction corners and feeds air radiating from the corner to the environment where it is located.
- The velocity of the air leaving the unit is low. Thus, the fresh air cools the environment without disturbing the residents.
- Effectively removes the particles released by various pollutants from the space together with the heated air.
- $\ \ \,$  TSE ISO EN 14644, DIN 1946/4, DIN 24194 and DIN 25414 hygiene quality standards.



#### **MATERIAL**

UDK – Corner Type Displacement Flow Unit is shaped from galvanized sheet metal. It is coated with electrostatic powder paint with high corrosion resistance. It can also be produced as stainless in line with customer preferences. There is a rubber gasket on the throat of the UDK that prevents air leakage.

#### **DIMENSIONS**



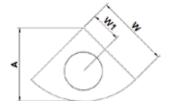



Table 1. Standard Dimensions

| UDK | ØD [mm] | W [mm] | W1 [mm] | A [mm] | L [mm]         |
|-----|---------|--------|---------|--------|----------------|
| 125 | 124     | 280    | 108     | 295    |                |
| 160 | 159     | 340    | 139     | 357    |                |
| 200 | 199     | 390    | 163     | 410    |                |
| 250 | 249     | 440    | 180     | 460    | Between 200 mm |
| 315 | 314     | 515    | 214     | 540    | and 1200       |
| 400 | 399     | 620    | 262     | 650    |                |
| 500 | 499     | 750    | 325     | 790    |                |
| 630 | 629     | 900    | 375     | 945    |                |



# **PERFORMANCE DATA**

Table 2. Performance

|             |                                                                                       |                           |                    |                    | ØD [r              | nm]                |                    |                    |                    |
|-------------|---------------------------------------------------------------------------------------|---------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Debi (m³/h) | L=1000mm                                                                              | 125                       | 160                | 200                | 250                | 315                | 400                | 500                | 630                |
|             | Velocity [m/s]                                                                        | 0,0541                    | 0,0519             | 0,0495             | 0,0466             | 0.0431             | 0.0389             | 0.0345             | 0.0295             |
| 100         | Pressure Drop [Pa] Sound Power Level [dB(A)]                                          | 0,2                       | 0,2                | 0,2                | 0,1                | 0,1                | <0,1               | <0,1               | <0,1               |
|             | Sound Power Level [dB[A]]                                                             | <15<br>0,47               | <15<br>0,46        | <15<br>0,44        | <15<br>0,42        | <15<br>0,40        | <15<br>0,37        | <15<br>0,34        | <15<br>0,30        |
|             | Velocity [m/s]                                                                        | 0,081                     | 0.078              | 0,44               | 0,070              | 0,065              | 0,058              | 0.052              | 0,044              |
| 150         | Pressure Drop [Pa]                                                                    | 0,4                       | 0.4                | 0.4                | 0,3                | 0,3                | 0.2                | 0                  | 0,01               |
| 150         | Sound Power Level [dB(A)]                                                             | <15                       | <15                | <15                | <15                | <15                | <15                | <15                | <15                |
|             | Sound Power Level [dB(A)]                                                             | 0,66                      | 0,64               | 0,62               | 0,59               | 0,55               | 0,51               | 0,47               | 0,42               |
|             | Velocity [m/s]                                                                        | 0,11                      | 0,104              | 0,099              | 0,093              | 0,086              | 0,08               | 0,07               | 0,06               |
| 200         | Pressure Drop [Pa] Sound Power Level [dB(A)]                                          | 1<br><15                  | 1<br><15           | 1<br><15           | 1<br><15           | 0,5<br><15         | 0,4<br><15         | 0,3<br><15         | 0<br><15           |
|             | Sound Power Level [dB[A]]                                                             | 0,83                      | 0,81               | 0,78               | 0,74               | 0.70               | 0,65               | 0,59               | 0,53               |
|             | Velocity [m/s]                                                                        | 0,14                      | 0,13               | 0,12               | 0,12               | 0,70               | 0,10               | 0,09               | 0,07               |
| 250         | Pressure Drop [Pa]                                                                    | 1                         | 1                  | 1                  | 1                  | 1                  | 0,6                | 0,5                | 0,4                |
| 230         | Sound Power Level [dB(A)]                                                             | <15                       | <15                | <15                | <15                | <15                | <15                | <15                | <15                |
|             | Sound Power Level [dB(A)]                                                             | 1                         | 0,97               | 0,94               | 0,89               | 0,84               | 0,78               | 0,71               | 0,63               |
|             | Velocity [m/s] Pressure Drop [Pa]                                                     | 0,16<br>2                 | 0,16<br>2          | 0,15               | 0,14               | 0,13               | 0,12               | 0,10<br>0.7        | 0,09               |
| 300         | Sound Power Level [dB(A)]                                                             | <15                       | <15                | <15                | <15                | <15                | 0,9<br><15         | <15                | 0,5<br><15         |
|             | Sound Power Level [dB(A)]                                                             | 1,16                      | 1.13               | 1,09               | 1,04               | 0,98               | 0,91               | 0,83               | 0,74               |
|             | Velocity [m/s]                                                                        | 0,22                      | 0,21               | 0,20               | 0,19               | 0,17               | 0,16               | 0,14               | 0,12               |
| 400         | Pressure Drop [Pa]                                                                    | 3                         | 3                  | 3                  | 2                  | 2                  | 2                  | 1                  | 1                  |
| 400         | Sound Power Level [dB(A)]                                                             | 18                        | 17                 | 16                 | <15                | <15                | <15                | <15                | <15                |
|             | Sound Power Level [dB(A)]                                                             | 1,47                      | 1,43               | 1,38               | 1,32               | 1,24               | 1,15               | 1,05               | 0,93               |
|             | Velocity [m/s] Pressure Drop [Pa]                                                     | 0,27                      | 0,26<br>4          | <u>0,25</u><br>4   | 0,23<br>4          | 0,22               | 0,19<br>2          | 0,17<br>2          | 0,15<br>1          |
| 500         | Sound Power Level [dB(A)]                                                             | 5<br>25                   | 24                 | 22                 | 21                 | 3<br>18            | 15                 | <15                | <15                |
|             | Sound Power Level [dB[A]]                                                             | 1.77                      | 1,71               | 1,65               | 1.58               | 1.49               | 1,38               | 1,26               | 1.12               |
|             | Velocity [m/s]                                                                        | 0,32                      | 0,31               | 0,30               | 0,28               | 0,26               | 0,23               | 0,21               | 0,18               |
| 600         | Pressure Drop [Pa]                                                                    | 7                         | 6                  | 6                  | 5                  | 4                  | 4                  | 3                  | 2                  |
|             | Sound Power Level [dB(A)]                                                             | 31                        | 29                 | 28                 | 26                 | 24                 | 21                 | 17                 | <15                |
|             | Sound Power Level [dB(A)]                                                             | 2,05                      | 1,99               | 1,92               | 1,83               | 1,73               | 1,60               | 1,46               | 0,30               |
|             | Velocity [m/s] Pressure Drop [Pa]                                                     | 0,43<br>12                | 0,42               | 0,40<br>10         | 0,37<br>9          | 0,34<br>8          | 0,31<br>6          | 0,28<br>5          | 0,24               |
| 800         | Sound Power Level [dB[A]]                                                             | 39                        | 38                 | 37                 | 35                 | 32                 | 29                 | 26                 | 21                 |
|             | Sound Power Level [dB(A)]                                                             | 2,6                       | 2,5                | 2,4                | 2,3                | 2,2                | 2                  | 1,9                | 1,6                |
|             | Velocity [m/s]                                                                        | 0,54                      | 0,52               | 0,49               | 0,47               | 0,43               | 0,39               | 0,35               | 0,30               |
| 1000        | Pressure Drop [Pa]                                                                    | 19                        | 18                 | 16                 | 14                 | 12                 | 10                 | 8                  | 6                  |
| 1000        | Sound Power Level [dB(A)]                                                             | 46                        | 45                 | 43                 | 42                 | 39                 | 36                 | 32                 | 28                 |
|             | Sound Power Level [dB(A)] Velocity [m/s]                                              | 3,12                      | 3,02               | 2,92               | 2,79               | 2,63               | 2,44               | 2,23               | 1,98               |
|             | Pressure Drop [Pa]                                                                    | 0,65<br>28                | 0,62<br>25         | 0,59<br>23         | 0,56<br>21         | 0,52<br>18         | 0,47               | 0,41               | 0,35<br>8          |
| 1200        | Sound Power Level [dB[A]]                                                             | 52                        | 50                 | 49                 | 47                 | 45                 | 42                 | 38                 | 33                 |
|             | Sound Power Level [dB(A)]                                                             | 3,62                      | 3,51               | 3,39               | 3,24               | 3,05               | 2,83               | 2,58               | 2,30               |
|             | Velocity [m/s]                                                                        | 0,76                      | 0,73               | 0,69               | 0,65               | 0,60               | 0,54               | 0,48               | 0,41               |
| 1/100       | Pressure Drop [Pa]                                                                    | 38                        | 35                 | 32                 | 28                 | 24                 | 19                 | 15                 | 11                 |
| 1400        | Sound Power Level [dB(A)]                                                             | 56                        | 55                 | 54                 | 52                 | 49                 | 46                 | 43                 | 38                 |
|             | Sound Power Level [dB(A)]                                                             | 4,11                      | 3,99               | 3,84<br>0,79       | 3,67<br>0,75       | 3,47               | 3,21               | 2,93<br>0,55       | 2,61<br>0,47       |
|             | Velocity [m/s] Pressure Drop [Pa]                                                     | 0,87<br>49                | 45                 | 41                 | 37                 | 0,69<br>31         | 0,62<br>25         | 20                 | 15                 |
| 1600        | Sound Power Level [dB(A)]                                                             | 60                        | 59                 | 58                 | 56                 | 54                 | 50                 | 47                 | 42                 |
|             | Sound Power Level [dB(A)]                                                             | 4,59                      | 4,45               | 4,29               | 4,10               | 3,87               | 3,58               | 3,27               | 2,91               |
|             | Velocity [m/s]                                                                        | 0,97                      | 0,93               | 0,89               | 0,84               | 0,78               | 0,70               | 0,62               | 0,53               |
| 1800        | Pressure Drop [Pa]                                                                    | 62                        | 57                 | 52                 | 46                 | 40                 | 32                 | 25                 | 19                 |
| 1000        | Sound Power Level [dB(A)]                                                             | 64                        | 63                 | 61                 | 59                 | 57                 | 54                 | 50                 | 46                 |
|             | Sound Power Level [dB(A)]                                                             | 5,06                      | 4,90               | 4,72               | 4,52               | 4,26               | 3,94               | 3,60               | 3,21               |
|             | Velocity [m/s] Pressure Drop [Pa]                                                     | 1,08<br>77                | 1,04<br>71         | 0,99<br>64         | 0,93<br>57         | 0,86<br>49         | 0,78<br>40         | 0,69<br>31         | 0,59<br>23         |
| 2000        | Sound Power Level [dB(A)]                                                             | 67                        | 66                 | 64                 | 63                 | 60                 | 57                 | 54                 | 49                 |
|             | Sound Power Level [dB[A]]                                                             | 5,51                      | 5,34               | 5,15               | 4,92               | 4,64               | 4,30               | 3,93               | 3,50               |
| 2000        |                                                                                       | 1,35                      | 1,30               | 1,24               | 1,16               | 1,08               | 0,97               | 0,86               | 0,74               |
| 2000        | Velocity [m/s]                                                                        |                           |                    |                    |                    | 76                 | 62                 | 49                 | 36                 |
|             | Pressure Drop [Pa]                                                                    | 120                       | 111                | 100                | 89                 | 70                 |                    | 73                 | - 00               |
| 2500        | Pressure Drop [Pa] Sound Power Level [dB(A)]                                          | 120<br>74                 | 73                 | 71                 | 69                 | 67                 | 64                 | 60                 | 54                 |
|             | Pressure Drop [Pa] Sound Power Level [dB(A)] Sound Power Level [dB(A)]                | 120<br>74<br>6,62         | 73<br>6,41         | 71<br>6,19         | 69<br>5,91         | 67<br>5,58         | 64<br>5,16         | 60<br>4,72         | 54<br>4,20         |
|             | Pressure Drop [Pa] Sound Power Level [dB(A)] Sound Power Level [dB(A)] Velocity [m/s] | 120<br>74<br>6,62<br>1,62 | 73<br>6,41<br>1,56 | 71<br>6,19<br>1,48 | 69<br>5,91<br>1,40 | 67<br>5,58<br>1,29 | 64<br>5,16<br>1,17 | 60<br>4,72<br>1,04 | 54<br>4,20<br>0,89 |
|             | Pressure Drop [Pa] Sound Power Level [dB(A)] Sound Power Level [dB(A)]                | 120<br>74<br>6,62         | 73<br>6,41         | 71<br>6,19         | 69<br>5,91         | 67<br>5,58         | 64<br>5,16         | 60<br>4,72         |                    |

Table 3. Correction Factors

|       | CORRECTION FACTOR |          |       |       |  |  |  |  |  |  |
|-------|-------------------|----------|-------|-------|--|--|--|--|--|--|
| L[mm] | Velocity          | Pressure | Sound | Throw |  |  |  |  |  |  |
| 100   | 10                | 100      | 2,7   | 5,6   |  |  |  |  |  |  |
| 200   | 5                 | 25       | 2,2   | 3,3   |  |  |  |  |  |  |
| 400   | 2,5               | 6,3      | 1,7   | 2     |  |  |  |  |  |  |
| 500   | 2                 | 4        | 1,5   | 1,7   |  |  |  |  |  |  |
| 750   | 1,3               | 1,8      | 1,2   | 1,2   |  |  |  |  |  |  |
| 1000  | 1                 | 1        | 1     | 1     |  |  |  |  |  |  |
| 1200  | 0,8               | 0,7      | 0,9   | 0,9   |  |  |  |  |  |  |

# **ORDER CODE**

You can place your orders according to the following coding format.

UDK. < A > . < B > . < C > . < D >

| Α | Material             |                                  |  |  |  |  |  |  |  |
|---|----------------------|----------------------------------|--|--|--|--|--|--|--|
|   | GAL                  | Galvanized                       |  |  |  |  |  |  |  |
|   | PAS                  | Stainless Steel                  |  |  |  |  |  |  |  |
| В | Dimension (ØD) [mm]  |                                  |  |  |  |  |  |  |  |
|   | Ø125 - Ø160 - Ø200 - | 0250 - 0315 - 0400 - 0500 - 0630 |  |  |  |  |  |  |  |
| С | Length (L) [mm]      |                                  |  |  |  |  |  |  |  |
| D | 0000                 | Standard Dimensions              |  |  |  |  |  |  |  |
|   | Coating              |                                  |  |  |  |  |  |  |  |
|   | 00                   | Without Color                    |  |  |  |  |  |  |  |
|   | S1                   | Standard Color - RAL 9010        |  |  |  |  |  |  |  |
|   | S2                   | Standard Color - RAL 9016        |  |  |  |  |  |  |  |
|   | XX                   | Special Color                    |  |  |  |  |  |  |  |

**Example;** UDK.GAL.0500.1200.S1

| NOTES |          |             |   |
|-------|----------|-------------|---|
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       | <u> </u> | HVAC SYSTEM | S |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |
|       |          |             |   |

| NOTES |                              |  |
|-------|------------------------------|--|
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       | IKLIMLENDIRME   HVAC SYSTEMS |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |







#### **Ankara Sales Office**

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A Blok Kat:11 Ofis:1104 06520 Söğütözü, Yenimahalle, Ankara/TURKEY Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

#### **Antalya Sales Office**

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel.: +90 242 505 87 77

#### **Adana Sales Office**

Mimar Selim Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301











# FOUR-POOL-CRF

Pool Dehumidification Unit with Cross Flow Heat Exchanger

# FOUR-POOL-OO

Pool Dehumidification Unit without Plate Heat Exchanger



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.









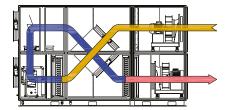


- 1. ISO Course Filter
- 2. Aspirator Fan
- 3. Evaporator
- 4. Exhaust Damper
- 5. Fresh Air Damper
- 6. Mixing Damper
- 7. Automation Board

- 8. Cross Flow Heat Exchanger
- 9. Condenser
- 10. Water Heater
- 11. Vantilator Fan
- 12. Scroll Compressor
- 13. Accumulator

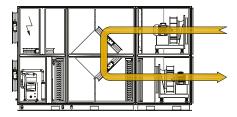


# **Devices Properties**


- Standard galvanise sheet, optional painted sheet
- € 50 mm rockwall insulation
- Corrosion-resistant coil;

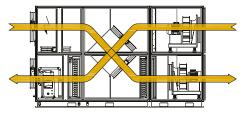
Evaporator; hydrophilic coated fin and electrostatic powder coated Condenser; epoxy coated fin and electrostatic powder coated Water heater; epoxy coated fin and electrostatic powder coated

- Plug fan with frequency inventor or optional EC plug fan
- Dehumidification with fresh air mod for energy saving
- R410A refrigerant
- € Thermostatic expansion valve or optional electrostatic expansion valve


# **Working Principle**

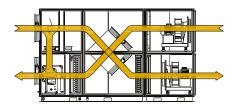
#### Wet Room Air



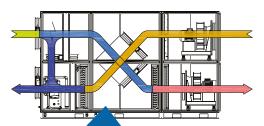

Wet and Warm Room Air

# **Dry Room Air**



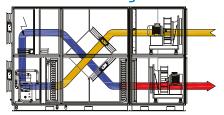

Dry and Warm Room Air

# 100% Outside Air Working

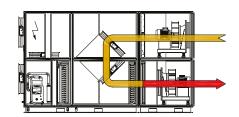



Dry and Warm Outside Air

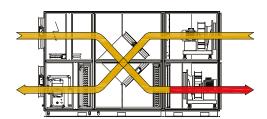
# **Mixed Air Working**



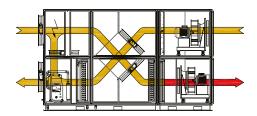

Dry-Warm Room and Outside Air



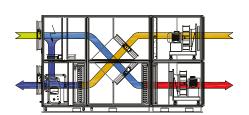

Dry-Warm Room and Outside Air


# **Recirculated Working**




Wet and Cold Room Air

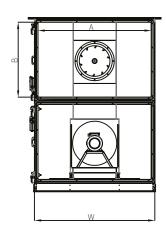


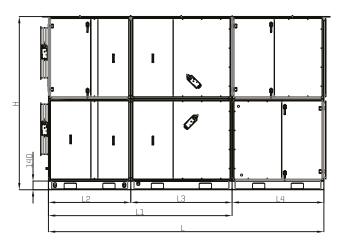

Dry and Cold Room Air



Dry and Cold Outside Air




Dry-Cold Room and Outside Air





Wet-Cold Room and Outside Air

### **Dimensions and Technical Data**

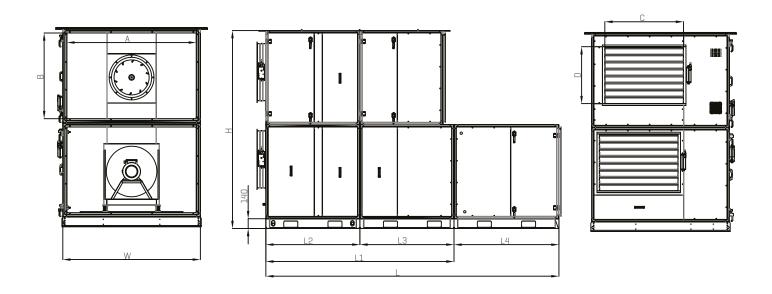
# 1) FOUR POOL CRF - POOL DEHUMIDIFICATION UNIT WITH CROSS FLOW HEAT EXCHANGER







|     | POOL CRF 030 | P00L CRF 045 | POOL CRF 060 | POOL CRF 080 | POOL CRF 100 | POOL CRF 120 | POOL CRF 160 | P00L CRF 180 | POOL CRF 200 | P00L CRF 250 |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| L   | 3225         | 3225         | 3535         | 3690         | 4000         | 4155         | 4485         | 4950         | 5725         | 5880         |
| L1  | 2195         | 2195         | 2505         | 2505         | 2660         | 2815         | -            | -            | -            | -            |
| L2  | -            | -            | -            | -            | -            | -            | 1340         | 1340         | 1805         | 1960         |
| L3  | -            | -            | -            | -            | -            | -            | 1650         | 1960         | 2270         | 2270         |
| L4  | 1030         | 1030         | 1030         | 1185         | 1340         | 1340         | 1495         | 1650         | 1650         | 1650         |
| W   | 875          | 1030         | 1030         | 1340         | 1340         | 1650         | 1960         | 1960         | 1960         | 2270         |
| Н   | 1560         | 1870         | 2180         | 2180         | 2490         | 2490         | 2820         | 2820         | 3440         | 3440         |
| A-B | 760x600      | 910x760      | 910×910      | 1220x910     | 1220×1070    | 1530×1070    | 1840x1120    | 1840x1120    | 1840x1530    | 2150x1530    |
| C-D | 370x370      | 500x510      | 500x610      | 655x610      | 655x710      | 810×710      | 1120x810     | 1120x810     | 1120×910     | 1280x910     |


<sup>\*</sup> All dimesions are mm.

| Device Model                                    | Unit | POOL-CRF-030 | POOL-CRF-045 | POOL-CRF-060 | POOL-CRF-080 | POOL-CRF-100 | POOL-CRF-120 | POOL-CRF-160 | POOL-CRF-180 | POOL-CRF-200 | POOL-CRF-250 |
|-------------------------------------------------|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Air-flow                                        | m³/h | 3000         | 4500         | 6000         | 8000         | 10000        | 12000        | 16000        | 18000        | 20000        | 25000        |
| External Static Pressure                        | Pa   | 450          | 450          | 450          | 450          | 450          | 450          | 450          | 450          | 450          | 450          |
| ASP/VANT Motor Power                            | kW   | 1,5/1,5      | 2,2/2,2      | 5/5          | 5,5/5,5      | 5,5/5,5      | 5,5/5,5      | 7,5/7,5      | 11/11        | 11/11        | 15/15        |
| Opsiyonel EC Fan ASP/VANT Motor Gücü            | kW   | 1,14/1,14    | 1,85/1,85    | 3,47/3,47    | 3,51/3,51    | 4,7/4,7      | 6,75/6,75    | 7,7/7,7      | 12/12        | 11,6/11,6    | 11,6/11,6    |
| Dehumidification Capacity according to VDI 2089 | kg/h | 19.1         | 28.6         | 38.2         | 50.9         | 63.7         | 76.3         | 101.8        | 114.5        | 127.2        | 159.0        |
| Evaporator Capacity                             | kW   | 16.46        | 25.37        | 33.3         | 42.11        | 52           | 63.2         | 81.8         | 96.66        | 100.93       | 128.63       |
| Condenser Capacity                              | kW   | 20.7         | 31.4         | 40.1         | 51.5         | 61.9         | 79.3         | 100          | 121.7        | 123.8        | 158.5        |
| Water Heater Capacity                           | kW   | 27.5         | 43.8         | 56           | 76.7         | 96           | 120.2        | 162.8        | 175.3        | 200.2        | 247.9        |
| Compressor-Circuit Number                       | kW   | 1-1          | 1-1          | 1-1          | 1-1          | 1-1          | 1-1          | 1-1          | 1-1          | 2-2          | 2-2          |
| Total Absorbed Power                            | kW   | 5.987        | 9.195        | 13.094       | 17.72        | 19.9         | 25.2         | 31.23        | 38.75        | 38.02        | 51.32        |
| Total Absorbed Power with Optional EC Fan       | kW   | 5.267        | 8.495        | 10.034       | 13.74        | 18.3         | 27.7         | 32.63        | 40.75        | 39.22        | 44.52        |
| Voltage/Hertz/Phase                             |      |              |              |              |              | 400V / 5     | 60Hz / 3 Ph  | ·            |              |              |              |

<sup>\*</sup> Designed according to VDI 2089.

<sup>\*</sup> Total absorbed power without electrical heater.

# 2) FOUR POOL 00- POOL DEHUMIDIFICATION UNIT WITHOUT PLATE HEAT EXCHANGER



|     | P00L 00 030 | POOL 00 045 | P00L 00 060 | POOL 00 080 | P00L 00 100 | P00L 00 120 | P00L 00 160 | P00L00180 | P00L 00 200 | P00L 00 250 |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|-------------|-------------|
| L   | 2915        | 2915        | 3225        | 3380        | 3690        | 3845        | 4175        | 4640      | 5415        | 5570        |
| L1  | 1885        | 1885        | 2195        | 2195        | 2350        | 2505        | -           | -         | -           | -           |
| L2  | -           | -           | -           | -           | -           | -           | 1340        | 1340      | 1805        | 1960        |
| L3  | -           | -           | -           | -           | -           | -           | 1340        | 1650      | 1690        | 1690        |
| L4  | 1030        | 1030        | 1030        | 1185        | 1340        | 1340 1495   |             | 1650      | 1650        | 1650        |
| W   | 875         | 1030        | 1030        | 1340        | 1340        | 1650        | 1960        | 1960      | 1960        | 2270        |
| Н   | 1560        | 1870        | 2180        | 2180        | 2490        | 2490        | 2820        | 2820      | 3440        | 3440        |
| A-B | 760×600     | 910×760     | 910x910     | 1220x910    | 1220x1070   | 1530×1070   | 1840x1120   | 1840×1120 | 1840×1530   | 2150x1530   |
| C-D | 370×370     | 500x510     | 500x610     | 655x610     | 655x710     | 810×710     | 1120x810    | 1120x810  | 1280x910    | 1280x910    |

<sup>\*</sup> All dimesions are mm.

| Device Model                                    | Unit | P00L-00-030 | P00L-00-045 | P00L-00-060 | P00L-00-080 | P00L-00-100 | P00L-00-120 | P00L-00-160 | P00L-00-180 | P00L-00-200 | P00L-00-250 |
|-------------------------------------------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Air-flow                                        | m³/h | 3000        | 4500        | 6000        | 8000        | 10000       | 12000       | 16000       | 18000       | 20000       | 25000       |
| External Static Pressure                        | Pa   | 450         | 450         | 450         | 450         | 450         | 450         | 450         | 450         | 450         | 450         |
| ASP/VANT Motor Power                            | kW   | 1,5/1,5     | 2,2/2,2     | 3/3         | 3/3         | 1/1         | 5,5/5,5     | 7,5/7,5     | 7,5/7,5     | 11/11       | 11/11       |
| Opsiyonel EC Fan ASP/VANT Motor Gücü            | kW   | 1,14/1,14   | 1,85/1,85   | 2,73/2,73   | 3/3         | 3,51/3,51   | 4,7/4,7     | 6,75/6,75   | 6,75/6,75   | 11/11       | 12/12       |
| Dehumidification Capacity according to VDI 2089 | kg/h | 19.1        | 28.6        | 38.2        | 50.9        | 63.7        | 76.3        | 101.8       | 114.5       | 127.2       | 159.0       |
| Evaporator Capacity                             | kW   | 20.1        | 30.5        | 38          | 49          | 65.1        | 80.3        | 102         | 124.2       | 133.2       | 164         |
| Condenser Capacity                              | kW   | 25.9        | 36.6        | 45.8        | 59.7        | 80.1        | 99.7        | 126         | 157.4       | 165         | 204         |
| Water Heater Capacity                           | kW   | 27.6        | 43.6        | 57          | 77.9        | 93.4        | 116.6       | 158.9       | 175.3       | 200.2       | 249.2       |
| Compressor-Circuit Number                       | kW   | 1-1         | 1-1         | 1-1         | 1-1         | 1-1         | 1-1         | 1-1         | 2-2         | 2-2         | 2-2         |
| Total Absorbed Power                            | kW   | 6.351       | 10.043      | 13.368      | 16          | 21.14       | 25.49       | 31.79       | 41.49       | 41.08       | 53.08       |
| Total Absorbed Power with Optional EC Fan       | kW   | 5.631       | 9.343       | 12.828      | 16          | 20.16       | 23.89       | 30.29       | 39.99       | 41.08       | 55.08       |
| Voltage/Hertz/Phase                             |      |             |             |             |             | 400V / 5    | 0Hz / 3 Ph  |             |             |             |             |

<sup>\*</sup> Designed according to VDI 2089.

<sup>\*</sup> Total absorbed power without electrical heater.

# **ELECTRIC BOARD AND AUTOMATION**

| Function - Equipment                      | Using Status |
|-------------------------------------------|--------------|
| Emergency Stop Button                     | STANDARD     |
| Automation Card                           | STANDARD     |
| Duct Type Temperature and Humidity Sensor | STANDARD     |
| 3 Way Valve Motor                         | STANDARD     |
| Damper Actuator                           | STANDARD     |
| Freezing Thermostat                       | STANDARD     |
| Communication<br>Unit                     | OPTIONAL     |
| Differencial Pressure<br>Switch           | STANDARD     |
| Cable Typ<br>Temperature Sensors          | STANDARD     |
| Room Panel                                | STANDARD     |
| Constant Flow                             | STANDARD     |

| NOTES |      |             |      |      |      |          |      |     |  |
|-------|------|-------------|------|------|------|----------|------|-----|--|
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       | <br> |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      | !K <u>L</u> | IMLE | EMDI | RME. | <br>AC-S | SYST | EMS |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |
|       |      |             |      |      |      |          |      |     |  |

| NOTES                        |  |
|------------------------------|--|
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
| İKLİMLENDİRME L HVAC SYSTEMS |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |







#### Headquarter

İTOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TÜRKİYE Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **İstanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, İstanbul/TÜRKİYE Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56













**DSU**Surface Mounted Adjustable Louvre



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











- © DSU Surface Mounted Adjustable Louvre allows its blades to be easily adjusted with the adjustment lever.
- lt is an outdoor weather louvre preferred for surface mounted wall applications.
- If specified in the order code, expanded aluminum wire is mounted on the back of the louvre.



### **MATERIAL**

Frame and blades made of aluminum 6063 extruded profile

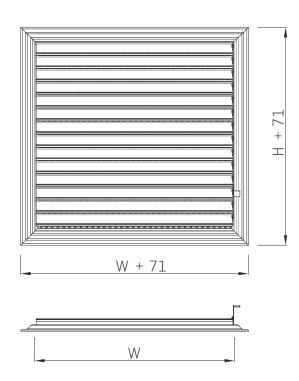
#### **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard
- © Optional
  - Different RAL color codes

### **MOUNTING OPTIONS**

- Screw System
- Without Mounting Hole

#### **ACCESSORIES**


- © Optional
  - Expanded aluminum wire

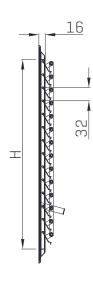


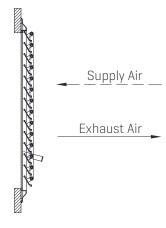


# **PRODUCT SELECTION**

# **STANDARD DIMENSIONS**







Table 1. Standard Dimensions

| Star           | ndard  |          | H (Height) [mm] |          |          |          |          |          |          |             |  |  |
|----------------|--------|----------|-----------------|----------|----------|----------|----------|----------|----------|-------------|--|--|
| Dime           | nsions | 100      | 200             | 300      | 400      | 500      | 600      | 700      | 800      | 900         |  |  |
|                | 100    | <b>~</b> | <b>~</b>        | <b>~</b> | <b>✓</b> | <b>✓</b> |          |          |          |             |  |  |
|                | 200    | <b>✓</b> | <b>✓</b>        | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    |  |  |
| W [Width] [mm] | 300    | <b>✓</b> | <b>~</b>        | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>~</b> | <b>~</b> | <b>~</b>    |  |  |
| )[n            | 400    | <b>✓</b> | <b>✓</b>        | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>✓</b>    |  |  |
| dth            | 500    | <b>✓</b> | <b>~</b>        | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | >        | >        | <b>~</b>    |  |  |
| Š              | 600    | <b>~</b> | <b>✓</b>        | <b>~</b> | <b>~</b> | <b>✓</b> | <b>~</b> | <b>\</b> | <b>~</b> | <b>✓</b>    |  |  |
| >              | 700    | <b>~</b> | <b>~</b>        | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>~</b> | <b>~</b> | <b>~</b>    |  |  |
|                | 800    | <b>~</b> | <b>~</b>        | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>~</b> | <b>~</b> | <b>✓</b>    |  |  |
|                | 900    | <b>~</b> | <b>~</b>        | <b>~</b> | <b>~</b> | <b>~</b> | <b>~</b> | >        | >        | <b>&gt;</b> |  |  |



### **PERFORMANCE DATA**

Performance data are given below according to the fresh air supply into the space and the exhausted air from the space to the outside. Product dimensions are determined from the effective area provided according to the desired perform



#### **EFFECTIVE AREA TABLE**

Table 2. Effective Area

| Effective A | rea [m²] | 100   | 200   | 300   | 400   | 500   | 600   | 700   | 800   | 900   |
|-------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|             | 100      | 0.009 | 0.014 | 0.019 | 0.024 | 0.029 |       |       |       |       |
|             | 200      | 0.014 | 0.024 | 0.034 | 0.043 | 0.053 | 0.063 | 0.073 | 0.083 | 0.092 |
| [mm]        | 300      | 0.019 | 0.034 | 0.048 | 0.063 | 0.078 | 0.092 | 0.107 | 0.122 | 0.137 |
|             | 400      | 0.024 | 0.043 | 0.063 | 0.083 | 0.102 | 0.122 | 0.142 | 0.161 | 0.181 |
| W [Width]   | 500      | 0.029 | 0.053 | 0.078 | 0.102 | 0.127 | 0.151 | 0.176 | 0.200 | 0.225 |
| Nic Wic     | 600      | 0.034 | 0.063 | 0.092 | 0.122 | 0.151 | 0.181 | 0.210 | 0.240 | 0.269 |
|             | 700      | 0.038 | 0.073 | 0.107 | 0.142 | 0.176 | 0.210 | 0.245 | 0.279 | 0.313 |
|             | 800      | 0.043 | 0.083 | 0.122 | 0.161 | 0.200 | 0.240 | 0.279 | 0.318 | 0.358 |
|             | 900      | 0.048 | 0.092 | 0.137 | 0.181 | 0.225 | 0.269 | 0.313 | 0.358 | 0.402 |

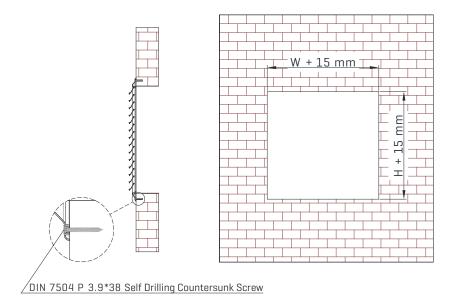


# **FRESH AIR DATA**

**Table 3.** Fresh Air Data

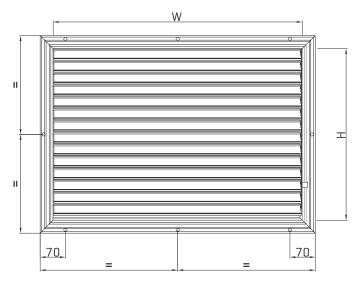
| Flow Rate |                                              | Effective Velocity (m/s) |           |          |       |         |             |        |          |             |          |           |
|-----------|----------------------------------------------|--------------------------|-----------|----------|-------|---------|-------------|--------|----------|-------------|----------|-----------|
| (m3/h)    |                                              | 0.5                      | 1.0       | 1.5      | 2.0   | 2.5     | 3.0         | 3.5    | 4.0      | 4.5         | 5.0      | 6.0       |
|           | Effective Area [m²]                          | 0.0278                   | 0.0139    | 0.0093   |       |         |             |        |          |             |          |           |
| 50        | Pressure Drop [Pa]                           | <1                       | <1        | 2        |       |         |             |        |          |             |          |           |
|           | Sound Power Level [dB(A)]                    | <15                      | <15       | <15      |       |         |             |        |          |             |          |           |
|           | Effective Area [m²]                          | 0.0556                   | 0.278     | 0.019    | 0.014 | 0.011   | 0.009       |        |          |             |          |           |
| 100       | Pressure Drop [Pa]                           | <1                       | <1        | 2        | 4     | 8       | 14          |        |          |             |          |           |
|           | Sound Power Level [dB(A)]                    | <15                      | <15       | <15      | <15   | <15     | 15          |        |          |             |          |           |
|           | Effective Area [m²]                          | 0.111                    | 0.056     | 0.037    | 0.028 | 0.022   | 0.019       | 0.016  | 0.014    | 0.012       | 0.011    | 0.009     |
| 200       | Pressure Drop [Pa]                           | <1                       | <1        | 2        | 4     | 8       | 14          | 23     | 34       | 49          | 68       | 118       |
|           | Sound Power Level [dB(A)]                    | <15                      | <15       | <15      | <15   | <15     | 18          | 24     | 29       | 33          | 37       | 44        |
|           | Effective Area [m²]                          | 0.167                    | 0.083     | 0.056    | 0.042 | 0.033   | 0.028       | 0.024  | 0.021    | 0.019       | 0.017    | 0.014     |
| 300       | Pressure Drop [Pa]                           | <1                       | <1        | 2        | 4     | 8       | 14          | 22     | 34       | 48          | 67       | 117       |
|           | Sound Power Level [dB(A)]                    | <15                      | <15       | <15      | <15   | <15     | 19          | 25     | 30       | 35          | 39       | 46        |
|           | Effective Area [m²]                          | 0.222                    | 0.111     | 0.074    | 0.056 | 0.044   | 0.037       | 0.032  | 0.028    | 0.025       | 0.022    | 0.019     |
| 400       | Pressure Drop [Pa]                           | <1                       | <1        | 2        | 4     | 8       | 14          | 22     | 33       | 48          | 66       | 115       |
|           | Sound Power Level [dB(A)]                    | <15                      | <15       | <15      | <15   | <15     | 21          | 26     | 31       | 36          | 40       | 47        |
|           | Effective Area [m²]                          | 0.278                    | 0.139     | 0.093    | 0.069 | 0.056   | 0.046       | 0.040  | 0.035    | 0.031       | 0.028    | 0.023     |
| 500       | Pressure Drop [Pa]                           | <1                       | <1        | 2        | 4     | 8       | 14          | 22     | 33       | 47          | 65       | 114       |
|           | Sound Power Level [dB(A)]                    | <15                      | <15       | <15      | <15   | <15     | 21          | 27     | 32       | 37          | 41       | 48        |
|           | Effective Area [m²]                          | 0.333                    | 0.167     | 0.111    | 0.083 | 0.067   | 0.056       | 0.048  | 0.042    | 0.037       | 0.0333   | 0.028     |
| 600       | Pressure Drop [Pa] Sound Power Level [dB(A)] | <1                       | <1        | 2        | 4     | 8       | 14          | 22     | 33       | 47          | 65       | 114       |
|           |                                              | <15                      | <15       | <15      | <15   | 15      | 22          | 28     | 33       | 37          | 41       | 48        |
|           | Effective Area [m²] Pressure Drop [Pa]       | 0.389                    | 0.194     | 0.130    | 0.097 | 0.078   | 0.065       | 0.056  | 0.049    | 0.043<br>47 | 0.0389   | 0.032     |
| 700       | Sound Power Level [dB[A]]                    | <1<br><15                | <1<br><15 | 2<br><15 | <15   | 8<br>16 | 13          | 22     | 33<br>34 | 38          | 65<br>42 | 113<br>49 |
|           | Effective Area [m²]                          | <15                      | 0.222     | 0.148    | 0.111 | 0.089   | 23<br>0.074 | 0.063  | 0.056    | 0.049       | 0.0444   | 0.037     |
|           | Pressure Drop [Pa]                           |                          | <1        | 2        | 4     | 8       | 13          | 22     | 32       | 47          | 64       | 113       |
| 800       | Sound Power Level [dB(A)]                    |                          | <15       | <15      | <15   | 16      | 23          | 29     | 34       | 39          | 43       | 49        |
|           | Effective Area [m²]                          |                          | 0.250     | 0.167    | 0.125 | 0.100   | 0.083       | 0.071  | 0.063    | 0.056       | 0.500    | 0.042     |
| 000       | Pressure Drop [Pa]                           |                          | <1        | 2        | 4     | 8       | 13          | 21     | 32       | 46          | 64       | 112       |
| 900       | Sound Power Level [dB[A]]                    |                          | <15       | <15      | <15   | 17      | 24          | 30     | 35       | 39          | 43       | 50        |
|           | Effective Area [m²]                          |                          | 0.278     | 0.185    | 0.139 | 0.111   | 0.093       | 0.079  | 0.069    | 0.062       | 0.556    | 0.046     |
| 1000      | Pressure Drop [Pa]                           |                          | <1        | 2        | 4     | 8       | 13          | 21     | 32       | 46          | 64       | 112       |
| 1000      | Sound Power Level [dB[A]]                    |                          | <15       | <15      | <15   | 17      | 24          | 30     | 35       | 39          | 43       | 50        |
|           | Effective Area [m²]                          |                          | 0.347     | 0.231    | 0.174 | 0.139   | 0.116       | 0.099  | 0.087    | 0.077       | 0.0694   | 0.58      |
| 1250      | Pressure Drop [Pa]                           |                          | <1        | 2        | 4     | 8       | 13          | 21     | 32       | 46          | 63       | 111       |
| 1230      | Sound Power Level [dB[A]]                    |                          | <15       | <15      | <15   | 18      | 25          | 31     | 36       | 40          | 44       | 51        |
|           | Effective Area [m²]                          |                          |           | 0.278    | 0.208 | 0.167   | 0.139       | 0.119  | 0.104    | 0.926       | 0.833    | 0.069     |
| 1500      | Pressure Drop [Pa]                           |                          |           | 2        | 4     | 8       | 13          | 21     | 32       | 45          | 63       | 110       |
| 1300      | Sound Power Level [dB[A]]                    |                          |           | <15      | <15   | 19      | 26          | 32     | 37       | 41          | 45       | 52        |
|           | Effective Area [m²]                          |                          |           | 0.324    | 0.243 | 0.194   | 0.162       | 0.139  | 0.122    | 0.1080      | 0.972    | 0.081     |
| 1750      | Pressure Drop [Pa]                           |                          |           | 2        | 4     | 7       | 13          | 21     | 32       | 45          | 62       | 109       |
| 1730      | Sound Power Level [dB(A)]                    |                          |           | <15      | <15   | 20      | 26          | 32     | 37       | 42          | 46       | 53        |
|           | Effective Area [m²]                          |                          |           | 0.370    | 0.278 | 0.222   | 0.185       | 0.159  | 0.139    | 0.1235      | 0.1111   | 0.093     |
| 2000      | Pressure Drop [Pa]                           |                          |           | 2        | 4     | 7       | 13          | 21     | 31       | 45          | 62       | 109       |
|           | Sound Power Level [dB(A)]                    |                          |           | <15      | <15   | 20      | 27          | 33     | 38       | 42          | 46       | 53        |
|           | Effective Area [m²]                          |                          |           |          | 0.347 | 0.278   | 0.231       | 0.198  | 0.174    | 0.1543      | 0.1389   | 0.116     |
| 2500      | Pressure Drop [Pa]                           |                          |           |          | 4     | 7       | 13          | 21     | 31       | 45          | 62       | 108       |
|           | Sound Power Level [dB(A)]                    |                          |           |          | <15   | 21      | 28          | 34     | 39       | 43          | 47       | 54        |
|           | Effective Area [m²]                          |                          |           |          |       | 0.333   | 0.778       | 0.2381 | 0.2083   | 0.1852      | 0.1667   | 0.139     |
| 3000      | Pressure Drop [Pa]                           |                          |           |          |       | 7       | 13          | 21     | 31       | 44          | 61       | 107       |
|           | Sound Power Level [dB(A)]                    |                          |           |          |       | 22      | 29          | 34     | 39       | 44          | 48       | 55        |
| 4000      | Effective Area [m²]                          |                          |           |          |       |         | 0.370       | 0.3175 | 0.2778   | 0.2469      | 0.2222   | 0.185     |
|           | Pressure Drop [Pa]                           |                          |           |          |       |         | 13          | 20     | 31       | 44          | 61       | 106       |
|           | Sound Power Level [dB(A)]                    |                          |           |          |       |         | 30          | 36     | 41       | 45          | 49       | 56        |
|           | Effective Area [m²]                          |                          |           |          |       |         |             | 0.3968 | 0.3472   | 0.3086      | 0.2778   | 0.231     |
| 5000      | Pressure Drop [Pa]                           |                          |           |          |       |         |             | 20     | 30       | 44          | 60       | 105       |
|           | Sound Power Level [dB(A)]                    |                          |           |          |       |         |             | 36     | 41       | 46          | 50       | 57        |
|           | Effective Area [m²]                          |                          |           |          |       |         |             |        |          |             |          | 0.347     |
| 7500      | Pressure Drop [Pa]                           |                          |           |          |       |         |             |        |          |             |          | 104       |
| , 000     | Sound Power Level [dB[A]]                    |                          |           |          |       |         |             |        |          |             |          | 58        |




# **EXHAUST AIR DATA**


**Table 4.** Exhaust Air Data

| Flow Rate |                                                | Effective Velocity [m / s] |              |              |             |             |             |             |             |             |              |          |
|-----------|------------------------------------------------|----------------------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|----------|
| (m3/h)    |                                                | 0.5                        | 1.0          | 1.5          | 2.0         | 2.5         | 3.0         | 3.5         | 4.0         | 4.5         | 5.0          | 6.0      |
|           | Effective Area [m²]                            | 0.0278                     | 0.0139       | 0.0093       |             |             |             |             |             |             |              |          |
| 50        | Pressure Drop [Pa]                             | <1                         | 3            | 6            |             |             |             |             |             |             |              |          |
|           | Sound Power Level [dB(A)]                      | <15                        | <15          | <15          |             |             |             |             |             |             |              |          |
|           | Effective Area [m²]                            | 0.0556                     | 0.278        | 0.019        | 0.014       | 0.011       | 0.009       |             |             |             |              |          |
| 100       | Pressure Drop [Pa]                             | <1                         | 3            | 6            | 11          | 17          | 25          |             |             |             |              |          |
|           | Sound Power Level [dB(A)]                      | <15                        | <15          | <15          | <15         | 16          | 21          |             |             |             |              |          |
|           | Effective Area [m²]                            | 0.111                      | 0.056        | 0.037        | 0.028       | 0.022       | 0.019       | 0.016       | 0.014       | 0.012       | 0.011        | 0.009    |
| 200       | Pressure Drop [Pa]                             | <1                         | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
|           | Sound Power Level [dB(A)]                      | <15                        | <15          | <15          | <15         | 19          | 24          | 28          | 31          | 34          | 37           | 42       |
|           | Effective Area [m²]                            | 0.167                      | 0.083        | 0.056        | 0.042       | 0.033       | 0.028       | 0.024       | 0.021       | 0.019       | 0.017        | 0.014    |
| 300       | Pressure Drop [Pa]                             | <1                         | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
|           | Sound Power Level [dB(A)]                      | <15                        | <15          | <15          | 15          | 21          | 26          | 30          | 33          | 36          | 39           | 44       |
|           | Effective Area [m²]                            | 0.222                      | 0.111        | 0.074        | 0.056       | 0.044       | 0.037       | 0.032       | 0.028       | 0.025       | 0.022        | 0.019    |
| 400       | Pressure Drop [Pa]                             | <1                         | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
|           | Sound Power Level [dB(A)]                      | <15                        | <15          | <15          | 16          | 22          | 27          | 31          | 34          | 37          | 40           | 45       |
| 500       | Effective Area [m²]                            | 0.278                      | 0.139        | 0.093        | 0.069       | 0.056       | 0.046       | 0.040       | 0.035       | 0.031       | 0.028        | 0.023    |
| 500       | Pressure Drop [Pa]                             | <1                         | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97<br>46 |
|           | Sound Power Level [dB(A)]  Effective Area [m²] | <15<br>0.333               | <15<br>0.167 | <15<br>0.111 | 17<br>0.083 | 23<br>0.067 | 28<br>0.056 | 32<br>0.048 | 35<br>0.042 | 38<br>0.037 | 41<br>0.0333 | 0.028    |
|           | Pressure Drop [Pa]                             |                            |              |              |             |             |             |             |             |             |              |          |
| 600       | Sound Power Level [dB(A)]                      | <1<br><15                  | 3<br><15     | 6<br><15     | 1<br>18     | 17<br>24    | 25          | 33<br>33    | 44<br>36    | 55<br>39    | 68<br>42     | 97<br>47 |
|           | Effective Area [m²]                            | 0.389                      | 0.194        | 0.130        | 0.097       | 0.078       | 29<br>0.065 | 0.056       | 0.049       | 0.043       | 0.0389       | 0.032    |
| 700       | Pressure Drop [Pa]                             | <1                         | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
| /00       | Sound Power Level [dB[A]]                      | <15                        | <15          | <15          | 19          | 25          | 29          | 33          | 37          | 40          | 43           | 47       |
|           | Effective Area [m²]                            |                            | 0.222        | 0.148        | 0.111       | 0.089       | 0.074       | 0.063       | 0.056       | 0.049       | 0.0444       | 0.037    |
| 000       | Pressure Drop [Pa]                             |                            | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
| 800       | Sound Power Level [dB(A)]                      |                            | <15          | <15          | 19          | 25          | 30          | 34          | 37          | 40          | 43           | 48       |
|           | Effective Area [m²]                            |                            | 0.250        | 0.167        | 0.125       | 0.100       | 0.083       | 0.071       | 0.063       | 0.056       | 0.500        | 0.042    |
| 900       | Pressure Drop [Pa]                             |                            | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
| 300       | Sound Power Level [dB[A]]                      |                            | <15          | <15          | 20          | 26          | 30          | 34          | 38          | 41          | 44           | 48       |
|           | Effective Area [m²]                            |                            | 0.278        | 0.185        | 0.139       | 0.111       | 0.093       | 0.079       | 0.069       | 0.062       | 0.556        | 0.046    |
| 1000      | Pressure Drop [Pa]                             |                            | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
| 1000      | Sound Power Level [dB[A]]                      |                            | <15          | <15          | 20          | 26          | 31          | 35          | 385         | 41          | 44           | 49       |
|           | Effective Area [m²]                            |                            | 0.347        | 0.231        | 0.174       | 0.139       | 0.116       | 0.099       | 0.087       | 0.077       | 0.0694       | 0.58     |
| 1250      | Pressure Drop [Pa]                             |                            | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
| 1230      | Sound Power Level [dB[A]]                      |                            | <15          | <15          | 21          | 27          | 32          | 36          | 39          | 42          | 45           | 50       |
|           | Effective Area [m²]                            |                            |              | 0.278        | 0.208       | 0.167       | 0.139       | 0.119       | 0.104       | 0.926       | 0.833        | 0.069    |
| 1500      | Pressure Drop [Pa]                             |                            |              | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
| 1000      | Sound Power Level [dB(A)]                      |                            |              | <15          | 22          | 28          | 33          | 37          | 40          | 43          | 46           | 51       |
|           | Effective Area [m²]                            |                            |              | 0.324        | 0.243       | 0.194       | 0.162       | 0.139       | 0.122       | 0.1080      | 0.972        | 0.081    |
| 1750      | Pressure Drop [Pa]                             |                            |              | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
|           | Sound Power Level [dB(A)]                      |                            |              | 15           | 23          | 29          | 33          | 37          | 41          | 44          | 47           | 51       |
|           | Effective Area [m²]                            |                            |              | 0.370        | 0.278       | 0.222       | 0.185       | 0.159       | 0.139       | 0.1235      | 0.1111       | 0.093    |
| 2000      | Pressure Drop [Pa]                             |                            |              | 6            | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
|           | Sound Power Level [dB(A)]                      |                            |              | 16           | 23          | 29          | 34          | 38          | 41          | 44          | 47           | 52       |
|           | Effective Area [m²]                            |                            |              |              | 0.347       | 0.278       | 0.231       | 0.198       | 0.174       | 0.1543      | 0.1389       | 0.116    |
| 2500      | Pressure Drop [Pa]                             |                            |              |              | 11          | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
|           | Sound Power Level [dB(A)]                      |                            |              |              | 24          | 30          | 35          | 39          | 42          | 45          | 48           | 53       |
|           | Effective Area [m²]                            |                            |              |              |             | 0.333       | 0.2778      | 0.2381      | 0.2083      | 0.1852      | 0.1667       | 0.139    |
| 3000      | Pressure Drop [Pa]                             |                            |              |              |             | 17          | 25          | 33          | 44          | 55          | 68           | 97       |
|           | Sound Power Level [dB(A)]                      |                            |              |              |             | 31          | 36          | 40          | 43          | 46          | 49           | 54       |
| 4000      | Effective Area [m²]                            |                            |              |              |             |             | 0.370       | 0.3175      | 0.2778      | 0.2469      | 0.2222       | 0.185    |
|           | Pressure Drop [Pa]                             |                            |              |              |             |             | 25          | 33          | 44          | 55          | 68           | 97       |
|           | Sound Power Level [dB(A)]                      |                            |              |              |             |             | 37          | 41          | 44          | 47          | 50           | 55       |
|           | Effective Area [m²]                            |                            |              |              |             |             |             | 0.3968      | 0.3472      | 0.3086      | 0.2778       | 0.231    |
| 5000      | Pressure Drop [Pa]                             |                            |              |              |             |             |             | 33          | 44          | 55          | 68           | 97       |
|           | Sound Power Level [dB(A)]                      |                            |              |              |             |             |             | 42          | 45          | 48          | 51           | 56       |
|           | Effective Area [m²]                            |                            |              |              |             |             |             |             |             |             |              | 0.347    |
| 7500      | Pressure Drop [Pa]                             |                            |              |              |             |             |             |             |             | <u> </u>    |              | 97       |
|           | Sound Power Level [dB(A)]                      |                            |              | <u> </u>     |             |             | <u> </u>    |             | <u> </u>    | <u> </u>    | <u> </u>     | 58       |


#### **INSTALLATION**

#### **SCREW SYSTEM**





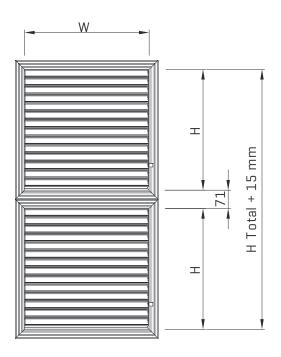
The assembly of the product is done with or without screw holes, as shown in the figure.



When the width is 300 mm or less, there is a screw hole in the middle of the horizontally positioned profiles.

When the width is greater than 300 mm, there are 2 screw holes with 70 mm margins on the right and left of the horizontally positioned profiles.

When the height is greater than 600 mm, there is a screw hole in the middle of the vertical position profiles.


| W (Width) [mm] | Number of Holes in Horizontal |
|----------------|-------------------------------|
| W ≤ 300        | 1                             |
| 300 < W ≤ 900  | 2                             |

| H (Height) [mm] | Number of Holes in Vertical |
|-----------------|-----------------------------|
| 600 < H ≤ 900   | 1                           |

#### SIZE PARAMETERS

In the case of  $W \le 900 - H > 900$ , the louvres are divided from the H dimension and produced as modules. During the assembly, a profile should be placed at the module junction as shown in Figure.1.

You can use 30 mm x 60 mm profile in module assemblies.



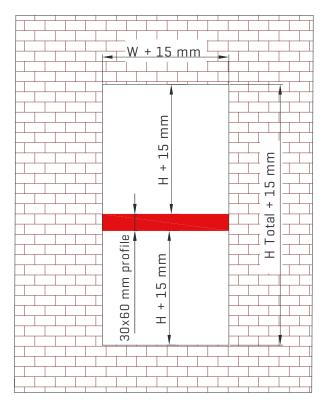
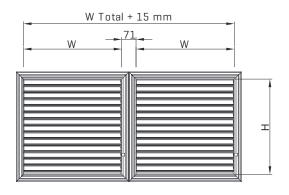




Figure 1

In the case of  $W > 900 - H \le 900$ , the louvers are divided into W dimensions and produced as modules. During the assembly, a profile should be placed at the module junction as shown in Figure.2.

You can use 30 mm x 60 mm profile in module assemblies.



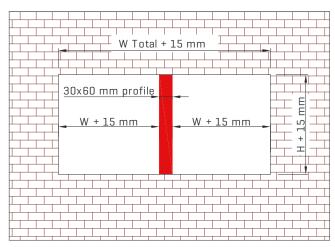
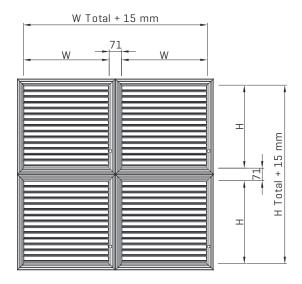




Figure 2

In the case of **W> 900 - H> 900**, the shutters are produced as modules by dividing both W and H dimensions. During the assembly, a profile should be placed at the module junction as shown in Figure.3.

You can use 30 mm x 60 mm profile in module assemblies.



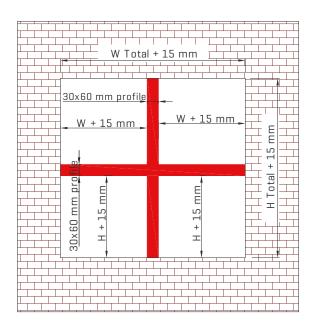



Figure 3

#### Module and Hole Size Calculation

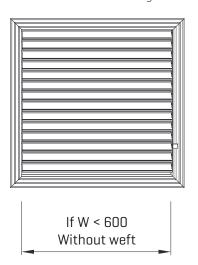
W Total=W  $\times$  n+[n-1] $\times$ 71 mm

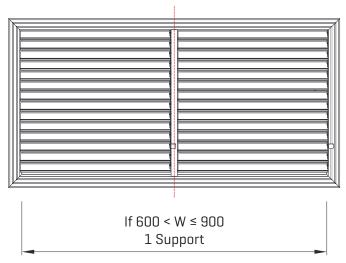
W Total [mm]: Module louvre throat size

W (mm): Horizontal size for 1 module (indicated in the offer)

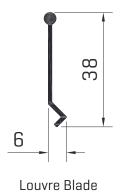
n: Number of modules (indicated in the offer)

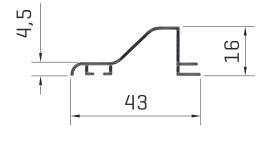
Example: What is the module size and mounting hole size of the 1600 mm x 1000 mm Surface Mounted Louvre?


W Total=1600 mm 1600 mm=W x n+(n-1)x71 mm n=2 (will be indicated in the offer) It is found as W=765 mm.


H Total=1000 mm 1000 mm = H x n+(n-1)x71 mm n=2 (will be indicated in the offer) It is found as H=465 mm.

1 Module Size=765 mm x 465 mm (WxH) Hole size=1615 mm x 1015 mm ([W total+15 mm]x(H total+15 mm])


### **SUPPORT COUNT PARAMETER**


As the desired dimensions for the single module of the product increase, the product is produced with additional support and adjustment lever to increase strength.





### **FRAME AND BLADE TYPE**





Surface Mounted Frame

# **PRODUCT ORDER CODES**

You can place your orders according to the following coding format.

| Α | Raw Material Type        |                                 |
|---|--------------------------|---------------------------------|
|   | ALM                      | Aluminum                        |
| В | Frame Type               |                                 |
|   | 21                       | Surface Mounted Frame           |
| C | Mounting Type            |                                 |
|   | VD                       | Screw System                    |
|   | MD                       | Without Mounting Hole           |
| D | Accessories              |                                 |
|   | AT                       | Aluminum Wire                   |
|   | 00                       | Without Accessories             |
| Е | Horizontal Size (W) [mm] |                                 |
|   | 0000                     | You can look at standard sizes. |
| F | Vertical Size (H) [mm]   |                                 |
|   | 0000                     | You can look at standard sizes. |
| G | Paint                    |                                 |
|   | 00                       | Unpainted                       |
|   | S1                       | Standard Painted - RAL 9010     |
|   | S2                       | Standard Painted - RAL 9016     |
|   | XX                       | Special Painted                 |

Sample Coding; DSU.ALM.21.VD.AT.0750.0550.S1

| NOTES |               |                                          |  |
|-------|---------------|------------------------------------------|--|
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       | İKLİMLENDİRME | I HVAC SVSTEMS                           |  |
|       |               | 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |
|       |               |                                          |  |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477, Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### Istanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1, Ağaoğlu My Office, Kat: 4/18, Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56















# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 3 sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.









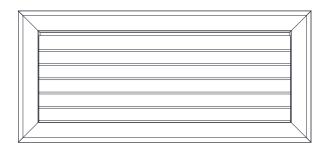


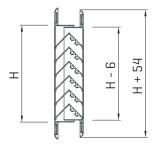
- © DGK Door Transfer Grille is a transfer grille with wings that offer low pressure loss with its aesthetic appearance.
- € It has a double-sided structure.
- € It is used in situations where air distribution is desired with pressure difference between spaces. Used for positioning on doors, since it consists of V-shaped wing group, it prevents visible light passage.



#### **MATERIAL**

Frame and blades made of aluminum 6063 extruded profile


#### **SURFACE COATING**


- € RAL 9010 or RAL 9016 electrostatic powder paint as standard.
- © Optional
  - Different RAL color codes
  - Matt Aluminum anodized finish for matte and metallic look
  - Unpainted manufacturing

#### **MOUNTING OPTIONS**

- Screw System
- Without Mounting Hole

# STANDARD DIMENSIONS





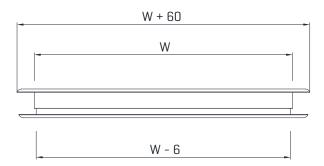
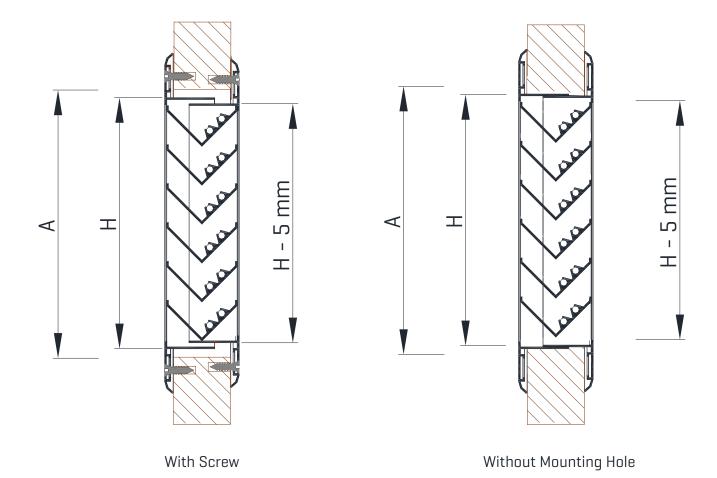



Table 1. Standard Sizes

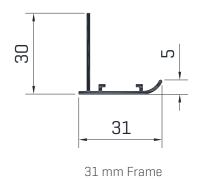
| W (mm)<br>(Width)  | 200 - 300 - 400 - 500 - 600 - 700 - 800 - 900 - 1000 - 1100 - 1200 |
|--------------------|--------------------------------------------------------------------|
| H (mm)<br>(Height) | 100 - 200 - 300 - 400 - 500 - 600 - 700 - 800 - 900                |

# **PERFORMANCE DATA**


Table 2. Effective Areas

| Effe   | ective  |       |       |       |       |       |       |        |       |       |       |       |       |       |
|--------|---------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|
|        | as (m²) |       |       |       |       |       |       | H (mm) |       |       |       |       |       |       |
|        | WxH     | 100   | 150   | 200   | 250   | 300   | 350   | 400    | 450   | 500   | 600   | 700   | 800   | 900   |
|        | 200     | 0.020 | 0.029 | 0.039 | 0.048 | 0.056 | 0.065 | 0.074  | 0.083 | 0.091 | 0.108 | 0.125 | 0.142 | 0.158 |
|        | 250     | 0.025 | 0.036 | 0.048 | 0.059 | 0.070 | 0.080 | 0.091  | 0.102 | 0.112 | 0.133 | 0.154 | 0.175 | 0.195 |
|        | 300     | 0.029 | 0.043 | 0.056 | 0.070 | 0.083 | 0.095 | 0.108  | 0.121 | 0.133 | 0.158 | 0.183 | 0.207 | 0.231 |
|        | 350     | 0.034 | 0.050 | 0.065 | 0.080 | 0.095 | 0.110 | 0.125  | 0.140 | 0.154 | 0.183 | 0.211 | 0.240 | 0.267 |
|        | 400     | 0.039 | 0.056 | 0.074 | 0.091 | 0.108 | 0.125 | 0.142  | 0.158 | 0.175 | 0.207 | 0.240 | 0.271 | 0.303 |
| Ξ      | 450     | 0.043 | 0.063 | 0.083 | 0.102 | 0.121 | 0.140 | 0.158  | 0.177 | 0.195 | 0.231 | 0.267 | 0.303 | 0.339 |
| W [mm] | 500     | 0.048 | 0.070 | 0.091 | 0.112 | 0.133 | 0.154 | 0.175  | 0.195 | 0.215 | 0.256 | 0.295 | 0.335 | 0.374 |
| >      | 550     | 0.052 | 0.076 | 0.100 | 0.123 | 0.146 | 0.169 | 0.191  | 0.213 | 0.236 | 0.279 | 0.323 | 0.366 | 0.409 |
|        | 600     | 0.056 | 0.083 | 0.108 | 0.133 | 0.158 | 0.183 | 0.207  | 0.231 | 0.256 | 0.303 | 0.350 | 0.397 | 0.443 |
|        | 700     | 0.065 | 0.095 | 0.125 | 0.154 | 0.183 | 0.211 | 0.240  | 0.267 | 0.295 | 0.350 | 0.405 | 0.459 | 0.512 |
|        | 800     | 0.074 | 0.108 | 0.142 | 0.175 | 0.207 | 0.240 | 0.271  | 0.303 | 0.335 | 0.397 | 0.459 | 0.520 | 0.581 |
|        | 900     | 0.083 | 0.121 | 0.158 | 0.195 | 0.231 | 0.267 | 0.303  | 0.339 | 0.374 | 0.443 | 0.512 | 0.581 | 0.649 |
|        | 1000    | 0.091 | 0.133 | 0.175 | 0.215 | 0.256 | 0.295 | 0.335  | 0.374 | 0.413 | 0.490 | 0.566 | 0.641 | 0.716 |
|        | 1200    | 0.108 | 0.158 | 0.207 | 0.256 | 0.303 | 0.350 | 0.397  | 0.443 | 0.490 | 0.581 | 0.671 | 0.761 | 0.850 |

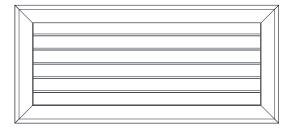
Table 3. Performance Data


|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              | Effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Speed [r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/s]              |                     |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
|                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                          | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5               | 3.0                 |
| Effective Area [m²]          | 0.0278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                     |
| Pressure Drop [Pa]           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                     |
| Sound Pressure Level [dB[A]] | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                     |
| Effective Area [m²]          | 0.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0278                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                     |
| Pressure Drop [Pa]           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                     |
| Sound Pressure Level [dB(A)] | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <15                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                     |
| Effective Area [m²]          | 0.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.056                                                                                                                        | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.022             |                     |
| Pressure Drop [Pa]           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112               |                     |
| Sound Pressure Level [dB(A)] | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                           | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                |                     |
| Effective Area [m²]          | 0.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.083                                                                                                                        | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.033             | 0.02                |
| Pressure Drop [Pa]           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                           | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110               | 158                 |
| Sound Pressure Level [dB(A)] | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                | 46                  |
| Effective Area [m²]          | 0.222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.111                                                                                                                        | 0.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.044             | 0.03                |
| Pressure Drop [Pa]           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                           | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108               | 156                 |
| Sound Pressure Level [dB(A)] | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                                                                                           | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42                | 47                  |
| Effective Area [m²]          | 0.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.139                                                                                                                        | 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.056             | 0.04                |
| Pressure Drop [Pa]           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                           | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107               | 154                 |
| Sound Pressure Level [dB(A)] | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43                | 48                  |
| Effective Area [m²]          | 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.167                                                                                                                        | 0.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.067             | 0.05                |
| Pressure Drop [Pa]           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                           | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106               | 153                 |
| Sound Pressure Level [dB[A]] | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44                | 49                  |
| Effective Area [m²]          | 0.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.194                                                                                                                        | 0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.078             | 0.06                |
| Pressure Drop [Pa]           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                           | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 105               | 151                 |
| Sound Pressure Level [dB[A]] | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                           | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44                | 49                  |
| Effective Area [m²]          | 0.444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.222                                                                                                                        | 0.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.089             | 0.07                |
| Pressure Drop [Pa]           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                           | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104               | 150                 |
|                              | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                                                                                           | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                | 50                  |
| - ','                        | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.250                                                                                                                        | 0.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.100             | 0.08                |
|                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                           | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103               | 149                 |
|                              | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                                                                                           | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                | 50                  |
| . ,,,                        | 0.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.278                                                                                                                        | 0.185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.111             | 0.09                |
|                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                           | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103               | 148                 |
|                              | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                           | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                | 50                  |
| . ,,,                        | 0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.347                                                                                                                        | 0.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.139             | 0.11                |
|                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 147                 |
|                              | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                           | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                | 51                  |
| - 17                         | 0.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.417                                                                                                                        | 0.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.167             | 0.13                |
|                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                           | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100               | 145                 |
|                              | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47                | 52                  |
| . ,,,                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.486                                                                                                                        | 0.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.194             | 0.16                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                           | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100               | 144                 |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48                | 53                  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 0.18                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 143                 |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 53                  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 0.23                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 141                 |
|                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 54                  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                     |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 0.27                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | _                   |
| Effective Area [m²]          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CD                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 55<br>n 27          |
| LIICUUVE AI CA [III"]        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              | 0.741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.444             | 0.37                |
| Drocoure Drov [D-1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95                | 138                 |
| Pressure Drop [Pa]           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E1                |                     |
| Sound Pressure Level [dB(A)] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51                | _                   |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45<br>0.694<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51<br>0.556<br>94 | 56<br>0.463<br>136  |
|                              | Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]]  Effective Area [m²]  Pressure Drop [Pa]  Sound Pressure Level [dB[A]] | Effective Area [m²]         0.0278           Pressure Drop [Pa]         5           Sound Pressure Level [dB(A)]         <15 | Effective Area [m²]         0.0278           Pressure Drop [Pa]         5           Sound Pressure Level [dB[A]]         <15           Effective Area [m²]         0.0256         0.0278           Pressure Drop [Pa]         5         18           Sound Pressure Level [dB[A]]         <15         <15           Effective Area [m²]         0.111         0.056           Pressure Drop [Pa]         4         18           Sound Pressure Level [dB[A]]         <15         16           Effective Area [m²]         0.167         0.083           Pressure Drop [Pa]         4         17           Sound Pressure Level [dB[A]]         <15         17           Effective Area [m²]         0.222         0.111           Pressure Drop [Pa]         4         17           Sound Pressure Level [dB[A]]         <15         18           Effective Area [m²]         0.222         0.131           Pressure Drop [Pa]         4         17           Sound Pressure Level [dB[A]]         <15         20           Effective Area [m²]         0.333         0.167           Pressure Drop [Pa]         4         17           Sound Pressure Level [dB[A]]         <15         20 | Effective Area [m²]         0.0278         Image: Common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common co | Company           | Effective Area [m²] |

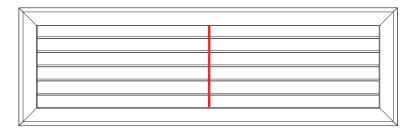
# **INSTALLATION**



A: Installation Opening (W+10 mm) x (H+10 mm)


# **FRAME TYPE**




#### **SIZE PARAMETERS**

It has size limits of 200x100 mm and 1200x900 mm. Support is applied when the product width is longer than 600 mm.

### If $0 < W \le 600$ , without support



#### If $600 < W \le 1200$ , with 1 support



#### **PRODUCT SELECTION**

**Example:** The air flow to be transferred from the door at the site has been determined as 500 m<sup>3</sup>/h. Pressure loss below 20 Pa is requested. 1 door passage grille will be used. Make your product selection.

**Solution:** For 500 m<sup>3</sup>/h air flow, effective areas corresponding to the appropriate pressure loss, throw distance and flow rate values are selected from the performance data table [Table 3].

For example, in an effective area of  $0.139 \text{ m}^2$ , the pressure loss is 17 Pa and the sound pressure is 19 dB(A). The appropriate grille size is selected from the effective area table (Table 2) as 800 mm x 200 mm, corresponding to the value of  $0.139 \text{ m}^2$ .

#### **PRODUCT ORDER CODES**

You can place your orders according to the following coding format.

DGK.<A>.<B>.<C>.<D>.<E>.<F>

| Α | Raw Material Type |                                    |
|---|-------------------|------------------------------------|
|   | ALM               | Aluminum                           |
|   | EAL               | Eloxal Aluminum                    |
| В | Frame Type        |                                    |
|   | 05                | 31 mm Frame                        |
| С | Type of Mounting  |                                    |
|   | VD                | Screw System                       |
|   | MD                | Without Mounting Hole              |
| D | Width (W) [mm]    |                                    |
|   | 0000              | You can look at the standard sizes |
| E | Height (H) [mm]   |                                    |
|   | 0000              | You can look at the standard sizes |
| F | Paint             |                                    |
|   | 00                | Unpainted                          |
|   | S1                | Standard Painted - RAL 9010        |
|   | S2                | Standard Painted - RAL 9016        |
|   | XX                | Special Painted                    |

Sample Coding; DGK.ALM.05.VD.1000.0900.S1

| NOTES |              |                |      |
|-------|--------------|----------------|------|
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                | (R)  |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       | KLIMI ENDIDM |                | MO   |
|       | KLIMLENURM   | E   HVAC SYSTE | MI-S |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |
|       |              |                |      |

| NOTES |      |       |       |     |      |        |   |  |
|-------|------|-------|-------|-----|------|--------|---|--|
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       | <br> |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      | iklim | LENDI | RME | HVAC | SYSTEM | S |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |
|       |      |       |       |     |      |        |   |  |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel:+90 216 250 55 45 | Fax:+90 216 250 55 56











# FOUR-AAP / FOUR-RAP Unit Heater & Unit Cooler



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Rooftop Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 5 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU, Rooftop and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.500 sqm in which 18.000 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN EN 15650:2010 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











Devices can be used in large volumes where need heating needs such as factories, workshops, garages, hangars, gyms. As source, hot water, vapor and electrical energy with different regime are used. Four AAP series with axial fans is more convenient to use in place where the devices will work in room height up to 4 m, in case of room height is higher than 4m, Four RAP series with radial fans is more convenient.

#### **TECHNICIAL SPECIFICATIONS**

#### **CASE**

Unit heaters of Four AAP and Four RAP series are formed by combining specially designed covers made of galvanizedsheet. Internal and external surfaces are painted with electrostatic powder paint.



#### **RADIAL AND AXIAL FANS**

In Four RAP series, sparsely bladed fans are used. Due to the wing structure of the fans, the drawn air is compressed better between the blades. Therefore, its forward launch capacity is high. Due to this working style, blowing distance is high. The fans, which work silent and safe, work with 230V 50Hz mains electricity. In Four AAP series, axial type fans, which have silent operation feature, are used. It provides the safety with protection grill. It works with 230V 50Hz main electricity.





#### **HEATING COIL**

Copper tube aluminum fin heater coils are used in Four AAP and Four RAP series. In the use of 90/70 °C hot water and 3 bar steam, standard copper pipe and thick flesh copper pipe up to 6 bar steam are used. In case of using 10 bar steam, steel pipe, steel finned serpentines are used. As a standard, input and output connection is bushed. For vaporous systems, it is manufactured flanged.



Four AAP series unit heaters with axial fan are convenient for connection from top or bottom with bracket. The brackets are optional. In Four RAP series unit heaters with radial fan, there are 4 connection points.

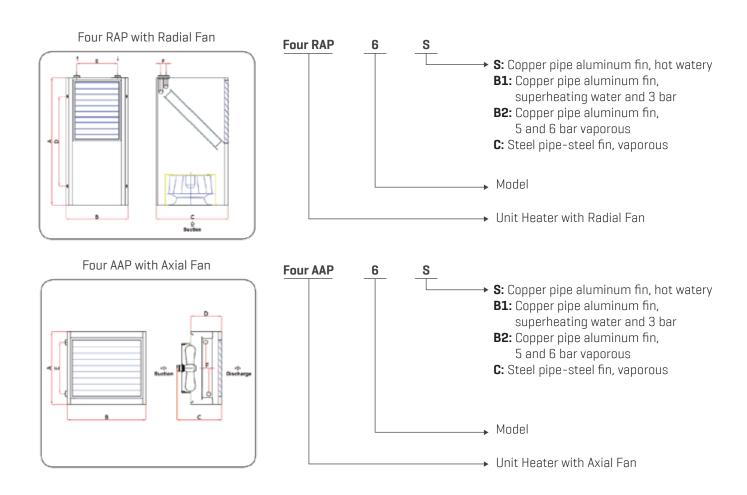
#### **EX-PROOF FAN OPTIONS**



#### FOUR RAP SERIES HOT WATER CAPACITY TABLE

## **WITH RADIAL FAN**

|              | A !         | Input |          |         | Hot Wate | er Capacity (I | kcal/h) |         |         |
|--------------|-------------|-------|----------|---------|----------|----------------|---------|---------|---------|
| Models       | Air<br>Flow | Air   | B1       | S       | S        | S              | S       | S       | S       |
|              | (m³/h)      | (°C)  | 110/80°C | 90/70°C | 80/60°C  | 70/50°C        | 60/40°C | 50/30°C | 45/40°C |
|              |             | 18    | 7600     | 6200    | 4800     | 3100           | 1700    | 950     | 2500    |
| F DAD 0      | 1050        | 15    | 8000     | 6600    | 5200     | 3600           | 1900    | 1200    | 2950    |
| Four RAP 6   | 1050        | 10    | 8700     | 7300    | 5900     | 4300           | 2300    | 1500    | 3550    |
|              |             | 5     | 9400     | 8000    | 6500     | 5000           | 3200    | 1900    | 4200    |
|              |             | 18    | 11900    | 10200   | 8100     | 5900           | 3400    | 1600    | 4100    |
| F DAD 10     | 1/100       | 15    | 12500    | 10800   | 8700     | 6500           | 4100    | 1900    | 4700    |
| Four RAP 10  | 1400        | 10    | 13500    | 11800   | 9800     | 7600           | 5300    | 2400    | 5800    |
|              |             | 5     | 14500    | 12800   | 10800    | 8600           | 6300    | 3400    | 6700    |
|              |             | 18    | 18800    | 15300   | 12400    | 9400           | 6300    | 2200    | 6100    |
| F 0404F      | 1,000       | 15    | 19800    | 16200   | 13300    | 10300          | 7200    | 3300    | 6900    |
| Four RAP 15  | 1800        | 10    | 21300    | 17700   | 14800    | 11800          | 8700    | 5300    | 8400    |
|              |             | 5     | 22900    | 19200   | 16300    | 13300          | 10200   | 6900    | 9800    |
|              |             | 18    | 24000    | 20100   | 16100    | 12200          | 8000    | 2700    | 8000    |
| F DAD 10     | 0/100       | 15    | 25200    | 21200   | 17200    | 13300          | 9100    | 3500    | 9100    |
| Four RAP 19  | 2400        | 10    | 27200    | 23200   | 19300    | 15300          | 11200   | 6500    | 1100    |
|              |             | 5     | 29200    | 25200   | 21200    | 17300          | 13100   | 8700    | 12900   |
|              |             | 18    | 29600    | 24200   | 19500    | 14400          | 10200   | 3500    | 9600    |
| Farm DAD O/I | 2/100       | 15    | 31000    | 25500   | 20900    | 16300          | 11500   | 6200    | 10900   |
| Four RAP 24  | 3400        | 10    | 33400    | 27900   | 23100    | 18600          | 13800   | 8800    | 13300   |
|              |             | 5     | 35800    | 30200   | 25500    | 20900          | 16200   | 11200   | 15400   |
|              |             | 18    | 34900    | 28200   | 23000    | 17800          | 12400   | 6400    | 11300   |
| Four DAD OO  | 2750        | 15    | 36500    | 29900   | 24700    | 19400          | 14000   | 8200    | 12800   |
| Four RAP 28  | 3750        | 10    | 39300    | 32600   | 27400    | 22000          | 16700   | 11000   | 15300   |
|              |             | 5     | 42000    | 35300   | 30000    | 24700          | 19400   | 13800   | 18000   |
|              |             | 18    | 47100    | 38100   | 31300    | 24400          | 17300   | 9800    | 15200   |
| Form DAD OC  | EOOO        | 15    | 49300    | 40300   | 33400    | 26500          | 19400   | 12000   | 17200   |
| Four RAP 38  | 5200        | 10    | 53000    | 43900   | 37000    | 30000          | 23000   | 15600   | 20700   |
|              |             | 5     | 56700    | 47500   | 40600    | 33600          | 26500   | 19200   | 24100   |
|              |             | 18    | 61400    | 52000   | 42600    | 32900          | 22900   | 10900   | 20600   |
| F            | E/100       | 15    | 64300    | 55000   | 45500    | 35800          | 25800   | 14700   | 23400   |
| Four RAP 50  | 5400        | 10    | 69200    | 60100   | 50400    | 40700          | 30800   | 20200   | 28200   |
|              |             | 5     | 74300    | 65300   | 55700    | 45800          | 35700   | 25300   | 33100   |


#### FOUR AAP SERIES HOT WATER CAPACITY TABLE

## **WITH AXIAL FAN**

|             | Air    | Input |          |         | Hot Wate | er Capacity ( | kcal/h) |         |         |
|-------------|--------|-------|----------|---------|----------|---------------|---------|---------|---------|
| Models      | Flow   | Air   | B1       | S       | S        | S             | S       | S       | S       |
|             | (m³/h) | (°C)  | 110/80°C | 90/70°C | 80/60°C  | 70/50°C       | 60/40°C | 50/30°C | 45/40°C |
|             |        | 18    | 7900     | 7100    | 5900     | 4700          | 3500    | 2200    | 2800    |
| F 44D 0     | 1000   | 15    | 8300     | 7500    | 6400     | 5000          | 3800    | 2600    | 3200    |
| Four AAP 6  | 1000   | 10    | 9000     | 8100    | 6900     | 5700          | 4500    | 3200    | 3800    |
|             |        | 5     | 9600     | 8800    | 7500     | 6300          | 5100    | 3900    | 4400    |
|             |        | 18    | 11300    | 9600    | 7900     | 6300          | 4700    | 3000    | 3800    |
| F 44D 0     | 1000   | 15    | 12000    | 10000   | 8400     | 6800          | 5200    | 3600    | 4300    |
| Four AAP 9  | 1200   | 10    | 12900    | 11000   | 9300     | 7700          | 6000    | 4400    | 5100    |
|             |        | 5     | 13900    | 12000   | 10200    | 8500          | 6900    | 5200    | 5900    |
|             |        | 18    | 15000    | 12200   | 9800     | 7500          | 4900    | 2100    | 4900    |
| F 44010     | 1000   | 15    | 15700    | 12900   | 10500    | 8200          | 5600    | 2500    | 5500    |
| Four AAP 12 | 1250   | 10    | 17000    | 14000   | 11700    | 9400          | 6800    | 3900    | 6700    |
|             |        | 5     | 18200    | 15300   | 12900    | 10600         | 8100    | 5300    | 7900    |
|             |        | 18    | 20200    | 16900   | 13500    | 10000         | 6300    | 2500    | 6700    |
| - 44540     | 0100   | 15    | 21200    | 17800   | 14500    | 11000         | 7300    | 3000    | 7700    |
| Four AAP 16 | 2100   | 10    | 23000    | 19500   | 16100    | 12800         | 9100    | 4300    | 9400    |
|             |        | 5     | 24700    | 21200   | 17900    | 14400         | 10800   | 6700    | 11000   |
|             |        | 18    | 25100    | 21200   | 17700    | 14100         | 10500   | 6900    | 8400    |
| F AAD 00    | 0000   | 15    | 26300    | 22400   | 18800    | 15200         | 11600   | 8000    | 9400    |
| Four AAP 20 | 2300   | 10    | 28400    | 24300   | 20700    | 17100         | 13500   | 9900    | 11300   |
|             |        | 5     | 30400    | 26300   | 22600    | 19000         | 15400   | 11700   | 13100   |
|             |        | 18    | 31300    | 25300   | 20600    | 15900         | 11000   | 5200    | 10000   |
| F 440.05    | 0000   | 15    | 32700    | 26700   | 22000    | 17300         | 12400   | 7100    | 11400   |
| Four AAP 25 | 2800   | 10    | 35200    | 29200   | 24500    | 19700         | 14900   | 9700    | 13700   |
|             |        | 5     | 37800    | 31700   | 26900    | 22200         | 17300   | 12200   | 16100   |
|             |        | 18    | 36600    | 30100   | 24700    | 19200         | 13600   | 7400    | 11900   |
| F 445.00    | 0100   | 15    | 38600    | 31700   | 26300    | 20800         | 15200   | 9300    | 13500   |
| Four AAP 30 | 3100   | 10    | 51200    | 34600   | 29200    | 23700         | 18100   | 12200   | 16300   |
|             |        | 5     | 44200    | 37500   | 32000    | 26500         | 20900   | 15100   | 18900   |
|             |        | 18    | 50500    | 40900   | 33300    | 25600         | 17500   | 6300    | 16200   |
| F 445.00    | (11.00 | 15    | 52900    | 43200   | 35600    | 27900         | 19900   | 10300   | 18500   |
| Four AAP 40 | 4100   | 10    | 57000    | 47200   | 39500    | 31800         | 23800   | 15000   | 22200   |
|             |        | 5     | 61200    | 51300   | 43500    | 35800         | 27800   | 19300   | 26000   |

# FOUR RAP / AAP SERIES CUPPER PIPE STEAM HEATER DIMENSION TABLE

|             | Power            |                | Pressure                       |             | Dime        | ensions (ı | nm) |     |    |                          | Sound          | Weight |
|-------------|------------------|----------------|--------------------------------|-------------|-------------|------------|-----|-----|----|--------------------------|----------------|--------|
| Models      | Current<br>(W/A) | Supply<br>V/Hz | Drop in<br>Water<br>Regime kPa | A<br>Height | B<br>Length | C<br>Width | D   | E   | F  | Input/Output<br>Diameter | Level<br>dB(A) | kg     |
| Four RAP 6  | 150/0,65         | 230/50         | 1,1                            | 700         | 395         | 400        | 450 | 224 | 26 | 1/2"                     | 70             | 19     |
| Four RAP 10 | 200/0,9          | 230/50         | 2,9                            | 800         | 460         | 430        | 500 | 290 | 26 | 1/2"                     | 70             | 23     |
| Four RAP 15 | 250/1,1          | 230/50         | 7,4                            | 950         | 460         | 550        | 650 | 290 | 35 | 3/4"                     | 79             | 29     |
| Four RAP 19 | 210/1            | 230/50         | 9,9                            | 1100        | 520         | 550        | 800 | 341 | 35 | 3/4"                     | 60             | 36     |
| Four RAP 24 | 500/1,8          | 230/50         | 7,2                            | 1100        | 585         | 650        | 800 | 318 | 45 | 1"                       | 66             | 43     |
| Four RAP 28 | 500/1,8          | 230/50         | 11                             | 1195        | 585         | 665        | 950 | 383 | 45 | 1"                       | 66             | 47     |
| Four RAP 38 | 800/3,7          | 230/50         | 22                             | 1195        | 650         | 725        | 950 | 432 | 55 | 1 1/4"                   | -              | 56     |
| Four RAP 50 | 800/3,7          | 230/50         | 10,3                           | 1195        | 650         | 725        | 950 | 432 | 55 | 1 1/4"                   | -              | 60     |
|             |                  |                |                                |             |             |            |     |     |    |                          |                |        |
| Four AAP 6  | 90/0,38          | 230/50         | 1,9                            | 420         | 460         | 380        | 280 | 222 | 26 | 1/2"                     | 55             | 13     |
| Four AAP 9  | 90/0,38          | 230/50         | 2,8                            | 420         | 460         | 380        | 280 | 353 | 26 | 1/2"                     | 55             | 14     |
| Four AAP 12 | 90/0,38          | 230/50         | 5,2                            | 500         | 470         | 380        | 280 | 416 | 35 | 3/4"                     | 55             | 17     |
| Four AAP 16 | 138/0,68         | 230/50         | 7,3                            | 500         | 510         | 385        | 280 | 414 | 35 | 3/4"                     | 62             | 19     |
| Four AAP 20 | 138/0,68         | 230/50         | 12,4                           | 620         | 540         | 385        | 280 | 536 | 43 | 3/4"                     | 62             | 22     |
| Four AAP 25 | 180/0,81         | 230/50         | 9,4                            | 620         | 610         | 395        | 280 | 536 | 45 | 1"                       | 67             | 26     |
| Four AAP 30 | 180/0,81         | 230/50         | 14,1                           | 690         | 655         | 395        | 280 | 583 | 45 | 1"                       | 67             | 29     |
| Four AAP 40 | 250/1,15         | 230/50         | 7,1                            | 620         | 725         | 395        | 280 | 496 | 45 | 1 1/4"                   | 70             | 33     |



#### FOUR RAP SERIES STEAM CAPACITY TABLE

#### **WITH RADIAL FAN**

| [r          | Flow m³/h)  1050 - | 18<br>15<br>10<br>5 | <b>B1 3 Bar</b> 7500 7700 8000 8300 | <b>B2 5 Bar</b> 10400 10600 11000 | <b>B2 6 Bar</b> 10900 11200 | BC<br>3 Bar<br>11700 | BC<br>5 Bar<br>13200 | BC<br>6 Bar | BC<br>8 Bar | BC<br>10 Bar |
|-------------|--------------------|---------------------|-------------------------------------|-----------------------------------|-----------------------------|----------------------|----------------------|-------------|-------------|--------------|
|             | 1050               | 18<br>15<br>10<br>5 | 7500<br>7700<br>8000                | 10400<br>10600                    | 10900                       | 11700                |                      | 6 Bar       | 8 Bar       | 10 Bar       |
| Four RAP 6  |                    | 15<br>10<br>5       | 7700<br>8000                        | 10600                             |                             |                      | 13200                |             |             |              |
| Four RAP 6  |                    | 10<br>5             | 8000                                |                                   | 11200                       |                      | 1 10000              | 13900       | 14800       | 15500        |
| FOUR KAP 6  |                    | 5                   |                                     | 11000                             |                             | 12000                | 13500                | 14200       | 15100       | 15900        |
|             | 1/100              |                     | 8300                                |                                   | 11600                       | 12400                | 14000                | 14700       | 15600       | 16400        |
|             | 1/100              | 18                  |                                     | 11500                             | 12000                       | 13100                | 14800                | 15500       | 16500       | 17300        |
|             | 1/100              |                     | 10800                               | 12600                             | 13200                       | 13800                | 15600                | 16300       | 17400       | 18300        |
|             |                    | 15                  | 11100                               | 12900                             | 13500                       | 14100                | 16000                | 16700       | 17800       | 18700        |
| Four RAP 10 | 1400               | 10                  | 11600                               | 13400                             | 14000                       | 14600                | 16500                | 17300       | 18400       | 19300        |
|             |                    | 5                   | 12100                               | 13900                             | 14500                       | 15400                | 17400                | 18300       | 19400       | 20400        |
|             |                    | 18                  | 15700                               | 17200                             | 18100                       | 19900                | 22500                | 23600       | 25100       | 26400        |
|             | 1000               | 15                  | 16100                               | 17600                             | 18500                       | 20400                | 23000                | 24200       | 25700       | 27000        |
| Four RAP 15 | 1800 -             | 10                  | 16800                               | 18300                             | 19200                       | 21100                | 23800                | 25000       | 26600       | 27900        |
|             |                    | 5                   | 17500                               | 19000                             | 19900                       | 22200                | 25100                | 26400       | 28100       | 29500        |
|             |                    | 18                  | 19500                               | 21100                             | 22200                       | 23000                | 26000                | 27300       | 29000       | 30500        |
|             |                    | 15                  | 20000                               | 21600                             | 22700                       | 23600                | 26600                | 28000       | 29800       | 31200        |
| Four RAP 19 | 2400 -             | 10                  | 20900                               | 22500                             | 23600                       | 24400                | 27500                | 28900       | 30800       | 32300        |
|             |                    | 5                   | 21800                               | 23300                             | 24400                       | 25700                | 29100                | 30500       | 32500       | 34100        |
|             |                    | 18                  | 25100                               | 29900                             | 31400                       | 26500                | 30000                | 31500       | 33500       | 35200        |
|             | 2/100              | 15                  | 25700                               | 30600                             | 32100                       | 27200                | 30700                | 32300       | 34300       | 36000        |
| Four RAP 24 | 3400 -             | 10                  | 26800                               | 31700                             | 33300                       | 28100                | 31800                | 33400       | 35500       | 37300        |
|             |                    | 5                   | 27900                               | 32900                             | 34400                       | 29700                | 33500                | 35200       | 37400       | 39300        |
|             |                    | 18                  | 29800                               | 38100                             | 40000                       | 37100                | 42000                | 44000       | 46900       | 49200        |
|             |                    | 15                  | 30600                               | 39000                             | 40900                       | 38100                | 43000                | 45100       | 48000       | 50400        |
| Four RAP 28 | 3750               | 10                  | 31900                               | 40400                             | 42400                       | 39300                | 44500                | 46700       | 49700       | 52200        |
|             |                    | 5                   | 33200                               | 41900                             | 43900                       | 41500                | 46900                | 49300       | 52400       | 55000        |
|             |                    | 18                  | 39000                               | 49600                             | 52100                       | 46100                | 52100                | 54700       | 58200       | 61100        |
|             |                    | 15                  | 40000                               | 50700                             | 53300                       | 47300                | 53400                | 56100       | 59700       | 62600        |
| Four RAP 38 | 5200               | 10                  | 41700                               | 52600                             | 55200                       | 48900                | 55200                | 58000       | 61700       | 64800        |
|             |                    | 5                   | 43400                               | 54600                             | 57100                       | 51600                | 58300                | 61200       | 65100       | 68300        |
|             |                    | 18                  | 49100                               | 53000                             | 55800                       | 51500                | 58200                | 61100       | 65000       | 68300        |
|             |                    | 15                  | 50400                               | 54300                             | 57100                       | 52800                | 59600                | 62600       | 66600       | 70000        |
| Four RAP 50 | 5400               | 10                  | 52600                               | 56400                             | 59200                       | 54600                | 61700                | 64800       | 68900       | 72300        |
|             |                    | 5                   | 54800                               | 58600                             | 61300                       | 57600                | 65100                | 68300       | 72700       | 76300        |

#### NOTE:

B1 with copper pipe is enduring up to 3 bars.

B2 with copper pipe is enduring up to 6 bars.

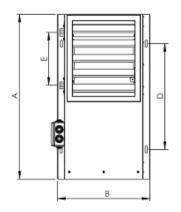
BC with steel pipe is enduring up to 10 bars.

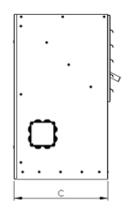
#### FOUR RAP SERIES STEAM CAPACITY TABLE

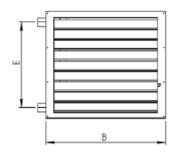
#### **WITH AXIAL FAN**

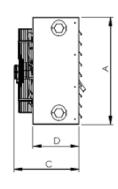
|             | Air    | Input |       |       | Vapo  | ur <b>Capacity</b> | kcal/h |       |       |        |
|-------------|--------|-------|-------|-------|-------|--------------------|--------|-------|-------|--------|
| Models      | Flow   | Air   | B1    | B2    | B2    | BC                 | BC     | BC    | BC    | BC     |
|             | (m³/h) | (°C)  | 3 Bar | 5 Bar | 6 Bar | 3 Bar              | 5 Bar  | 6 Bar | 8 Bar | 10 Bar |
|             |        | 18    | 8100  | 9700  | 10200 | 10800              | 12200  | 12800 | 13600 | 14300  |
| Farm AAD C  | 1000   | 15    | 8300  | 9900  | 10400 | 11100              | 12500  | 13100 | 14000 | 14700  |
| Four AAP 6  | 1000   | 10    | 8700  | 10300 | 10800 | 11400              | 12900  | 13600 | 14400 | 15200  |
|             |        | 5     | 9100  | 10700 | 11200 | 12100              | 13600  | 14300 | 15200 | 16000  |
|             |        | 18    | 9800  | 12300 | 13000 | 13300              | 15100  | 15800 | 16800 | 17700  |
| F 44B 0     |        | 15    | 10000 | 12600 | 13300 | 13700              | 15400  | 16200 | 17200 | 18100  |
| Four AAP 9  | 1200   | 10    | 10400 | 13100 | 13800 | 14100              | 16000  | 16700 | 17800 | 18700  |
|             |        | 5     | 10900 | 13600 | 14300 | 14900              | 16800  | 17700 | 18800 | 19700  |
|             |        | 18    | 12000 | 15000 | 15700 | 15000              | 17000  | 17800 | 18900 | 19900  |
|             | 1050   | 15    | 12300 | 15300 | 16100 | 15400              | 17400  | 18200 | 19400 | 20400  |
| Four AAP 12 | 1250   | 10    | 12800 | 15900 | 16700 | 15900              | 18000  | 18900 | 20100 | 21100  |
|             |        | 5     | 13400 | 16500 | 17300 | 16800              | 19000  | 19900 | 21200 | 22200  |
|             |        | 18    | 16800 | 21300 | 22400 | 16900              | 19100  | 20100 | 21300 | 22400  |
|             | 0100   | 15    | 17300 | 21800 | 22900 | 17300              | 19600  | 20600 | 21900 | 23000  |
| Four AAP 16 | 2100   | 10    | 18000 | 22700 | 23800 | 17900              | 20200  | 21300 | 22600 | 23700  |
|             |        | 5     | 18700 | 23500 | 24600 | 18900              | 21400  | 22400 | 23900 | 25000  |
|             |        | 18    | 20200 | 24000 | 25300 | 21400              | 24200  | 25400 | 27000 | 28400  |
|             | 0000   | 15    | 20700 | 24600 | 25800 | 22000              | 24800  | 26000 | 27700 | 29100  |
| Four AAP 20 | 2300   | 10    | 21600 | 25600 | 26800 | 22700              | 25700  | 26900 | 28700 | 30100  |
|             |        | 5     | 22500 | 26500 | 27800 | 24000              | 27100  | 28400 | 30200 | 31700  |
|             |        | 18    | 25100 | 29900 | 31500 | 25600              | 29000  | 30300 | 32300 | 33900  |
|             | 0000   | 15    | 25700 | 30700 | 32300 | 26200              | 29600  | 31100 | 33100 | 34700  |
| Four AAP 25 | 2800   | 10    | 26800 | 31900 | 33500 | 27100              | 30600  | 32200 | 34200 | 35900  |
|             |        | 5     | 27900 | 33100 | 34700 | 28600              | 32300  | 33900 | 36100 | 37900  |
|             |        | 18    | 29000 | 32300 | 34000 | 34200              | 38600  | 40600 | 43200 | 45300  |
|             | 0100   | 15    | 29800 | 33100 | 34800 | 35100              | 39600  | 41600 | 44300 | 46500  |
| Four AAP 30 | 3100   | 10    | 31100 | 34400 | 36100 | 36200              | 41000  | 43000 | 45800 | 48000  |
|             |        | 5     | 32400 | 35700 | 37400 | 38200              | 43200  | 45400 | 48300 | 50700  |
|             |        | 18    | 40900 | 41800 | 44000 | 40800              | 46100  | 48400 | 51500 | 54100  |
| _           |        | 15    | 41800 | 42800 | 45000 | 41800              | 47300  | 49600 | 52800 | 55400  |
| Four AAP 40 | 4100   | 10    | 43800 | 44500 | 46700 | 43200              | 48900  | 51300 | 54600 | 57300  |
|             |        | 5     | 45700 | 46200 | 48400 | 45600              | 51500  | 54100 | 57600 | 60500  |

#### NOTE:


B1 with copper pipe is enduring up to 3 bars.


B2 with copper pipe is enduring up to 6 bars.


BC with steel pipe is enduring up to 10 bars.


# FOUR RAP / AAP SERIES CUPPER PIPE STEAM HEATER DIMENSION TABLE

|             |                      |                |             | Dime        | ensions (ı | mm)  |     |    | Connection               | Connection                 | Sound          |
|-------------|----------------------|----------------|-------------|-------------|------------|------|-----|----|--------------------------|----------------------------|----------------|
| Models      | Power/Current<br>W/A | Supply<br>V/Hz | A<br>Height | B<br>Length | C<br>Width | D    | E   | F  | Connection<br>(B1) 3 bar | Connection<br>(B2) 4-6 bar | Level<br>dB(A) |
| Four RAP 6  | 150/0,65             | 230/50         | 700         | 430         | 400        | 450  | 224 | 26 | 1/2"                     | 3/4" - 3/4"                | 70             |
| Four RAP 10 | 200/0,9              | 230/50         | 800         | 460         | 430        | 500  | 290 | 26 | 1/2"                     | 3/4" - 3/4"                | 70             |
| Four RAP 15 | 250/1,1              | 230/50         | 950         | 460         | 530        | 650  | 290 | 35 | 3/4"                     | 1" - 3/4"                  | 79             |
| Four RAP 19 | 210/1                | 230/50         | 1100        | 520         | 550        | 800  | 341 | 35 | 3/4"                     | 1" - 3/4"                  | 60             |
| Four RAP 24 | 500/1,8              | 230/50         | 1100        | 585         | 650        | 800  | 318 | 45 | 1"                       | 1 1/4" - 1"                | 66             |
| Four RAP 28 | 500/1,8              | 230/50         | 1250        | 585         | 665        | 950  | 383 | 45 | 1"                       | 1 1/4" - 1"                | 66             |
| Four RAP 38 | 800/3,7              | 230/50         | 1350        | 660         | 725        | 1050 | 432 | 55 | 1 1/4"                   | 11/2" - 11/4"              | -              |
| Four RAP 50 | 800/3,7              | 230/50         | 1350        | 660         | 760        | 1050 | 432 | 55 | 2 1/4"                   | 1 1/2" - 1 1/4"            | -              |
|             |                      |                |             |             |            |      |     |    |                          |                            |                |
| Four AAP 6  | 90/0,38              | 230/50         | 440         | 460         | 380        | 280  | 367 | 26 | 1/2"                     | 3/4" - 3/4"                | 55             |
| Four AAP 9  | 90/0,38              | 230/50         | 440         | 460         | 380        | 280  | 367 | 26 | 1/2"                     | 1" - 3/4"                  | 55             |
| Four AAP 12 | 90/0,38              | 230/50         | 520         | 470         | 380        | 280  | 450 | 35 | 3/4"                     | 1" - 3/4"                  | 55             |
| Four AAP 16 | 138/0,68             | 230/50         | 630         | 550         | 385        | 260  | 414 | 35 | 3/4"                     | 1 1/4" - 1"                | 62             |
| Four AAP 20 | 138/0,68             | 230/50         | 690         | 580         | 385        | 260  | 536 | 35 | 3/4"                     | 1 1/4" - 1"                | 62             |
| Four AAP 25 | 180/0,81             | 230/50         | 690         | 610         | 425        | 280  | 536 | 45 | 1"                       | 1 1/4" - 1"                | 67             |
| Four AAP 30 | 180/0,81             | 230/50         | 760         | 680         | 425        | 280  | 583 | 45 | 1"                       | 11/2" - 11/4"              | 67             |
| Four AAP 40 | 250/1,15             | 230/50         | 700         | 760         | 425        | 300  | 496 | 45 | 1 1/4"                   | 1 1/2" - 1 1/4"            | 71             |









#### **HEATING AND COOLING UNIT**

#### **WITH AXIAL FAN**

|                | Air            | Input Air   | Cooling Capac | city kcal/h | Input     | Heating Capacity kcal/h |         |         |  |  |
|----------------|----------------|-------------|---------------|-------------|-----------|-------------------------|---------|---------|--|--|
| Models         | Flow<br>(m³/h) | °C          | 7/12°C        | 10/15°C     | Air<br>°C | 80/60°C                 | 60/50°C | 45/40°C |  |  |
|                |                | 30°C-%55 RH | 7300          | 5600        | 18 °C     | 16300                   | 11600   | 7700    |  |  |
| Four AAP 5 CH  | 2000           | 28°C-%55 RH | 6100          | 4600        | 15 °C     | 17300                   | 12600   | 8700    |  |  |
|                |                | 26°C-%55 RH | 5100          | 3800        | 10 °C     | 19100                   | 14300   | 10400   |  |  |
|                |                | 30°C-%55 RH | 14000         | 10200       | 18 °C     | 30000                   | 21600   | 14400   |  |  |
| Four AAP 10 CH | 2500           | 28°C-%55 RH | 11000         | 7600        | 15 °C     | 32000                   | 23700   | 16400   |  |  |
|                |                | 26°C-%55 RH | 8300          | 5300        | 10 °C     | 35800                   | 27100   | 19700   |  |  |
|                |                | 30°C-%55 RH | 22100         | 16800       | 18 °C     | 42500                   | 30300   | 20000   |  |  |
| Four AAP 15 CH | 3600           | 28°C-%55 RH | 18200         | 13200       | 15 °C     | 45400                   | 33100   | 22700   |  |  |
|                |                | 26°C-%55 RH | 14500         | 10100       | 10 °C     | 50300                   | 37800   | 27300   |  |  |
|                |                | 30°C-%55 RH | 25000         | 18700       | 18 °C     | 51000                   | 36750   | 24400   |  |  |
| Four AAP 20 CH | 4800           | 28°C-%55 RH | 20300         | 14700       | 15 °C     | 54500                   | 40000   | 27700   |  |  |
|                |                | 26°C-%55 RH | 16200         | 11500       | 10 °C     | 60500                   | 45850   | 33300   |  |  |
|                |                | 30°C-%55 RH | 33650         | 25400       | 18 °C     | 66850                   | 47900   | 31750   |  |  |
| Four AAP 25 CH | 6100           | 28°C-%55 RH | 27500         | 20000       | 15 °C     | 71400                   | 52300   | 36000   |  |  |
|                |                | 26°C-%55 RH | 22100         | 15700       | 10 °C     | 79150                   | 59700   | 43300   |  |  |
| - 445.00.00    |                | 30°C-%55 RH | 39800         | 30100       | 18 °C     | 78450                   | 56150   | 37200   |  |  |
| Four AAP 30 CH | 7200           | 28°C-%55 RH | 32700         | 23850       | 15 °C     | 83800                   | 61250   | 42150   |  |  |
|                |                | 26°C-%55 RH | 26250         | 18700       | 10 °C     | 92700                   | 69900   | 50650   |  |  |

#### **WITH RADIAL FAN**

|                | Air            | Input Air | Cooling Cap | acity kcal/h | Input     | Heating Capacity kcal/h |         |         |  |  |
|----------------|----------------|-----------|-------------|--------------|-----------|-------------------------|---------|---------|--|--|
| Models         | Flow<br>(m³/h) | °C        | 7/12°C      | 10/15°C      | Air<br>°C | 80/60°C                 | 60/50°C | 45/40°C |  |  |
|                |                | 30 °C-%55 | 7100        | 5400         | 18°C      | 15900                   | 11300   | 7500    |  |  |
| Four RAP 5 CH  | 1800           | 28 °C-%55 | 5900        | 4500         | 15°C      | 16800                   | 12300   | 8500    |  |  |
|                |                | 26 °C-%55 | 5000        | 3700         | 10°C      | 18600                   | 13900   | 10100   |  |  |
|                |                | 24 °C-%55 | 13800       | 10100        | 18°C      | 29600                   | 21300   | 14200   |  |  |
| Four RAP 10 CH | 2400           | 22 °C-%55 | 10900       | 7500         | 15°C      | 31600                   | 23400   | 16200   |  |  |
|                |                | 20 °C-%55 | 8200        | 5200         | 10°C      | 35300                   | 26700   | 19400   |  |  |
|                |                | 18 °C-%55 | 22300       | 16900        | 18°C      | 42800                   | 30500   | 20100   |  |  |
| Four RAP 15 CH | 3700           | 16 °C-%55 | 18300       | 13300        | 15°C      | 45700                   | 33300   | 22900   |  |  |
|                |                | 14 °C-%55 | 14600       | 10200        | 10°C      | 50700                   | 38100   | 27500   |  |  |
|                |                | 12 °C-%55 | 25300       | 18900        | 18°C      | 51600                   | 37200   | 24700   |  |  |
| Four RAP 20 CH | 5000           | 10 °C-%55 | 20500       | 14900        | 15°C      | 55200                   | 40500   | 28000   |  |  |
|                |                | 8 °C-%55  | 16400       | 11600        | 10°C      | 61200                   | 46400   | 33700   |  |  |
|                |                | 6 °C-%55  | 33200       | 25000        | 18°C      | 65900                   | 47200   | 31300   |  |  |
| Four RAP 25 CH | 5800           | 4 °C-%55  | 27100       | 19700        | 15°C      | 70400                   | 51600   | 35500   |  |  |
|                |                | 2 °C-%55  | 21800       | 15500        | 10°C      | 78000                   | 58900   | 42700   |  |  |
|                |                | 0 °C-%55  | 39500       | 29800        | 18°C      | 77800                   | 55700   | 36900   |  |  |
| Four RAP 30 CH | 7000           | 2 °C-%55  | 32400       | 23700        | 15°C      | 83100                   | 60700   | 41800   |  |  |
|                |                | 4 °C-%55  | 26000       | 18500        | 10°C      | 91900                   | 69300   | 50200   |  |  |

| NOTES |               |              |       |
|-------|---------------|--------------|-------|
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       | iklimlendirme | HVAC SYSTEMS | )<br> |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |
|       |               |              |       |





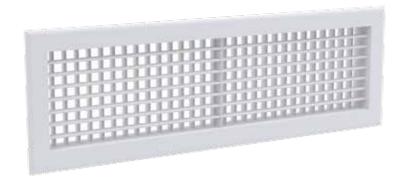


#### Headquarter

İTOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TÜRKİYE Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **İstanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, İstanbul/TÜRKİYE Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56














**DMD**Double Deflection Grille

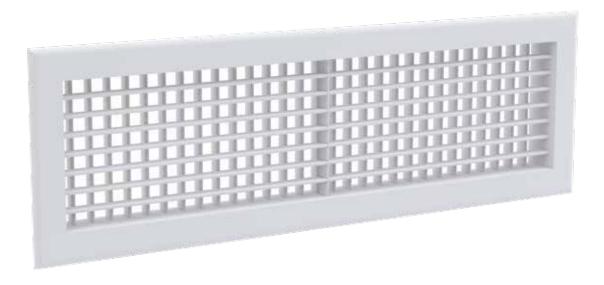


# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.












- © DMD Double Deflection Grille has aerodynamic blades that can be adjusted horizontally from the front and vertically from the rear.
- lt is used in ventilation and air conditioning systems to distribute the supply air in both directions within the space.



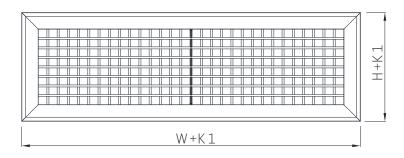
#### **MATERIAL**

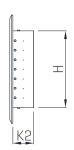
- Aluminum 6063 extrusion profile production
- © Optional AISI 304 quality stainless steel production

#### **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard
- © Optional
  - -Different RAL color codes
  - -Matt aluminum eloxal finish for a matte and metallic look
  - -Unpainted manufacturing

#### **INSTALLATION OPTIONS**


- Screw System
- Suspended Ceiling
- Clip-In Ceiling
- Without Mounting Hole
- Concealed
- Subframe Short Spring Clip


#### **ACCESSORIES**

- © Optional
  - -ZKD-Opposed Blade Air Adjustment Damper (Production from aluminum 6063 extrusion profile)

#### **PRODUCT SELECTION**

#### **STANDARD DIMENSIONS**





| 0 | 0 0 | <br>۰ | 0 | ۰ | ٥ | ۰ | ٥ | ٥ | 0 | ٥ | 0 | 0 | 0  | ٥ | ٥ | ٥ | ٥ | ۰ | ۰ | ۰ | ۰ | ٥ | ٥ | ٥ | ٥ | ۰ |
|---|-----|-------|---|---|---|---|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| _ |     |       |   |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |     |       |   |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |     |       |   |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |     |       |   |   |   |   |   |   |   |   |   | ١ | ٨/ |   |   |   |   |   |   |   |   |   |   |   |   |   |

|                       | K1 (mm) | K2 (mm) |
|-----------------------|---------|---------|
| 22 mm Frame           | 41.6    | 30      |
| 32 mm Frame           | 62.6    | 46.8    |
| Clip-in Frame         | 59.2    | 45      |
| Stainless-Steel Frame | 57.8    | 45      |

Table 1. Standard Dimensions

| Star         | ndard |          | H Height (mm) |             |          |             |             |          |          |          |             |          |  |  |  |  |
|--------------|-------|----------|---------------|-------------|----------|-------------|-------------|----------|----------|----------|-------------|----------|--|--|--|--|
| Dimensions   |       | 50 100   |               | 200         | 300      | 400         | 500         | 600      | 700      | 800      | 900         | 1000     |  |  |  |  |
|              | 100   | <b>✓</b> | <b>✓</b>      | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |  |  |  |  |
|              | 200   | <b>✓</b> | <b>✓</b>      | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>~</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b>    | <b>✓</b> |  |  |  |  |
|              | 300   | <b>~</b> | <b>~</b>      | <b>~</b>    | <b>~</b> | <b>&gt;</b> | >           | <b>~</b> | <b>✓</b> | <b>~</b> | >           | <b>✓</b> |  |  |  |  |
|              | 400   | <b>✓</b> | <b>~</b>      | <b>~</b>    | <b>✓</b> | <b>&gt;</b> | >           | <b>✓</b> | <b>✓</b> | <b>✓</b> | >           | <b>✓</b> |  |  |  |  |
|              | 500   | <b>✓</b> | <b>✓</b>      | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>~</b> | <b>~</b> | <b>~</b>    | <b>✓</b> |  |  |  |  |
|              | 600   | <b>✓</b> | <b>✓</b>      | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b>    | <b>✓</b> |  |  |  |  |
|              | 700   | <b>✓</b> | <b>✓</b>      | <b>~</b>    | <b>~</b> | <b>~</b>    | >           | <b>~</b> | <b>✓</b> | <b>~</b> | >           | <b>✓</b> |  |  |  |  |
| Ē            | 800   | <b>✓</b> | <b>✓</b>      | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>&gt;</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b> |  |  |  |  |
| пJЧ          | 900   | <b>✓</b> | <b>~</b>      | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>~</b>    | <b>~</b> | <b>✓</b> | <b>~</b> | <b>~</b>    | <b>✓</b> |  |  |  |  |
| W Width [mm] | 1000  | <b>✓</b> | <b>✓</b>      | <b>✓</b>    | <b>✓</b> | <b>~</b>    | <b>&gt;</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b> |  |  |  |  |
| <b>&gt;</b>  | 1100  | <b>✓</b> | <b>✓</b>      | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>~</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b>    | <b>✓</b> |  |  |  |  |
|              | 1200  | <b>✓</b> | <b>✓</b>      | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> |          |          |             |          |  |  |  |  |
|              | 1300  | <b>✓</b> | <b>✓</b>      | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>~</b>    | <b>✓</b> |          |          |             |          |  |  |  |  |
|              | 1400  | <b>✓</b> | <b>✓</b>      | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> |          |          |             |          |  |  |  |  |
|              | 1500  | <b>✓</b> | <b>~</b>      | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>✓</b>    | <b>✓</b> |          |          |             |          |  |  |  |  |
|              | 1600  | <b>✓</b> | <b>✓</b>      | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>&gt;</b> | <b>✓</b> |          |          |             |          |  |  |  |  |
|              | 1700  | <b>✓</b> | <b>~</b>      | <b>✓</b>    | <b>✓</b> | <b>~</b>    | <b>~</b>    | <b>✓</b> |          |          |             |          |  |  |  |  |
|              | 1800  | <b>✓</b> | <b>~</b>      | <b>&gt;</b> | <b>~</b> | <b>&gt;</b> | >           | <b>✓</b> |          |          |             |          |  |  |  |  |

**Note**: Maximum dimension for the stainless steel production is  $1200 \text{ mm} \times 600 \text{ mm}$ .

# **PERFORMANCE DATA**

**Table 2.** Effective Area

| Effe           | ctive |       | H (Height) (mm) |       |       |       |       |       |       |       |       |       |  |  |  |  |
|----------------|-------|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| Area           | [m²]  | 50    | 100             | 200   | 300   | 400   | 500   | 600   | 700   | 800   | 900   | 1000  |  |  |  |  |
|                | 100   | 0.003 | 0.006           | 0.012 | 0.018 | 0.024 | 0.030 | 0.036 | 0.042 | 0.048 | 0.054 | 0.060 |  |  |  |  |
|                | 200   | 0.006 | 0.012           | 0.024 | 0.036 | 0.048 | 0.060 | 0.072 | 0.084 | 0.096 | 0.108 | 0.120 |  |  |  |  |
|                | 300   | 0.009 | 0.018           | 0.036 | 0.054 | 0.072 | 0.090 | 0.108 | 0.126 | 0.144 | 0.162 | 0.180 |  |  |  |  |
|                | 400   | 0.012 | 0.024           | 0.048 | 0.072 | 0.096 | 0.120 | 0.144 | 0.168 | 0.192 | 0.216 | 0.240 |  |  |  |  |
|                | 500   | 0.015 | 0.030           | 0.060 | 0.090 | 0.120 | 0.150 | 0.180 | 0.210 | 0.240 | 0.270 | 0.299 |  |  |  |  |
|                | 600   | 0.018 | 0.036           | 0.072 | 0.108 | 0.144 | 0.180 | 0.216 | 0.252 | 0.288 | 0.323 | 0.359 |  |  |  |  |
|                | 700   | 0.021 | 0.042           | 0.084 | 0.126 | 0.168 | 0.210 | 0.252 | 0.294 | 0.335 | 0.377 | 0.419 |  |  |  |  |
| W [Width] [mm] | 800   | 0.024 | 0.048           | 0.096 | 0.144 | 0.192 | 0.240 | 0.288 | 0.335 | 0.383 | 0.431 | 0.479 |  |  |  |  |
| _ <u>-</u>     | 900   | 0.027 | 0.054           | 0.108 | 0.162 | 0.216 | 0.270 | 0.323 | 0.377 | 0.431 | 0.485 | 0.539 |  |  |  |  |
| 븀              | 1000  | 0.030 | 0.060           | 0.120 | 0.180 | 0.240 | 0.299 | 0.359 | 0.419 | 0.479 | 0.539 | 0.599 |  |  |  |  |
| <u>`</u>       | 1100  | 0.033 | 0.066           | 0.132 | 0.198 | 0.264 | 0.329 | 0.395 | 0.461 | 0.527 | 0.593 | 0.659 |  |  |  |  |
| >              | 1200  | 0.036 | 0.072           | 0.144 | 0.216 | 0.288 | 0.359 | 0.431 |       |       |       |       |  |  |  |  |
|                | 1300  | 0.039 | 0.078           | 0.156 | 0.234 | 0.311 | 0.389 | 0.467 |       |       |       |       |  |  |  |  |
|                | 1400  | 0.042 | 0.084           | 0.168 | 0.252 | 0.335 | 0.419 | 0.503 |       |       |       |       |  |  |  |  |
|                | 1500  | 0.045 | 0.090           | 0.180 | 0.270 | 0.359 | 0.449 | 0.539 |       |       |       |       |  |  |  |  |
|                | 1600  | 0.048 | 0.096           | 0.192 | 0.288 | 0.383 | 0.479 | 0.575 |       |       |       |       |  |  |  |  |
|                | 1700  | 0.051 | 0.102           | 0.204 | 0.305 | 0.407 | 0.509 | 0.611 |       |       |       |       |  |  |  |  |
|                | 1800  | 0.054 | 0.108           | 0.216 | 0.323 | 0.431 | 0.539 | 0.647 |       |       |       |       |  |  |  |  |

**Table 3.** Supply Data

|                  | I                                              |              |              |              |              |              |              |              |             | ty (m/s)     |              |             | T           |             |             |         |
|------------------|------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|-------------|-------------|-------------|-------------|---------|
| Flow Rate (m³/h) |                                                | 0.5          | 1.0          | 1.5          | 2.0          | 2.5          | 3.0          | 3.5          | 4.0         | 4.5          | 5.0          | 6.0         | 7.0         | 8.0         | 9.0         | 10.0    |
|                  | Effective Area [m²] Pressure Drop [Pa]         | 0.0278       | 0.0139       | 0.009        | 0.007        | 0.006        | 0.005<br>7   | 0.004        | 0.004       | 0.003<br>17  |              |             |             |             |             |         |
| 50               | Throw Distance [m]                             | 1            | 5            | 2            | 3            | 5<br>3       | 3            | 10           | 13<br>4     | 4            |              |             |             |             |             |         |
|                  | Sound Power Level [dB(A)]                      | <15          | <15          | <15          | <15          | <15          | <15          | <15          | <15         | 15           |              |             |             |             |             |         |
|                  | Effective Area [m²]                            | 0.0556       | 0.0278       | 0.019        | 0.014        | 0.011        | 0.009        | 0.008        | 0.007       | 0.006        | 0.006        | 0.005       | 0.004       | 0.004       | 0.003       |         |
| 100              | Pressure Drop [Pa] Throw Distance [m]          | 1            | 2            | 2            | 3            | 5            | 7            | 10           | 13<br>4     | 17           | 21           | 30<br>5     | 42<br>6     | 55<br>6     | 70          | _       |
|                  | Sound Power Level [dB(A)]                      | <15          | <15          | 2<br><15     | <15          | 3<br><15     | 4<br><15     | <15          | 15          | 18           | 5<br>21      | 26          | 30          | 34          | 6<br>37     | _       |
|                  | Effective Area [m²]                            | 0.111        | 0.056        | 0.037        | 0.028        | 0.022        | 0.019        | 0.016        | 0.014       | 0.012        | 0.011        | 0.009       | 0.008       | 0.007       | 0.006       | 0.00    |
| 200              | Pressure Drop [Pa]                             | 0            | 1            | 2            | 3            | 5            | 7            | 10           | 13          | 17           | 21           | 31          | 42          | 56          | 71          | 88      |
| 200              | Throw Distance [m]                             | 1            | 2            | 2            | 3            | 3            | 4            | 4            | 4           | 5            | 5            | 5<br>29     | 6<br>33     | 6<br>37     | 7           | 7       |
|                  | Sound Power Level [dB(A)]  Effective Area [m²] | <15<br>0.167 | <15<br>0.083 | <15<br>0.056 | <15<br>0.042 | <15<br>0.033 | <15<br>0.028 | <15<br>0.024 | 18<br>0.021 | 22<br>0.019  | 24<br>0.017  | 0.014       | 0.012       | 0.010       | 40<br>0.009 | 0.00    |
|                  | Pressure Drop [Pa]                             | 0.107        | 1            | 2            | 3            | 5            | 7            | 10           | 13          | 17           | 21           | 31          | 42          | 56          | 71          | 89      |
| 300              | Throw Distance [m]                             | 1            | 2            | 3            | 3            | 3            | 4            | 4            | 4           | 5            | 5            | 5           | 6           | 6           | 7           | 7       |
|                  | Sound Power Level [dB(A)]                      | <15          | <15          | <15          | <15          | <15          | <15          | 17           | 20          | 23           | 26           | 31          | 35          | 39          | 42          | 45      |
|                  | Effective Area [m²] Pressure Drop [Pa]         | 0.222        | 0.111        | 0.074        | 0.056        | 0.044        | 0.037        | 0.032        | 0.028       | 0.025        | 0.022        | 0.019       | 0.016       | 0.014       | 0.012       | 0.01    |
| 400              | Throw Distance [m]                             | 1            | 2            | 3            | 3            | 5<br>3       | 7            | 4            | 13          | 17<br>5      | 21<br>5      | 5           | 6           | 6           | 71          | 89      |
|                  | Sound Power Level [dB(A)]                      | <15          | <15          | <15          | <15          | <15          | <15          | 18           | 21          | 25           | 27           | 32          | 37          | 40          | 43          | 46      |
|                  | Effective Area [m²]                            | 0.278        | 0.139        | 0.093        | 0.069        | 0.056        | 0.046        | 0.040        | 0.035       | 0.031        | 0.028        | 0.023       | 0.020       | 0.017       | 0.015       | 0.01    |
| 500              | Pressure Drop [Pa]                             | 0            | 1            | 2            | 3            | 5            | 7            | 10           | 13          | 17           | 21           | 31          | 42          | 56          | 71          | 89      |
| 000              | Throw Distance [m] Sound Power Level [dB(A)]   | 1 -15        | 2            | -15          | 3            | 3            | -10          | 10           | 4           | 5            | 5            | 5<br>33     | 6<br>37     | 6 41        | 7 44        | 7<br>47 |
|                  | Effective Area [m²]                            | <15<br>0.333 | <15<br>0.167 | <15<br>0.111 | <15<br>0.083 | <15<br>0.067 | <15<br>0.056 | 19<br>0.048  | 22<br>0.042 | 26<br>0.037  | 28<br>0.0333 | 0.028       | 0.024       | 0.021       | 0.019       | 0.01    |
| 005              | Pressure Drop [Pa]                             | 0.333        | 1            | 2            | 3            | 5            | 7            | 10           | 13          | 17           | 21           | 31          | 43          | 56          | 72          | 89      |
| 600              | Throw Distance [m]                             | 1            | 2            | 3            | 3            | 3            | 4            | 4            | 4           | 5            | 4,9          | 6           | 6           | 6           | 7           | 7       |
|                  | Sound Power Level [dB(A)]                      | <15          | <15          | <15          | <15          | <15          | 16           | 20           | 23          | 26           | 29           | 34          | 38          | 42          | 45          | 48      |
|                  | Effective Area [m²] Pressure Drop [Pa]         | 0.389        | 0.194        | 0.130        | 0.097        | 0.078        | 0.065        | 0.056        | 0.049       | 0.043        | 0.0389       | 0.032       | 0.028       | 0.024       | 0.022       | 0.01    |
| 700              | Throw Distance [m]                             | 1            | 2            | 3            | 3            | 5<br>3       | 4            | 10<br>4      | 13<br>4     | 17<br>5      | 21<br>5,0    | 31<br>6     | 6           | 7           | 72<br>7     | 89<br>7 |
|                  | Sound Power Level [dB(A)]                      | <15          | <15          | <15          | <15          | <15          | 16           | 20           | 24          | 27           | 30           | 35          | 39          | 43          | 46          | 49      |
|                  | Effective Area [m²]                            | 0.444        | 0.222        | 0.148        | 0.111        | 0.089        | 0.074        | 0.064        | 0.056       | 0.049        | 0.0444       | 0.037       | 0.032       | 0.028       | 0.025       | 0.02    |
| 800              | Pressure Drop [Pa]                             | 0            | 1            | 2            | 3            | 5            | 7            | 10           | 13          | 17           | 21           | 31          | 43          | 56          | 72          | 89      |
| 800              | Throw Distance [m] Sound Power Level [dB(A)]   | 1            | 2            | 3            | 3            | 3            | 4            | 4            | 4           | 5            | 5,0          | 6           | 6<br>40     | 7 43        | 7           | 7       |
|                  | Effective Area [m²]                            | <15<br>0.500 | <15<br>0.250 | <15<br>0.167 | <15<br>0.125 | <15<br>0.100 | 17<br>0.083  | 21<br>0.071  | 25<br>0.063 | 28<br>0.056  | 31<br>0.0500 | 35<br>0.042 | 0.036       | 0.031       | 46<br>0.028 | 0.02    |
|                  | Pressure Drop [Pa]                             | 0.300        | 1            | 2            | 3            | 5            | 7            | 10           | 13          | 17           | 21           | 31          | 43          | 56          | 72          | 89      |
| 900              | Throw Distance [m]                             | 1            | 2            | 3            | 3            | 3            | 4            | 4            | 4           | 5            | 5,0          | 6           | 6           | 7           | 7           | 7       |
|                  | Sound Power Level [dB(A)]                      | <15          | <15          | <15          | <15          | <15          | 17           | 21           | 25          | 28           | 31           | 36          | 40          | 44          | 47          | 50      |
|                  | Effective Area [m²]                            | 0.556        | 0.278        | 0.185        | 0.139        | 0.111        | 0.093        | 0.079        | 0.069       | 0.062        | 0.0556       | 0.046       | 0.040       | 0.035       | 0.031       | 0.02    |
| 1000             | Pressure Drop [Pa] Throw Distance [m]          | 1            | 2            | 2            | 3            | 5<br>3       | 4            | 10           | 13          | 17<br>5      | 21<br>5,0    | 31<br>6     | 43<br>6     | 56<br>7     | 72<br>7     | 90      |
|                  | Sound Power Level [dB(A)]                      | <15          | <15          | 3<br><15     | <15          | <15          | 18           | 22           | 25          | 29           | 32           | 36          | 41          | 44          | 47          | 50      |
|                  | Effective Area [m²]                            | 10           | 0.347        | 0.232        | 0.174        | 0.139        | 0.116        | 0.099        | 0.087       | 0.077        | 0.0694       | 0.058       | 0.050       | 0.043       | 0.039       | 0.03    |
| 1050             | Pressure Drop [Pa]                             |              | 1            | 2            | 3            | 5            | 7            | 10           | 13          | 17           | 21           | 31          | 43          | 56          | 72          | 90      |
| 1250             | Throw Distance [m]                             |              | 2            | 3            | 3            | 3            | 4            | 4            | 5           | 5            | 5,1          | 6           | 6           | 7           | 7           | 8       |
|                  | Sound Power Level [dB(A)]  Effective Area [m²] |              | <15<br>0.417 | <15<br>0.278 | <15<br>0.208 | <15<br>0.167 | 19<br>0.139  | 23<br>0.119  | 27<br>0.104 | 30<br>0.0926 | 33<br>0.0833 | 37<br>0.069 | 42          | 45          | 48          | 0.04    |
|                  | Pressure Drop [Pa]                             |              | 1            | 2            | 3            | 5            | 7            | 10           | 13          | 17           | 21           | 31          | 0.060<br>43 | 0.052<br>57 | 0.046<br>72 | 90      |
| 1500             | Throw Distance [m]                             |              | 2            | 3            | 3            | 4            | 4            | 4            | 5           | 4,8          | 5,1          | 6           | 6           | 7           | 7           | 8       |
|                  | Sound Power Level [dB(A)]                      |              | <15          | <15          | <15          | <15          | 20           | 24           | 27          | 30           | 33           | 38          | 42          | 46          | 49          | 52      |
|                  | Effective Area [m²]                            |              | 0.486        | 0.324        | 0.243        | 0.194        | 0.162        | 0.139        | 0.122       | 0.1080       | 0.0972       | 0.081       | 0.069       | 0.061       | 0.054       | 0.04    |
| 1750             | Pressure Drop [Pa] Throw Distance [m]          |              | 2            | 3            | 3            | 5 4          | 4            | 10           | 13          | 17<br>5      | 21<br>5      | 31          | 43          | 57          | 72          | 90      |
| 1,00             | Sound Power Level [dB(A)]                      |              | <15          | <15          | <15          | 15           | 20           | 24           | 5<br>28     | 31           | 34           | 6<br>39     | 6<br>43     | 7<br>47     | 7<br>50     | 8<br>53 |
|                  | Effective Area [m²]                            |              | 0.556        | 0.370        | 0.278        | 0.222        | 0.185        | 0.159        | 0.139       | 0.1235       | 0.1111       | 0.093       | 0.079       | 0.069       | 0.062       | 0.05    |
| 0000             | Pressure Drop [Pa]                             |              | 1            | 2            | 3            | 5            | 7            | 10           | 13          | 17           | 21           | 31          | 43          | 57          | 72          | 90      |
| 2000             | Throw Distance [m]                             |              | 2            | 3            | 3            | 4            | 4            | 4            | 5           | 5            | 5            | 6           | 6           | 7           | 7           | 8       |
|                  | Sound Power Level [dB(A)]  Effective Area [m²] |              | <15          | <15<br>0.463 | <15<br>0.347 | 16<br>0.278  | 21<br>0.232  | 25<br>0.198  | 29<br>0.174 | 32<br>0.1543 | 35<br>0.1389 | 40          | 44          | 47          | 50          | 53      |
|                  | Pressure Drop [Pa]                             |              |              | 2            | 3            | 5            | 7            | 10           | 14          | 17           | 21           | 0.116<br>31 | 0.099<br>43 | 0.087<br>57 | 0.077<br>73 | 0.06    |
| 2500             | Throw Distance [m]                             |              |              | 3            | 3            | 4            | 4            | 4            | 5           | 5            | 5            | 6           | 6           | 7           | 7           | 8       |
|                  | Sound Power Level [dB(A)]                      |              |              | <15          | <15          | 17           | 22           | 26           | 30          | 33           | 36           | 40          | 45          | 48          | 51          | 54      |
|                  | Effective Area [m²]                            |              |              | 0.556        | 0.417        | 0.333        | 0.278        | 0.238        | 0.2083      | 0.1852       | 0.1667       | 0.139       | 0.119       | 0.104       | 0.093       | 0.08    |
| 3000             | Pressure Drop [Pa]                             | -            |              | 2            | 3            | 5 4          | 7            | 10           | 14          | 17           | 21           | 31          | 43          | 57          | 73          | 90      |
| 0000             | Throw Distance [m] Sound Power Level [dB(A)]   |              |              | 3<br><15     | 3<br><15     | 18           | 4<br>23      | 4<br>27      | 5<br>30     | 5<br>34      | 5<br>36      | 6<br>41     | 6<br>45     | 7<br>49     | 7<br>52     | 8<br>55 |
|                  | Effective Area [m²]                            |              |              | -10          | 0.556        | 0.444        | 0.370        | 0.3175       | 0.2778      | 0.2469       | 0.2222       | 0.185       | 0.159       | 0.139       | 0.1235      | 0.11    |
| /1000            | Pressure Drop [Pa]                             |              |              |              | 3            | 5            | 7            | 10           | 14          | 17           | 22           | 31          | 43          | 57          | 73          | 91      |
| 4000             | Throw Distance [m]                             |              |              |              | 3            | 4            | 4            | 4            | 5           | 5            | 5            | 6           | 6           | 7           | 7           | 8       |
|                  | Sound Power Level [dB(A)]                      |              |              |              | <15          | 19           | 24           | 28           | 32          | 35           | 38           | 43          | 47          | 50          | 53          | 56      |
|                  | Effective Area [m²] Pressure Drop [Pa]         |              |              |              |              | 0.556        | 0.4630       | 0.3968       | 0.3472      | 0.3086       | 0.2778<br>22 | 0.232       | 0.198       | 0.1736      | 0.1543      | 0.13    |
| 5000             | Throw Distance [m]                             |              |              |              | <b>-</b>     | 4            | 4            | 4            | 5           | 5            | 5            | 31<br>6     | 43<br>6     | 57<br>7     | 73<br>7     | 91      |
|                  | Sound Power Level [dB(A)]                      |              |              |              |              | 20           | 25           | 29           | 33          | 36           | 39           | 44          | 48          | 51          | 54          | 57      |
|                  | Effective Area [m²]                            |              |              |              |              |              | <u> </u>     | 0.595        | 0.521       | 0.4630       | 0.4167       | 0.347       | 0.298       | 0.260       | 0.232       | 0.20    |
| 7500             | Pressure Drop [Pa]                             |              |              |              |              |              |              | 10           | 14          | 17           | 22           | 32          | 43          | 57          | 73          | 91      |
| 7500             | Throw Distance [m]                             |              |              |              |              |              |              | 4            | 5           | 5            | 5            | 6           | 7           | 7           | 8           | 8       |
|                  | Sound Power Level [dB(A)]                      |              |              |              |              |              |              | 31           | 34          | 38           | 40           | 45          | 50          | 53          | 56          | 59      |
|                  | Effective Area [m²]                            |              |              |              |              |              |              |              |             | 0.6173       | 0.5556       | 0.463       | 0.397       | 0.347       | 0.309       | 0.27    |
| 10000            | Pressure Drop [Pa] Throw Distance [m]          |              |              |              | -            |              | <u> </u>     |              | -           | 17<br>5      | 22           | 32<br>6     | 44<br>7     | 57<br>7     | 73          | 91      |
|                  | Sound Power Level [dB(A)]                      | _            |              |              | -            | -            | -            | -            | -           | 39           | 6<br>42      | 47          | 51          | 54          | 8<br>58     | 60      |

**Note**: Data were obtained with the air distribution equipment when the ambient air temperature difference is T=8 K

Throw Distance is the distance between the point where the air leaving the dispenser equipment reaches to velocity of 0.25 m/s, and the air dispenser equipment.

Table 4. Extract Data

|                  |                                              |        |        |        |        |              |        | Effectiv | e Veloci | ty (m/s) |          |          |          |          |          |        |
|------------------|----------------------------------------------|--------|--------|--------|--------|--------------|--------|----------|----------|----------|----------|----------|----------|----------|----------|--------|
| Flow Rate (m³/h) |                                              | 0.5    | 1.0    | 1.5    | 2.0    | 2.5          | 3.0    | 3.5      | 4.0      | 4.5      | 5.0      | 6.0      | 7.0      | 8.0      | 9.0      | 10.0   |
|                  | Effective Area [m²]                          | 0.0278 | 0.0139 | 0.0093 | 0.0069 | 0.006        | 0.005  | 0.004    | 0.003    | 0.003    |          |          |          |          |          |        |
| 50               | Pressure Drop [Pa]                           | <1     | 1      | 2      | 3      | 5            | 8      | 10       | 14       | 17       |          |          |          |          |          |        |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15    | <15    | <15          | <15    | <15      | <15      | 16       |          |          |          |          |          |        |
|                  | Effective Area [m²]                          | 0.0556 | 0.0278 | 0.019  | 0.014  | 0.011        | 0.009  | 0.008    | 0.007    | 0.006    | 0.006    | 0.005    | 0.004    | 0.0035   | 0.0031   |        |
| 100              | Pressure Drop [Pa]                           | <1     | 1      | 2      | 3      | 5            | 8      | 10       | 14       | 18       | 22       | 32       | 44       | 58       | 74       |        |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15    | <15    | <15          | <15    | <15      | 16       | 19       | 22       | 27       | 31       | 34       | 38       |        |
|                  | Effective Area [m²]                          | 0.111  | 0.056  | 0.037  | 0.028  | 0.022        | 0.019  | 0.016    | 0.014    | 0.012    | 0.011    | 0.009    | 0.008    | 0.007    | 0.0062   | 0.0056 |
| 200              | Pressure Drop [Pa]                           | <1     | 1      | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 22       | 32       | 44       | 58       | 74       | 93     |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15    | <15    | <15          | <15    | 15       | 19       | 22       | 25       | 30       | 34       | 38       | 41       | 44     |
|                  | Effective Area [m²]                          | 0.167  | 0.083  | 0.056  | 0.042  | 0.033        | 0.028  | 0.024    | 0.021    | 0.019    | 0.017    | 0.014    | 0.012    | 0.010    | 0.009    | 0.008  |
| 300              | Pressure Drop [Pa]                           | <1     | 1      | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 22       | 32       | 44       | 59       | 75       | 93     |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15    | <15    | <15          | <15    | 17       | 21       | 24       | 27       | 32       | 36       | 39       | 43       | 45     |
|                  | Effective Area [m²]                          | 0.222  | 0.111  | 0.074  | 0.056  | 0.044        | 0.037  | 0.032    | 0.028    | 0.025    | 0.022    | 0.019    | 0.016    | 0.014    | 0.012    | 0.011  |
| 400              | Pressure Drop [Pa]                           | <1     | 1      | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 22       | 32       | 44       | 59       | 75       | 93     |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15    | <15    | <15          | <15    | 18       | 22       | 25       | 28       | 33       | 37       | 41       | 44       | 47     |
|                  | Effective Area [m²]                          | 0.278  | 0.139  | 0.093  | 0.069  | 0.056        | 0.046  | 0.040    | 0.035    | 0.031    | 0.028    | 0.023    | 0.020    | 0.017    | 0.015    | 0.014  |
| 500              | Pressure Drop [Pa]                           | <1     | 1      | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 22       | 32       | 45       | 59       | 75       | 93     |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15    | <15    | <15          | 15     | 19       | 23       | 26       | 29       | 34       | 38       | 42       | 45       | 48     |
| 000              | Effective Area [m²]                          | 0.333  | 0.167  | 0.111  | 0.083  | 0.067        | 0.056  | 0.048    | 0.042    | 0.037    | 0.0333   | 0.028    | 0.024    | 0.021    | 0.019    | 0.017  |
| 600              | Pressure Drop [Pa]                           | <1     | 1      | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 22       | 32       | 45       | 59       | 75       | 94     |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15    | <15    | <15          | 16     | 20       | 24       | 27       | 30       | 35       | 39       | 42       | 46       | 48     |
| 700              | Effective Area [m²]                          | 0.389  | 0.194  | 0.130  | 0.097  | 0.078        | 0.065  | 0.056    | 0.049    | 0.043    | 0.0389   | 0.032    | 0.028    | 0.024    | 0.022    | 0.019  |
| 700              | Pressure Drop [Pa] Sound Power Level [dB[A]] | <1     | 1 -15  | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 22<br>30 | 32       | 45<br>40 | 59<br>43 | 75       | 94     |
|                  |                                              | <15    | <15    | <15    | <15    | <15          | 17     | 21       | 24       | 28       | 0.0444   | 35       |          |          | 46       | 49     |
| 800              | Effective Area [m²] Pressure Drop [Pa]       | 0.444  | 0.222  | 0.148  | 0.111  | 0.089        | 0.074  | 0.063    | 0.056    | 0.049    | 22       | 0.037    | 0.032    | 0.028    | 0.025    | 0.022  |
| 800              | Sound Power Level [dB(A)]                    | <1     | 1      | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 31       | 33<br>36 | 45<br>40 | 59<br>44 | 75       | 94     |
|                  |                                              | <15    | <15    | <15    | <15    | <15          | 17     | 21       | 25       | 28       | 0.0500   | 0.042    | 0.036    |          | 47       | 50     |
| 900              | Effective Area [m²] Pressure Drop [Pa]       | 0.500  | 0.250  | 0.167  | 0.125  | 0.100        | 0.083  | 0.071    | 0.063    | 0.056    | 22       | 33       | 45       | 0.031    | 0.028    | 0.025  |
| 300              | Sound Power Level [dB(A)]                    | <15    | <15    | <15    | <15    | 5            | 10     | 11<br>22 | 26       | 29       | 32       | 36       | 41       | 44       | 75<br>47 | 50     |
|                  | Effective Area [m²]                          | 0.556  | 0.278  | 0.185  | 0.139  | <15<br>0.111 | 0.093  | 0.079    | 0.069    | 0.062    | 0.0556   | 0.046    | 0.040    | 0.035    | 0.031    | 0.028  |
| 1000             | Pressure Drop [Pa]                           | <1     | 1      | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 22       | 33       | 45       | 59       | 76       | 94     |
| 1000             | Sound Power Level [dB(A)]                    | <15    | <15    | <15    | <15    | <15          | 18     | 22       | 26       | 29       | 32       | 37       | 41       | 45       | 48       | 51     |
|                  | Effective Area [m²]                          | -10    | 0.347  | 0.231  | 0.174  | 0.139        | 0.116  | 0.099    | 0.087    | 0.077    | 0.0694   | 0.058    | 0.050    | 0.043    | 0.039    | 0.035  |
| 1250             | Pressure Drop [Pa]                           |        | 1      | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 22       | 33       | 45       | 59       | 76       | 94     |
|                  | Sound Power Level [dB(A)]                    |        | <15    | <15    | <15    | <15          | 19     | 23       | 27       | 30       | 33       | 38       | 42       | 46       | 49       | 52     |
|                  | Effective Area [m²]                          |        | 0.417  | 0.278  | 0.208  | 0.167        | 0.139  | 0.119    | 0.104    | 0.0926   | 0.0833   | 0.069    | 0.060    | 0.052    | 0.046    | 0.0417 |
| 1500             | Pressure Drop [Pa]                           |        | 1      | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 22       | 33       | 45       | 59       | 76       | 94     |
|                  | Sound Power Level [dB(A)]                    |        | <15    | <15    | <15    | 15           | 20     | 24       | 28       | 31       | 34       | 39       | 43       | 46       | 50       | 52     |
|                  | Effective Area [m²]                          |        | 0.486  | 0.324  | 0.243  | 0.194        | 0.162  | 0.139    | 0.122    | 0.1080   | 0.0972   | 0.081    | 0.069    | 0.061    | 0.054    | 0.0486 |
| 1750             | Pressure Drop [Pa]                           |        | 1      | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 22       | 33       | 45       | 59       | 76       | 94     |
|                  | Sound Power Level [dB(A)]                    |        | <15    | <15    | <15    | 16           | 21     | 25       | 29       | 32       | 35       | 39       | 44       | 47       | 50       | 53     |
|                  | Effective Area [m²]                          |        | 0.556  | 0.370  | 0.278  | 0.222        | 0.185  | 0.159    | 0.139    | 0.1235   | 0.1111   | 0.093    | 0.079    | 0.069    | 0.062    | 0.0556 |
| 2000             | Pressure Drop [Pa]                           |        | 1      | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 22       | 33       | 45       | 60       | 76       | 95     |
|                  | Sound Power Level [dB(A)]                    |        | <15    | <15    | <15    | 16           | 21     | 26       | 29       | 32       | 35       | 40       | 44       | 48       | 51       | 54     |
|                  | Effective Area [m²]                          |        |        | 0.463  | 0.347  | 0.278        | 0.231  | 0.198    | 0.174    | 0.1543   | 0.1389   | 0.116    | 0.099    | 0.087    | 0.077    | 0.0694 |
| 2500             | Pressure Drop [Pa]                           |        |        | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 23       | 33       | 45       | 60       | 76       | 95     |
|                  | Sound Power Level [dB(A)]                    |        |        | <15    | <15    | 17           | 22     | 27       | 30       | 33       | 36       | 41       | 45       | 49       | 52       | 55     |
|                  | Effective Area [m²]                          |        |        | 0.556  | 0.417  | 0.333        | 0.278  | 0.238    | 0.2083   | 0.1852   | 0.1667   | 0.139    | 0.119    | 0.104    | 0.0926   | 0.0833 |
| 3000             | Pressure Drop [Pa]                           |        |        | 2      | 3      | 5            | 8      | 11       | 14       | 18       | 23       | 33       | 45       | 60       | 76       | 95     |
|                  | Sound Power Level [dB(A)]                    |        |        | <15    | <15    | 18           | 23     | 27       | 31       | 34       | 37       | 42       | 46       | 50       | 53       | 56     |
|                  | Effective Area [m²]                          |        |        |        | 0.556  | 0.444        | 0.370  | 0.3175   | 0.2778   | 0.2469   | 0.2222   | 0.185    | 0.159    | 0.1389   | 0.1235   | 0.1111 |
| 4000             | Pressure Drop [Pa]                           |        |        |        | 3      | 5            | 8      | 11       | 14       | 18       | 23       | 33       | 45       | 60       | 76       | 95     |
|                  | Sound Power Level [dB(A)]                    |        |        |        | <15    | 19           | 24     | 29       | 32       | 35       | 38       | 43       | 47       | 51       | 54       | 57     |
|                  | Effective Area [m²]                          |        |        |        |        | 0.556        | 0.4630 | 0.3968   | 0.3472   | 0.3086   | 0.2778   | 0.231    | 0.1984   | 0.1736   | 0.1543   | 0.1389 |
| 5000             | Pressure Drop [Pa]                           |        |        |        |        | 5            | 8      | 11       | 14       | 18       | 23       | 33       | 45       | 60       | 77       | 95     |
|                  | Sound Power Level [dB(A)]                    |        |        |        |        | 21           | 25     | 30       | 33       | 36       | 39       | 44       | 48       | 52       | 55       | 58     |
|                  | Effective Area [m²]                          |        |        |        |        |              |        | 0.5952   | 0.5208   | 0.4630   | 0.4167   | 0.347    | 0.298    | 0.2604   | 0.2315   | 0.2083 |
| 7500             | Pressure Drop [Pa]                           |        |        |        |        |              |        | 11       | 14       | 18       | 23       | 33       | 46       | 60       | 77       | 96     |
|                  | Sound Power Level [dB(A)]                    |        |        |        |        |              |        | 31       | 35       | 38       | 41       | 46       | 50       | 54       | 57       | 60     |
|                  | Effective Area [m²]                          |        |        |        |        |              |        |          |          | 0.6173   | 0.5556   | 0.463    | 0.3968   | 0.3472   | 0.3086   | 0.2778 |
| 10000            | Pressure Drop [Pa]                           |        |        |        |        |              |        |          |          | 18       | 23       | 33       | 46       | 60       | 77       | 96     |
|                  | Sound Power Level [dB(A)]                    |        |        |        |        |              |        |          |          | 39       | 42       | 47       | 51       | 55       | 58       | 61     |

Note: Data were obtained with the air distribution equipment when the ambient air temperature difference is T=8 K

Table 5. Throw Distance Correction

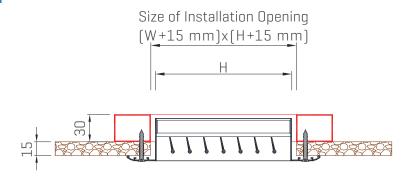
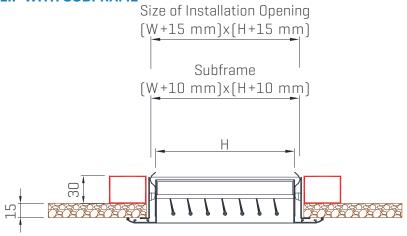
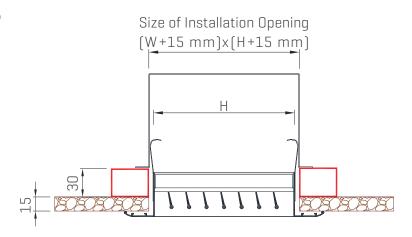

| Heating Mode (△T)          | 4    | 6    | 8    | 10   | 12   |
|----------------------------|------|------|------|------|------|
| Throw Distance Coefficient | 1.07 | 1.02 | 1    | 0.90 | 0.83 |
| Cooling Mode (△T)          | 4    | 6    | 8    | 10   | 12   |
| Throw Distance Coefficient | 1.31 | 1.36 | 1.42 | 1.48 | 1.54 |

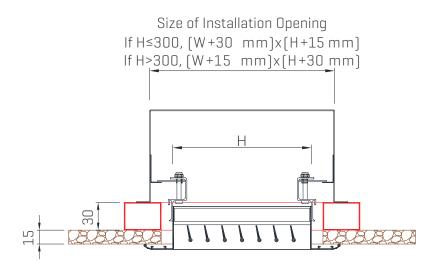
Table 6. Damper Pressure Correction


| Damper Position | Pressure Correction Factor | Noise Generation (dB(A)) |
|-----------------|----------------------------|--------------------------|
| Open            | 1.1                        | +1                       |
| 25% Closed      | 1.14                       | +4                       |
| 50% Closed      | 2.48                       | +14                      |
| 75% Closed      | 5.11                       | +29                      |

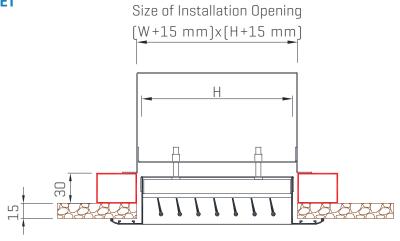
# **INSTALLATION**


# 1. SCREW SYSTEM

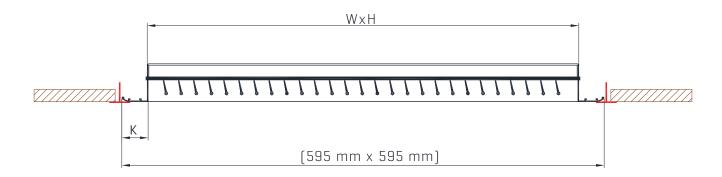



# 2. SHORT SPRING CLIP WITH SUBFRAME




# 3. LONG SPRING CLIP

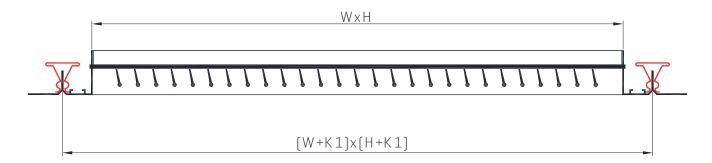



# **4. CONCEALED**



# **5. MOUNTING BRACKET**



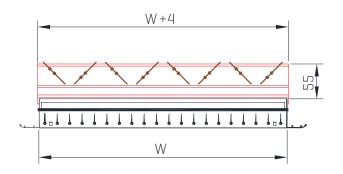

# **6. SUSPENDED CEILING**

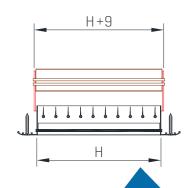


W and H dimensions that can be selected according to the frame sizes specified in the product selection, are shown in the adjacent table.

|                       | W (mm) | H (mm) |
|-----------------------|--------|--------|
| 22 mm Frame           | 553.4  | 553.4  |
| 32 mm Frame           | 532.4  | 532.4  |
| Stainless-Steel Frame | 542    | 542    |

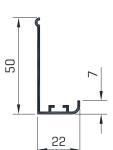
# 7. CLIP-IN CEILING



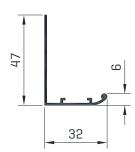


# Note:

When the product material is selected as stainless steel, clip-in installation can not be done.

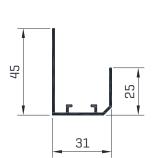
| Clip-In Frame<br>K1 = 59 mm | W (mm) | H (mm) |
|-----------------------------|--------|--------|
| 600x600                     | 541    | 541    |
| 300x300                     | 241    | 241    |


# 8. WITH DAMPER

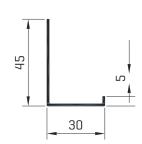





# **FRAME TYPES**


22 mm Frame




32 mm Frame



Clip-In Frame



Stainless Steel Frame



# **SIZE PARAMETERS**

# **MAXIMUM MODULE SIZE**

The standard dimensions of one module can be selected between  $100 \text{ mm} \times 50 \text{ mm}$  and  $1800 \text{ mm} \times 1000 \text{ mm}$ . For the stainless-steel production, maximum module dimension is  $1200 \text{ mm} \times 600 \text{ mm}$ . If the order dimension exceeds the module length, grilles will be produced by modular.

# **SUPPORT NUMBER PARAMETERS**

Support is used only in aluminum products.

If W<600, without support

If 600≤W≤1200, with 1 support

If 1200≤W≤1800, with 2 support

If 600<H≤1000, with 1 support

#### PRODUCT SELECTION

**Example:** The air flow distributed in the space has been determined as 5000 m<sup>3</sup>/h. 10 double deflection grille will be used for blowing. The temperature difference in heating mode is 8K. Make your product selection.

Solution: Air flow rate for a grille, 5000/10=500 m<sup>3</sup>/h

Effective areas corresponding to appropriate pressure drop and flow rate values are selected from the blow data table (Table 3) For example, in an effective area of  $0.04 \text{ m}^2$ , the effective velocity is 3.5 m/s, pressure drop 10 Pa, throw distance 4 m and sound power 19 dB(A).

The appropriate grille size can be selected from the effective area table (Table 2) as  $300 \text{ mm} \times 200 \text{ mm}$  corresponding to the value of  $0.04 \text{ m}^2$ .

#### Throw Distance Correction Chart

In the previous example, the throw distance was found to be 4 m for the heating mode 8K. Refer to Throw Distance Correction Chart for 10K heating mode. The multiplier value is 0.9.

Corrected throw distance=4 m x 0.9=3.6 m

#### Opposed Blade Damper Condition

The pressure drop and sound power level changes in the damper product. Damper Correction Table (Table 6) should be used. For example, for the tipper product with the damper closed at 50%, the corresponding pressure factor in the table is 2.48 and sound production is +14 dB[A]

Total static pressure drop: 10x2.48=24.8 Pa Total sound power level: 19+14=33 dB(A)

# **PRODUCT ORDER CODES**

You can place your orders for aluminum or stainless products according to the coding style by looking at the seperate tables given below.

# **ALUMINUM PRODUCT ORDER CODE**

DMD. < A > . < B > . < C > . < D > . < E > . < F > . < G >

| Α | Raw Material Type             |                                           |
|---|-------------------------------|-------------------------------------------|
|   | ALM                           | Aluminum                                  |
| В | Frame Type                    |                                           |
|   | 02                            | 22 mm Frame                               |
|   | 01                            | 32 mm Frame                               |
|   | 09                            | Clip-In Frame                             |
| С | Damper                        |                                           |
|   | ZD                            | Opposed Blade Damper                      |
|   | DZ                            | Without Damper                            |
| D | Installation Type             |                                           |
|   | VD                            | Screw System                              |
|   | KR                            | Suspended Ceiling                         |
|   | KL                            | Clip-In Ceiling                           |
|   | KP                            | Mounting Bracket                          |
|   | MD                            | Without Mounting Hole                     |
|   | MN                            | Concealed                                 |
|   | UK                            | Long Spring Clip                          |
|   | КО                            | Subframe Short Spring Clip                |
|   | KK                            | Short Clips                               |
| E | Horizontal Dimension (W) (mm) |                                           |
|   | 0000                          | You can view it from standard dimensions. |
| F | Vertical Dimension (H) (mm)   |                                           |
|   | 0000                          | You can view it from standard dimensions. |
| G | Paint                         |                                           |
|   | 00                            | Unpainted                                 |
|   | S1                            | Standard Painted - RAL 9010               |
|   | S2                            | Standard Painted - RAL 9016               |
|   | XX                            | Special Painted                           |

**Sample Coding;** DMD.ALM.01.DZ.VD.0500.0200.S1



# STAINLESS-STEEL PRODUCT ORDER CODE

DMD. < PAS > . < 32 > . < A > . < B > . < C > . < D > . < 00 >

| Α | Damper                        |                                           |
|---|-------------------------------|-------------------------------------------|
|   | ZD                            | Opposed Blade Damper                      |
|   | DZ                            | Without Damper                            |
| В | Installation Type             |                                           |
|   | VD                            | Screw System                              |
|   | KR                            | Suspended Ceiling                         |
|   | KP                            | Mounting Bracket                          |
|   | MD                            | Without Mounting Hole                     |
|   | MN                            | Concealed                                 |
|   | UK                            | Long Spring Clip                          |
|   | КО                            | Subframe Short Spring Clip                |
|   | KK                            | Short Clips                               |
| С | Horizontal Dimension (W) (mm) |                                           |
|   | 0000                          | You can view it from standard dimensions. |
| D | Vertical Dimension (H) (mm)   |                                           |
|   | 0000                          | You can view it from standard dimensions. |

**Sample Coding;** DMD.PAS.32.DZ.VD.0500.0200.00

| NOTES |                              |   |
|-------|------------------------------|---|
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       | İKLİMLENDİRME   HVAC SYSTEMS | } |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |

| NOTES |                              |  |
|-------|------------------------------|--|
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       | 8                            |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       | IKLÍMLENDÍRME L HVAC SYSTEMS |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |

| NOTES |                              |   |
|-------|------------------------------|---|
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       | İKLİMLENDİRME   HVAC SYSTEMS | 5 |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |







# Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477, Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

# **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1, Ağaoğlu My Office, Kat: 4/18, Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56











# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











- © DMK Access Grille; It is a suction grille with blades that form a square, honeycomb-shaped mesh.
- Since its effective area is higher than other grilles, it has a low pressure loss value. Therefore, it is used as a return grille in ventilation systems.

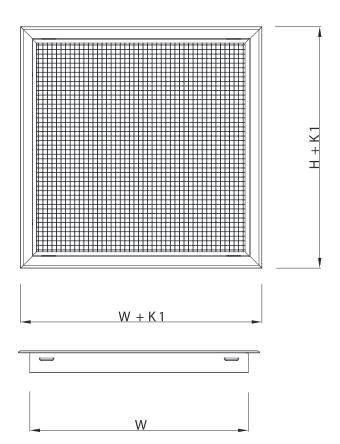
# **MATERIAL**

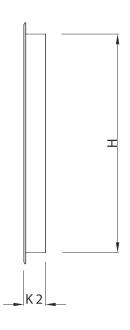
- Frame and blades made of aluminum 6063 extrusion profile.
- € Without Frame, 22 mm, snap and clip-in case options.
- Mesh blades made of aluminum 1050 sheet.

# **SURFACE COATING**

- RAL 9010 electrostatic powder paint as standard
- © Optional
  - -Different RAL Codes
  - -Without paint

# **SURFACE COATING**


- ▼ Tile Ceiling
- Clip-in
- ♠ Installation from inside


# **ACCESSORIES**

- © Optional
  - -Fiber Filter
  - -Polyurethane Filter
  - -10 x 10 Mesh Wire



# **STANNDARD DIMENSIONS**





|                             | K1 (mm) | K2 (mm) |
|-----------------------------|---------|---------|
| Frame with snap<br>fastener | 62,8    | 60      |
| Frame with latch            | 62,8    | 40      |
| Frame with Clip-in          | 59,2    | 45      |

**Table 1.** Standard Dimensions

| W(mm)<br>(Width)  | 200 | - | 300 | - | 400 | - | 500 | - | 600 | - | 700 | - | 800 | - | 900 | - | 1000 | - | 1100 | - | 1200 |
|-------------------|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|------|---|------|---|------|
| H(mm)<br>(Height) | 200 | - | 300 | - | 400 | - | 500 | - | 600 | - | 700 | - | 800 | - | 900 | - | 1000 |   |      |   |      |

Note: When W=H is ordered, production is made in [W]  $\times$  [H +3 mm] dimensions.



# **PERFORMANCE DATA**

Table 2. Effective Area Table

| Eff  | ective | ective H[mm] |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|------|--------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| A    | rea    | 200          | 250   | 300   | 350   | 400   | 450   | 500   | 550   | 600   | 650   | 700   | 750   | 800   | 850   | 900   | 950   | 1000  |
|      | 200    | 0,037        | 0,046 | 0,055 | 0,064 | 0,074 | 0,083 | 0,092 | 0,101 | 0,110 | 0,119 | 0,129 | 0,138 | 0,147 | 0,156 | 0,165 | 0,175 | 0,184 |
|      | 250    | 0,046        | 0,057 | 0,069 | 0,080 | 0,092 | 0,103 | 0,115 | 0,126 | 0,138 | 0,149 | 0,161 | 0,172 | 0,184 | 0,195 | 0,207 | 0,218 | 0,230 |
|      | 300    | 0,055        | 0,069 | 0,083 | 0,097 | 0,110 | 0,124 | 0,138 | 0,152 | 0,165 | 0,179 | 0,193 | 0,207 | 0,221 | 0,234 | 0,248 | 0,262 | 0,276 |
|      | 350    | 0,064        | 0,080 | 0,097 | 0,113 | 0,129 | 0,145 | 0,161 | 0,177 | 0,193 | 0,209 | 0,225 | 0,241 | 0,257 | 0,273 | 0,290 | 0,306 | 0,322 |
|      | 400    | 0,074        | 0,092 | 0,110 | 0,129 | 0,147 | 0,165 | 0,184 | 0,202 | 0,221 | 0,239 | 0,257 | 0,276 | 0,294 | 0,313 | 0,331 | 0,349 | 0,368 |
|      | 450    | 0,083        | 0,103 | 0,124 | 0,145 | 0,165 | 0,186 | 0,207 | 0,228 | 0,248 | 0,269 | 0,290 | 0,310 | 0,331 | 0,352 | 0,372 | 0,393 | 0,414 |
|      | 500    | 0,092        | 0,115 | 0,138 | 0,161 | 0,184 | 0,207 | 0,230 | 0,253 | 0,276 | 0,299 | 0,322 | 0,345 | 0,368 | 0,391 | 0,414 | 0,437 | 0,460 |
|      | 550    | 0,101        | 0,126 | 0,152 | 0,177 | 0,202 | 0,228 | 0,253 | 0,278 | 0,303 | 0,329 | 0,354 | 0,379 | 0,404 | 0,430 | 0,455 | 0,480 | 0,506 |
| [mm] | 600    | 0,110        | 0,138 | 0,165 | 0,193 | 0,221 | 0,248 | 0,276 | 0,303 | 0,331 | 0,358 | 0,386 | 0,414 | 0,441 | 0,469 | 0,496 | 0,524 | 0,552 |
| 트    | 650    | 0,119        | 0,149 | 0,179 | 0,209 | 0,239 | 0,269 | 0,299 | 0,329 | 0,358 | 0,388 | 0,418 | 0,448 | 0,478 | 0,508 | 0,538 | 0,568 | 0,597 |
| >    | 700    | 0,129        | 0,161 | 0,193 | 0,225 | 0,257 | 0,290 | 0,322 | 0,354 | 0,386 | 0,418 | 0,450 | 0,483 | 0,515 | 0,547 | 0,579 | 0,611 | 0,643 |
|      | 750    | 0,138        | 0,172 | 0,207 | 0,241 | 0,276 | 0,310 | 0,345 | 0,379 | 0,414 | 0,448 | 0,483 | 0,517 | 0,552 | 0,586 | 0,620 | 0,655 | 0,689 |
|      | 800    | 0,147        | 0,184 | 0,221 | 0,257 | 0,294 | 0,331 | 0,368 | 0,404 | 0,441 | 0,478 | 0,515 | 0,552 | 0,588 | 0,625 | 0,662 | 0,699 | 0,735 |
|      | 850    | 0,156        | 0,195 | 0,234 | 0,273 | 0,313 | 0,352 | 0,391 | 0,430 | 0,469 | 0,508 | 0,547 | 0,586 | 0,625 | 0,664 | 0,703 | 0,742 | 0,781 |
|      | 900    | 0,165        | 0,207 | 0,248 | 0,290 | 0,331 | 0,372 | 0,414 | 0,455 | 0,496 | 0,538 | 0,579 | 0,620 | 0,662 | 0,703 | 0,745 | 0,786 | 0,827 |
|      | 950    | 0,175        | 0,218 | 0,262 | 0,306 | 0,349 | 0,393 | 0,437 | 0,480 | 0,524 | 0,568 | 0,611 | 0,655 | 0,699 | 0,742 | 0,786 | 0,830 | 0,873 |
|      | 1000   | 0,184        | 0,230 | 0,276 | 0,322 | 0,368 | 0,414 | 0,460 | 0,506 | 0,552 | 0,597 | 0,643 | 0,689 | 0,735 | 0,781 | 0,827 | 0,873 | 0,919 |
|      | 1100   | 0,202        | 0,253 | 0,303 | 0,354 | 0,404 | 0,455 | 0,506 | 0,556 | 0,607 | 0,657 | 0,708 | 0,758 | 0,809 | 0,859 | 0,910 | 0,961 | 1,011 |
|      | 1200   | 0,221        | 0,276 | 0,331 | 0,386 | 0,441 | 0,496 | 0,552 | 0,607 | 0,662 | 0,717 | 0,772 | 0,827 | 0,882 | 0,938 | 0,993 | 1,048 | 1,103 |



# **PERFORMANCE DATA**

Table 3. Performance Data

| ir Flow              |                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                             | Effe                                                                                                    | ctive V                                                                                                   | elocity                                                                                       | (m/s)                                                                                          |                                                                                  |                                                            |                                |        |          |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------|--------|----------|
| (m³/h)               |                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5     | 1.0                                                                                         | 1.5                                                                                                     | 2.0                                                                                                       | 2.5                                                                                           | 3.0                                                                                            | 3.5                                                                              | 4.0                                                        | 4,5                            | 5.0    | 6        |
| ( /)                 | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,0556  | 1,0                                                                                         | 1,5                                                                                                     | 2,0                                                                                                       | E,0                                                                                           | 3,0                                                                                            | 3,3                                                                              | 7,0                                                        | 7,0                            | 3,0    | ۳        |
|                      | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      |                                                                                             |                                                                                                         |                                                                                                           |                                                                                               |                                                                                                |                                                                                  |                                                            |                                |        | $\vdash$ |
| 100                  |                                                                                                                                                                                                                                                                                                                                                                                                                          | _       |                                                                                             |                                                                                                         |                                                                                                           |                                                                                               |                                                                                                |                                                                                  |                                                            |                                | _      | $\vdash$ |
|                      | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       | 1       |                                                                                             |                                                                                                         |                                                                                                           |                                                                                               |                                                                                                |                                                                                  |                                                            |                                |        | ⊢        |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | <15     |                                                                                             |                                                                                                         |                                                                                                           |                                                                                               |                                                                                                |                                                                                  |                                                            |                                |        |          |
|                      | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,1111  | 0,0556                                                                                      | 0,037                                                                                                   |                                                                                                           |                                                                                               |                                                                                                |                                                                                  |                                                            |                                |        | $\vdash$ |
| 200                  | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 2                                                                                                       |                                                                                                           |                                                                                               |                                                                                                |                                                                                  |                                                            |                                |        | ┖        |
| LUU                  | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       | 2       | 3                                                                                           | 3                                                                                                       |                                                                                                           |                                                                                               |                                                                                                |                                                                                  |                                                            |                                |        |          |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | <15     | <15                                                                                         | <15                                                                                                     |                                                                                                           |                                                                                               |                                                                                                |                                                                                  |                                                            |                                |        |          |
|                      | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,1667  | 0,0833                                                                                      | 0,0556                                                                                                  | 0,0417                                                                                                    |                                                                                               |                                                                                                |                                                                                  |                                                            |                                |        | П        |
|                      | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 2                                                                                                       | 4                                                                                                         |                                                                                               |                                                                                                |                                                                                  |                                                            |                                |        | $\vdash$ |
| 300                  | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       | 2       | 3                                                                                           | 4                                                                                                       | 5                                                                                                         |                                                                                               |                                                                                                |                                                                                  |                                                            |                                |        | $\vdash$ |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | <15     | <15                                                                                         | <15                                                                                                     | <15                                                                                                       |                                                                                               |                                                                                                |                                                                                  |                                                            |                                |        | $\vdash$ |
|                      | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,2222  | 0,1111                                                                                      | 0,0741                                                                                                  | 0,0556                                                                                                    | 0,0444                                                                                        | 0,037                                                                                          |                                                                                  |                                                            |                                |        | $\vdash$ |
|                      | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 2                                                                                                       | 4                                                                                                         | 6                                                                                             | 8                                                                                              |                                                                                  |                                                            |                                |        | $\vdash$ |
| 400                  | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       | _       |                                                                                             |                                                                                                         | _                                                                                                         |                                                                                               | _                                                                                              |                                                                                  |                                                            |                                | -      | ⊢        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                          | 2       | 3                                                                                           | 4                                                                                                       | 5                                                                                                         | 6                                                                                             | 6                                                                                              |                                                                                  |                                                            |                                |        | ⊢        |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | <15     | <15                                                                                         | <15                                                                                                     | <15                                                                                                       | <15                                                                                           | 15                                                                                             |                                                                                  |                                                            |                                |        | ⊢        |
|                      | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,2778  | 0,1389                                                                                      | 0,0926                                                                                                  | 0,0694                                                                                                    | 0,0556                                                                                        | 0,0463                                                                                         | 0,0397                                                                           |                                                            |                                |        | ┖        |
| 500                  | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 2                                                                                                       | 4                                                                                                         | 6                                                                                             | 8                                                                                              | 11                                                                               |                                                            |                                |        | L        |
| 550                  | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       | 2       | 3                                                                                           | 4                                                                                                       | 5                                                                                                         | 6                                                                                             | 7                                                                                              | 8                                                                                |                                                            |                                |        | L        |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | <15     | <15                                                                                         | <15                                                                                                     | <15                                                                                                       | <15                                                                                           | 16                                                                                             | 20                                                                               |                                                            |                                |        | L        |
|                      | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,3333  | 0,1667                                                                                      | 0,1111                                                                                                  | 0,0833                                                                                                    | 0,0667                                                                                        | 0,0556                                                                                         | 0,0476                                                                           | 0,0417                                                     | 0,037                          |        |          |
| 000                  | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 2                                                                                                       | 4                                                                                                         | 6                                                                                             | 8                                                                                              | 11                                                                               | 15                                                         | 19                             |        |          |
| 600                  | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       | 2       | 4                                                                                           | 5                                                                                                       | 6                                                                                                         | 7                                                                                             | 7                                                                                              | 8                                                                                | 9                                                          | 10                             |        | Г        |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | <15     | <15                                                                                         | <15                                                                                                     | <15                                                                                                       | <15                                                                                           | 17                                                                                             | 21                                                                               | 24                                                         | 27                             |        | Н        |
|                      | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,3889  | 0,1944                                                                                      | 0,1296                                                                                                  | 0,0972                                                                                                    | 0,0778                                                                                        | 0,0648                                                                                         | 0,0556                                                                           | 0.0486                                                     | 0.0432                         | 0,0389 |          |
|                      | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 0,1296                                                                                                  | 4                                                                                                         | 6                                                                                             | 8                                                                                              | 11                                                                               | 15                                                         | 19                             | 23     |          |
| 700                  | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                                                                             |                                                                                                         |                                                                                                           |                                                                                               | _                                                                                              |                                                                                  |                                                            |                                | _      | ⊢        |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | 2       | 4                                                                                           | 5                                                                                                       | 6                                                                                                         | 7                                                                                             | 8                                                                                              | 9                                                                                | 9                                                          | 10                             | 10.9   | ⊢        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                          | <15     | <15                                                                                         | <15                                                                                                     | <15                                                                                                       | <15                                                                                           | 17                                                                                             | 22                                                                               | 25                                                         | 28                             | 31     | ┡        |
|                      | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,4444  | 0,2222                                                                                      | 0,1481                                                                                                  | 0,1111                                                                                                    | 0,0889                                                                                        | 0,0741                                                                                         | 0,0635                                                                           | 0,0556                                                     | 0,0494                         | 0,0444 | 0,       |
| ยบบ                  | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 2                                                                                                       | 4                                                                                                         | 6                                                                                             | 8                                                                                              | 11                                                                               | 15                                                         | 19                             | 23     | L        |
| 800                  | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       | 3       | 4                                                                                           | 5                                                                                                       | 6                                                                                                         | 7                                                                                             | 8                                                                                              | 9                                                                                | 10                                                         | 11                             | 11.4   |          |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | <15     | <15                                                                                         | <15                                                                                                     | <15                                                                                                       | <15                                                                                           | 18                                                                                             | 22                                                                               | 26                                                         | 29                             | 31     | Г        |
|                      | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,5     | 0,25                                                                                        | 0,1667                                                                                                  | 0,125                                                                                                     | 0,1                                                                                           | 0,0833                                                                                         | 0,0714                                                                           | 0,0625                                                     | 0,0556                         | 0,05   | 0,0      |
|                      | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 2                                                                                                       | 4                                                                                                         | 6                                                                                             | 8                                                                                              | 11                                                                               | 15                                                         | 19                             | 23     | Т        |
| 900                  | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       | 3       | 4                                                                                           | 5                                                                                                       | 7                                                                                                         | 8                                                                                             | 9                                                                                              | 9                                                                                | 10                                                         | 11                             | 11.9   | $\vdash$ |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | <15     | <15                                                                                         | <15                                                                                                     | <15                                                                                                       | <15                                                                                           | 19                                                                                             | 23                                                                               | 26                                                         | 29                             | 32     | H        |
|                      | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,5556  | 0,2778                                                                                      | 0,1852                                                                                                  | 0,1389                                                                                                    | 0,1111                                                                                        | 0,0926                                                                                         | 0,0794                                                                           | 0,0694                                                     | 0,0617                         | 0,0556 | 0,0      |
|                      | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | _       |                                                                                             | _                                                                                                       | _                                                                                                         |                                                                                               |                                                                                                | _                                                                                | _                                                          |                                | _      | -        |
| 1000                 | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 2                                                                                                       | 4                                                                                                         | 6                                                                                             | 8                                                                                              | 11                                                                               | 15                                                         | 19                             | 23     |          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                          | 3       | 4                                                                                           | 6                                                                                                       | 7                                                                                                         | 8                                                                                             | 9                                                                                              | 10                                                                               | 11                                                         | 12                             | 12.3   | L        |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | <15     | <15                                                                                         | <15                                                                                                     | <15                                                                                                       | <15                                                                                           | 19                                                                                             | 23                                                                               | 27                                                         | 30                             | 32     | ┖        |
|                      | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,6944  | 0,3472                                                                                      | 0,2315                                                                                                  | 0,1736                                                                                                    | 0,1389                                                                                        | 0,1157                                                                                         | 0,0992                                                                           | 0,0868                                                     | 0,0772                         | 0,0694 | 0,0      |
| 1250                 | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 2                                                                                                       | 4                                                                                                         | 6                                                                                             | 8                                                                                              | 11                                                                               | 15                                                         | 19                             | 23     | ┖        |
| IEGO                 | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       | 3       | 5                                                                                           | 6                                                                                                       | 7                                                                                                         | 8                                                                                             | 9                                                                                              | 11                                                                               | 11                                                         | 12                             | 13.2   |          |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | <15     | <15                                                                                         | <15                                                                                                     | <15                                                                                                       | 15                                                                                            | 20                                                                                             | 24                                                                               | 27                                                         | 31                             | 33     | Г        |
|                      | Effective Area (m²)                                                                                                                                                                                                                                                                                                                                                                                                      | 0,8333  | 0,4167                                                                                      | 0,2778                                                                                                  | 0,2083                                                                                                    | 0,1667                                                                                        | 0,1389                                                                                         | 0,119                                                                            | 0,1042                                                     | 0,0926                         | 0,0833 |          |
|                      | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 2                                                                                                       | 4                                                                                                         | 6                                                                                             | 8                                                                                              | 11                                                                               | 15                                                         | 18                             | 23     | Г        |
| 1500                 | Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                       | 3       | 5                                                                                           | 6                                                                                                       | 8                                                                                                         | 9                                                                                             | 10                                                                                             | 11                                                                               | 12                                                         | 13.1                           | 14.1   | $\vdash$ |
|                      | Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                      | <15     | <15                                                                                         | <15                                                                                                     | <15                                                                                                       | 16                                                                                            | 21                                                                                             | 25                                                                               | 28                                                         | 31                             | 34     | $\vdash$ |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                          | 170     |                                                                                             | _                                                                                                       | _                                                                                                         | 0,1944                                                                                        | 0,162                                                                                          | 0,1389                                                                           | 0,1215                                                     | 0,108                          | 0,0972 |          |
|                      | IEπective Area im <sup>c</sup> i                                                                                                                                                                                                                                                                                                                                                                                         | 0 0700  | U /1001                                                                                     |                                                                                                         | I N 9/191                                                                                                 | 1 U.T344                                                                                      | · U. IDC                                                                                       | U,1303                                                                           | 0,1213                                                     |                                |        | -        |
|                      | Effective Area (m²) Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                   | 0,9722  | 0,4861                                                                                      | 0,3241                                                                                                  | 0,2431                                                                                                    |                                                                                               |                                                                                                | 11                                                                               | 10                                                         | 10                             | 99     |          |
| 1750                 | Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                                                                                                       | <1      | <1                                                                                          | 2                                                                                                       | 4                                                                                                         | 6                                                                                             | 8                                                                                              | 11                                                                               | 15                                                         | 18                             | 23     | $\vdash$ |
| 1750                 | Pressure Drop (Pa)<br>Throw Distance (m)                                                                                                                                                                                                                                                                                                                                                                                 | <1<br>3 | <1<br>5                                                                                     | 2<br>7                                                                                                  | 4<br>8                                                                                                    | 6<br>9                                                                                        | 8<br>11                                                                                        | 12                                                                               | 13                                                         | 14                             | 15     |          |
| 1750                 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                | <1      | <1<br>5<br><15                                                                              | 2<br>7<br><15                                                                                           | 4<br>8<br><15                                                                                             | 6<br>9<br>17                                                                                  | 8<br>11<br>21                                                                                  | 12<br>25                                                                         | 13<br>29                                                   | 14<br>32                       | _      |          |
| 1750                 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²)                                                                                                                                                                                                                                                                                                                                            | <1<br>3 | <1<br>5<br><15<br>0,5556                                                                    | 2<br>7<br><15<br>0,3704                                                                                 | 4<br>8<br><15<br>0,2778                                                                                   | 6<br>9<br>17<br>0,2222                                                                        | 8<br>11<br>21<br>0,1852                                                                        | 12<br>25<br>0,1587                                                               | 13<br>29<br>0,1389                                         | 14<br>32<br>0,1235             | 15     |          |
|                      | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa)                                                                                                                                                                                                                                                                                                                         | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1                                                              | 2<br>7<br><15                                                                                           | 4<br>8<br><15                                                                                             | 6<br>9<br>17                                                                                  | 8<br>11<br>21                                                                                  | 12<br>25                                                                         | 13<br>29                                                   | 14<br>32                       | 15     |          |
| 1750<br>2000         | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m)                                                                                                                                                                                                                                                                                                      | <1<br>3 | <1<br>5<br><15<br>0,5556                                                                    | 2<br>7<br><15<br>0,3704                                                                                 | 4<br>8<br><15<br>0,2778                                                                                   | 6<br>9<br>17<br>0,2222                                                                        | 8<br>11<br>21<br>0,1852                                                                        | 12<br>25<br>0,1587                                                               | 13<br>29<br>0,1389                                         | 14<br>32<br>0,1235             | 15     |          |
|                      | Pressure Drop [Pa] Throw Distance [m] Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance [m] Sound Level (dB(A))                                                                                                                                                                                                                                                                                  | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1                                                              | 2<br>7<br><15<br>0,3704<br>2                                                                            | 4<br>8<br><15<br>0,2778<br>4                                                                              | 6<br>9<br>17<br>0,2222<br>6                                                                   | 8<br>11<br>21<br>0,1852<br>8                                                                   | 12<br>25<br>0,1587<br>11                                                         | 13<br>29<br>0,1389<br>15                                   | 14<br>32<br>0,1235<br>18       | 15     |          |
|                      | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m)                                                                                                                                                                                                                                                                                                      | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1<br>5                                                         | 2<br>7<br><15<br>0,3704<br>2<br>7                                                                       | 4<br>8<br><15<br>0,2778<br>4<br>8                                                                         | 6<br>9<br>17<br>0,2222<br>6<br>10                                                             | 8<br>11<br>21<br>0,1852<br>8<br>11                                                             | 12<br>25<br>0,1587<br>11<br>12                                                   | 13<br>29<br>0,1389<br>15<br>13                             | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |
| 2000                 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²)                                                                                                                                                                                                                                                              | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1<br>5<br><15                                                  | 2<br>7<br><15<br>0,3704<br>2<br>7<br><15                                                                | 4<br>8<br><15<br>0,2778<br>4<br>8<br><15                                                                  | 6<br>9<br>17<br>0,2222<br>6<br>10<br>17<br>0,2778                                             | 8<br>11<br>21<br>0,1852<br>8<br>11<br>22<br>0,2315                                             | 12<br>25<br>0,1587<br>11<br>12<br>26<br>0,1984                                   | 13<br>29<br>0,1389<br>15<br>13<br>29                       | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |
|                      | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa)                                                                                                                                                                                                                                           | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1<br>5<br><15<br>0,6944<br><1                                  | 2<br>7<br><15<br>0,3704<br>2<br>7<br><15<br>0,463<br>2                                                  | 4<br>8<br><15<br>0,2778<br>4<br>8<br><15<br>0,3472<br>4                                                   | 6<br>9<br>17<br>0,2222<br>6<br>10<br>17<br>0,2778<br>6                                        | 8<br>11<br>21<br>0,1852<br>8<br>11<br>22<br>0,2315<br>8                                        | 12<br>25<br>0,1587<br>11<br>12<br>26<br>0,1984<br>11                             | 13<br>29<br>0,1389<br>15<br>13<br>29<br>0,1736<br>14       | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |
| 2000                 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m)                                                                                                                                                                                                                        | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1<br>5<br><15<br>0,6944<br><1<br>6                             | 2<br>7<br><15<br>0,3704<br>2<br>7<br><15<br>0,463<br>2                                                  | 4<br>8<br><15<br>0,2778<br>4<br>8<br><15<br>0,3472<br>4<br>9                                              | 6<br>9<br>17<br>0,2222<br>6<br>10<br>17<br>0,2778<br>6<br>11                                  | 8<br>11<br>21<br>0,1852<br>8<br>11<br>22<br>0,2315<br>8                                        | 12<br>25<br>0,1587<br>11<br>12<br>26<br>0,1984<br>11                             | 13<br>29<br>0,1389<br>15<br>13<br>29<br>0,1736<br>14<br>14 | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |
| 2000                 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB[A]) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB[A]) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB[A])                                                                                                                                                                                                    | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1<br>5<br><15<br>0,6944<br><1<br>6<br><15                      | 2<br>7<br><15<br>0,3704<br>2<br>7<br><15<br>0,463<br>2<br>8<br><15                                      | 4<br>8<br><15<br>0,2778<br>4<br>8<br><15<br>0,3472<br>4<br>9<br><15                                       | 6<br>9<br>17<br>0,2222<br>6<br>10<br>17<br>0,2778<br>6<br>11                                  | 8<br>11<br>21<br>0,1852<br>8<br>11<br>22<br>0,2315<br>8<br>12                                  | 12<br>25<br>0,1587<br>11<br>12<br>26<br>0,1984<br>11<br>13                       | 13<br>29<br>0,1389<br>15<br>13<br>29<br>0,1736<br>14       | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |
| 2000                 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB[A]) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB[A]) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB[A])                                                                                                                                                                                                    | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1<br>5<br><15<br>0,6944<br><1<br>6<br><15<br>0,8333            | 2<br>7<br><15<br>0,3704<br>2<br>7<br><15<br>0,463<br>2<br>8<br><15<br>0,5556                            | 4<br>8<br><15<br>0,2778<br>4<br>8<br><15<br>0,3472<br>4<br>9<br><15<br>0,4167                             | 6<br>9<br>17<br>0,2222<br>6<br>10<br>17<br>0,2778<br>6<br>11<br>18                            | 8<br>11<br>21<br>0,1852<br>8<br>11<br>22<br>0,2315<br>8<br>12<br>23<br>0,2778                  | 12<br>25<br>0,1587<br>11<br>12<br>26<br>0,1984<br>11<br>13<br>27<br>0,2381       | 13<br>29<br>0,1389<br>15<br>13<br>29<br>0,1736<br>14<br>14 | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |
| 2000                 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa)                                                                                                                                                             | <1<br>3 | <15<br><15<br>0,5556<br><1<br>5<br><15<br>0,6944<br><1<br>6<br><15<br>0,8333<br><1          | 2<br>7<br><15<br>0,3704<br>2<br>7<br><15<br>0,463<br>2<br>8<br><15<br>0,5556<br>2                       | 4<br>8<br><15<br>0,2778<br>4<br>8<br><15<br>0,3472<br>4<br>9<br><15<br>0,4167<br>4                        | 6<br>9<br>17<br>0,2222<br>6<br>10<br>17<br>0,2778<br>6<br>11<br>18<br>0,3333<br>6             | 8<br>11<br>21<br>0,1852<br>8<br>11<br>22<br>0,2315<br>8<br>12<br>23<br>0,2778<br>8             | 12<br>25<br>0,1587<br>11<br>12<br>26<br>0,1984<br>11<br>13<br>27<br>0,2381       | 13<br>29<br>0,1389<br>15<br>13<br>29<br>0,1736<br>14<br>14 | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |
| 2000                 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m²) Fressure Drop (Pa) Throw Distance (m²)                                                                                                  | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1<br>5<br><15<br>0,6944<br><1<br>6<br><15<br>0,8333<br><1<br>6 | 2<br>7<br><15<br>0,3704<br>2<br>7<br><15<br>0,463<br>2<br>8<br><15<br>0,5556<br>2<br>8                  | 4<br>8<br><15<br>0,2778<br>4<br>8<br><15<br>0,3472<br>4<br>9<br><15<br>0,4167<br>4                        | 6<br>9<br>17<br>0,2222<br>6<br>10<br>17<br>0,2778<br>6<br>11<br>18<br>0,3333<br>6<br>11       | 8<br>11<br>21<br>0,1852<br>8<br>11<br>22<br>0,2315<br>8<br>12<br>23<br>0,2778<br>8             | 12<br>25<br>0,1587<br>11<br>12<br>26<br>0,1984<br>11<br>13<br>27<br>0,2381<br>11 | 13<br>29<br>0,1389<br>15<br>13<br>29<br>0,1736<br>14<br>14 | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |
| 2000                 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A))                                        | <1<br>3 | <15<br><15<br>0,5556<br><1<br>5<br><15<br>0,6944<br><1<br>6<br><15<br>0,8333<br><1          | 2<br>7<br><15<br>0,3704<br>2<br>7<br><15<br>0,463<br>2<br>8<br><15<br>0,5556<br>2                       | 4<br>8<br><15<br>0,2778<br>4<br>8<br><15<br>0,3472<br>4<br>9<br><15<br>0,4167<br>4                        | 6<br>9<br>17<br>0,2222<br>6<br>10<br>17<br>0,2778<br>6<br>11<br>18<br>0,3333<br>6             | 8<br>11<br>21<br>0,1852<br>8<br>11<br>22<br>0,2315<br>8<br>12<br>23<br>0,2778<br>8             | 12<br>25<br>0,1587<br>11<br>12<br>26<br>0,1984<br>11<br>13<br>27<br>0,2381       | 13<br>29<br>0,1389<br>15<br>13<br>29<br>0,1736<br>14<br>14 | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |
| 2000                 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m²) Pressure Drop (Pa) Throw Distance (m²) Ffective Area (m²) Sound Level (dB(A)) Effective Area (m²)                                       | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1<br>5<br><15<br>0,6944<br><1<br>6<br><15<br>0,8333<br><1<br>6 | 2<br>7<br><15<br>0,3704<br>2<br>7<br><15<br>0,463<br>2<br>8<br><15<br>0,5556<br>2<br>8                  | 4<br>8<br><15<br>0,2778<br>4<br>8<br><15<br>0,3472<br>4<br>9<br><15<br>0,4167<br>4                        | 6<br>9<br>17<br>0,2222<br>6<br>10<br>17<br>0,2778<br>6<br>11<br>18<br>0,3333<br>6<br>11       | 8<br>11<br>21<br>0,1852<br>8<br>11<br>22<br>0,2315<br>8<br>12<br>23<br>0,2778<br>8             | 12<br>25<br>0,1587<br>11<br>12<br>26<br>0,1984<br>11<br>13<br>27<br>0,2381<br>11 | 13<br>29<br>0,1389<br>15<br>13<br>29<br>0,1736<br>14<br>14 | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |
| 2000<br>2500<br>3000 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1<br>5<br><15<br>0,6944<br><1<br>6<br><15<br>0,8333<br><1<br>6 | 2<br>7<br><15<br>0,3704<br>2<br>7<br><15<br>0,463<br>2<br>8<br><15<br>0,5556<br>2<br>8<br><15           | 4<br>8<br><15<br>0,2778<br>4<br>8<br><15<br>0,3472<br>4<br>9<br><15<br>0,4167<br>4<br>10<br><15           | 6<br>9<br>17<br>0,2222<br>6<br>10<br>17<br>0,2778<br>6<br>11<br>18<br>0,3333<br>6<br>11<br>19 | 8<br>11<br>21<br>0,1852<br>8<br>11<br>22<br>0,2315<br>8<br>12<br>23<br>0,2778<br>8<br>13       | 12<br>25<br>0,1587<br>11<br>12<br>26<br>0,1984<br>11<br>13<br>27<br>0,2381<br>11 | 13<br>29<br>0,1389<br>15<br>13<br>29<br>0,1736<br>14<br>14 | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |
| 2000                 | Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A)) Effective Area (m²) Pressure Drop (Pa) Throw Distance (m) Sound Level (dB(A))                                        | <1<br>3 | <1<br>5<br><15<br>0,5556<br><1<br>5<br><15<br>0,6944<br><1<br>6<br><15<br>0,8333<br><1<br>6 | 2<br>7<br><15<br>0,3704<br>2<br>7<br><15<br>0,463<br>2<br>8<br><15<br>0,5556<br>2<br>8<br><15<br>0,7407 | 4<br>8<br><15<br>0,2778<br>4<br>8<br><15<br>0,3472<br>4<br>9<br><15<br>0,4167<br>4<br>10<br><15<br>0,5556 | 6<br>9<br>17<br>0,2222<br>6<br>10<br>17<br>0,2778<br>6<br>11<br>18<br>0,3333<br>6<br>11       | 8<br>11<br>21<br>0,1852<br>8<br>11<br>22<br>0,2315<br>8<br>12<br>23<br>0,2778<br>8<br>13<br>24 | 12<br>25<br>0,1587<br>11<br>12<br>26<br>0,1984<br>11<br>13<br>27<br>0,2381<br>11 | 13<br>29<br>0,1389<br>15<br>13<br>29<br>0,1736<br>14<br>14 | 14<br>32<br>0,1235<br>18<br>15 | 15     |          |

**Note:** The data were obtained when the air collecting equipment and the room air temperature difference was DT = 8 K. Throw distance: It is the vertical distance between the air dispersing equipment and the point where the air in the comfort zone reaches 0.25 m/s velocity.

# **THROW DISTANCE CORRECTION TABLE**

Table 4. Throw Distance Correction Table

| Heating Mode (∆T)         | 4    | 6    | 8 | 10   | 12   |
|---------------------------|------|------|---|------|------|
| Throw Distance Multiplier | 1,07 | 1,02 | 1 | 0,90 | 0,83 |
|                           |      |      |   |      |      |
| Cooling Mode (∆T)         | 4    | 6    | 8 | 10   | 12   |

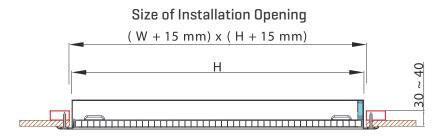
# **DAMPER PRESSURE DROP TABLE**

**Table 5.** Damper Pressure Drop Table

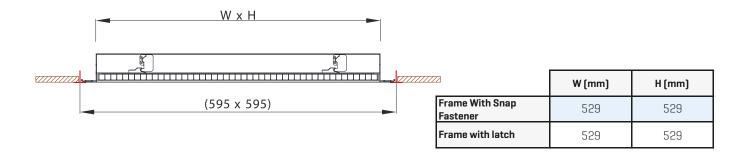
| Damper Position | Pressure Drop Multiplier | Sound Generation |
|-----------------|--------------------------|------------------|
| Open            | 1,1                      | +1               |
| 25% Close       | 1,14                     | +4               |
| 50% Close       | 2,48                     | +14              |
| 75% Close       | 5,11                     | +29              |

# **FILTER PRESSURE DROP TABLE**

Table 6. Filter Pressure Drop Table

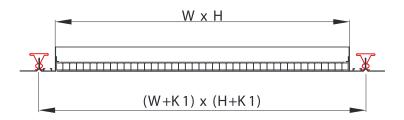

|               |                     |     |     |     |     |     |     | Air V | eloc | ity (n | n/s) |     |     |     |     |      |
|---------------|---------------------|-----|-----|-----|-----|-----|-----|-------|------|--------|------|-----|-----|-----|-----|------|
|               |                     | 0,5 | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 | 3,5   | 4,0  | 4,5    | 5,0  | 6,0 | 7.0 | 8,0 | 9,0 | 10,0 |
| Pressure Drop | Polyurethane Filter | 1   | 3   | 5   | 8   | 11  | 15  | 19    | 24   | 29     | 35   | 48  | 63  | 81  | 100 | 121  |
| (Pa)          | Fiber Filter        | 15  | 28  | 40  | 51  | 62  | 73  | 84    | 94   | 105    | 115  | 135 | 155 | 174 | 193 | 212  |

Polyurethane Filter: 20 PPL polyester based polyurethane filter with 6 mm thickness.


Fiber Filter: EN 16890 ISO COARSE 80% class 10 mm thick fiber filter.

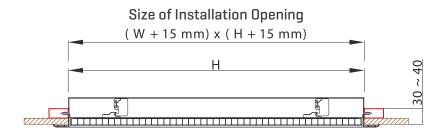
# **INSTALLATION OPTIONS**

### **WITH SCREW**

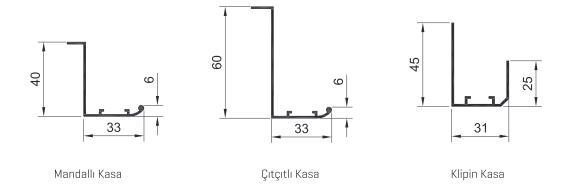



# **TILE CEILING**




W and H dimensions that can be selected according to the frame dimensions specified in the product selection are shown in the table above.

# **CLIP-IN**




| Frame with Clip-in = 59.2 mm | W (mm) | H (mm) |
|------------------------------|--------|--------|
| 600x600                      | 541    | 541    |
| 300x300                      | 241    | 241    |

# **INSTALLATION FROM INSIDE**



### **FRAME TYPES**



#### **DIMENSION PARAMETERS**

The standard size of the one-piece product is between 200x200 and 1200x1000 mm. If the order is placed over the standard dimensions, the grilles will be produced more than once as a whole piece.

### **PRODUCT SELECTION**

**Example:** The air flow rate distributed in the space is determined as 3000 m3/h. 3 access grilles will be used for return. Make the product selection.

**Solution**: Return air flow rate for a grill, 3000/3 = 1000 m3/h

Effective areas corresponding to appropriate pressure loss and flow rates are selected from the performance table [Table 3]. For example: In an effective area of 0.0794 m2, the effective speed is 3.5 m/s, the pressure loss is 11 Pa, and the sound levels 23 dB[A]. The appropriate grill size can be selected from the effective area table [Table 2] as  $350 \times 250$  mm, which corresponds to 0.0794 m2.

# **OPPOSITE BLADE DAMPER SITUATION**

In the product with damper, pressure loss and sound power level change. Damper pressure loss table (Table 5) should be used.

For example, in a product with a damper in the 50% closed position, the pressure multiplier is 2.48 corresponding to the table, and the sound generation that needs to be added is +14 dB[A].

Total static pressure loss:  $11 \times 2.48 = 27.3 \text{ Pa}$ Total sound generation is 37 dB[A].

# **PRODUCT ORDER CODES**

You can place your orders according to the coding style by looking at the seperate tables given below.

DMK.<A>.<B>.<C>.<D>.<E>.<F>.<G>

| Α | Raw Material Type |                                    |
|---|-------------------|------------------------------------|
|   | ALM               | Aluminum                           |
| В | Frame Type        |                                    |
|   | 07                | Frame With Snap Fastener           |
|   | 08                | Frame With Latch                   |
|   | 55                | Clip-In Frame - With Snap Fastener |
|   | 56                | Clip-in Frame - Latch              |
| С | Installation Type |                                    |
|   | VD                | With Screw                         |
|   | KR                | Tile Ceiling                       |
|   | KL                | Clip-In                            |
|   | IC                | Installation From Inside           |
| D | Accessories       |                                    |
|   | 00                | without Accessories                |
|   | 10                | 10 x 10 Mesh Wire                  |
|   | EF                | Fiber Filter                       |
|   | PF                | Polyurethane Filter                |
| Е | Width (W) (mm)    |                                    |
|   | 0000              | You Can Look at Standard Sizes     |
| F | Height (H) (mm)   |                                    |
|   | 0000              | You Can Look at Standard Sizes     |
| G | Paint             |                                    |
|   | 00                | Paintless                          |
|   | S1                | Standard painted - RAL 9010        |
|   | S2                | Standard painted- RAL 9016         |
|   | XXT               | Special painted                    |


 $\textbf{Sample Coding:} \ \mathsf{DMK.ALM.07.IC.PF.0500.0500.S1}$ 



| NOTES |                                    |
|-------|------------------------------------|
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       | IVLÍMI ENDÍDME I HVAC SVOTEMO      |
|       | +REHMEENDIRIME   HVAU 3 1 3 1 EM 3 |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |
|       |                                    |







### **Ankara Sales Office**

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A Blok Kat:11 Ofis:1104 06520 Söğütözü, Yenimahalle, Ankara/TURKEY

Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

# **Antalya Sales Office**

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel.: +90 242 505 87 77

#### **Adana Sales Office**

Mimar Selim Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301











**VDD**CIRCULAR DAMPER



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.



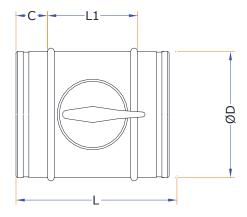








- € VDD Circular Damper is used to adjust the amount of air passing through circular air ducts.
- Product options are available with plastic, metal and motor connection.


### **MATERIAL**

- The casing and blade are made of galvanized sheet, optional stainless steel.
- For type plastic, plastic lever is made of ABS material.
- For type metal, metal lever mechanism is made of galvanized sheet.

# **COATING**

- Standard RAL 9010 or RAL 9016 electrostatic powder paint.
- Optional
  - Different RAL color codes
  - Aluminium anodizing
  - Without color

# **DIMENSIONS**



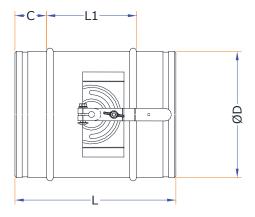
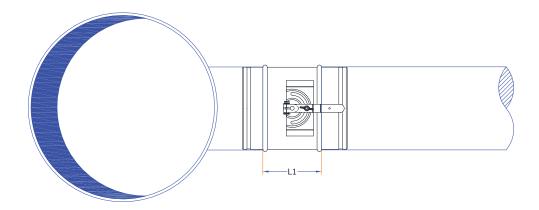
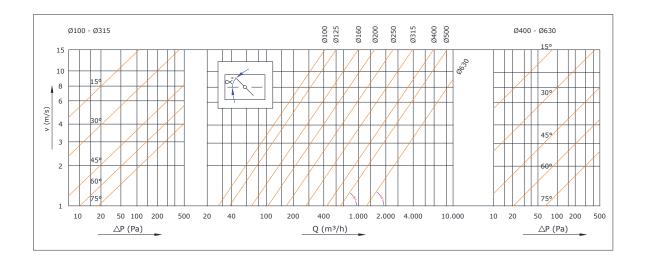




Table 1

| Dimension [mm] | 100 | 125 | 150 | 160 | 180 | 200 | 225 | 250 | 280 | 300 | 315 | 355 | 400 | 450 | 500 |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ØD             | 98  | 123 | 148 | 158 | 178 | 198 | 223 | 248 | 278 | 298 | 313 | 353 | 398 | 448 | 498 |
| L              | 240 | 240 | 240 | 240 | 240 | 280 | 280 | 280 | 360 | 360 | 360 | 400 | 500 | 500 | 530 |
| L1             | 160 | 160 | 160 | 160 | 160 | 180 | 180 | 180 | 230 | 230 | 230 | 270 | 370 | 370 | 400 |
| C              | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 65  | 65  | 65  | 65  | 65  | 65  | 65  |

**Note:** Up to  $\emptyset$ D = 250 mm, plastic or metal kit products can be selected optionally. After  $\emptyset$ D> 250 mm size, products are motorized as standard.

# **INSTALLATION**




The circular damper is installed in such a way that it passes into the circular duct. It must be fixed with a screw after it is inserted into the channel.

# **PERFORMANCE DATA**

The pressure drop value is calculated by using the air velocity in the duct and the angle of the damper blade. The duct size is calculated on the graph using the air flow and velocity values in the duct.

# **QUICK SELECTION**



#### **NOISE DATA**

$$L_{wa}[dB(A)] = L + L_1 + L_2$$

|           | L Value |     |     |        |          |      |      |      |  |  |  |  |  |  |
|-----------|---------|-----|-----|--------|----------|------|------|------|--|--|--|--|--|--|
|           | α°      |     |     | Freque | ncy (Hz) |      |      |      |  |  |  |  |  |  |
|           | u       | 125 | 250 | 500    | 1000     | 2000 | 4000 | 8000 |  |  |  |  |  |  |
|           | 15      | 37  | 26  | 22     | 18       | 11   | 11   | 10   |  |  |  |  |  |  |
|           | 30      | 43  | 32  | 28     | 24       | 19   | 19   | 18   |  |  |  |  |  |  |
| 100 - 355 | 45      | 48  | 43  | 38     | 34       | 31   | 30   | 31   |  |  |  |  |  |  |
|           | 60      | 54  | 51  | 48     | 46       | 45   | 43   | 42   |  |  |  |  |  |  |
|           | 75      | 58  | 55  | 54     | 52       | 52   | 51   | 50   |  |  |  |  |  |  |
|           | 15      | 39  | 29  | 24     | 20       | 14   | 14   | 12   |  |  |  |  |  |  |
|           | 30      | 46  | 35  | 31     | 27       | 22   | 22   | 21   |  |  |  |  |  |  |
| 400 - 500 | 45      | 52  | 47  | 42     | 38       | 35   | 34   | 34   |  |  |  |  |  |  |
|           | 60      | 59  | 56  | 53     | 51       | 50   | 48   | 47   |  |  |  |  |  |  |
|           | 75      | 64  | 62  | 61     | 59       | 59   | 59   | 58   |  |  |  |  |  |  |

Table 2

| Dimens | ion | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| L1 [di | 3]  | -2  | -1  | 0   | 1   | 2   | 3   | 4   | 5   |

#### Table 3

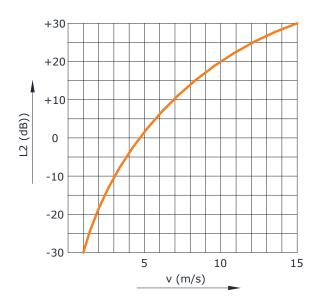



Figure 1

#### **Calculation Method**

For Q = [1500 m<sup>3</sup>/h] flow rate, v = 3 [m/s] air velocity and  $\alpha$  ° = 45 ° damper blade angle;

From Table 1, Q, v and desired pressure loss values and duct size are determined as Ø400.

For sound pressure calculations, L, L1 and L2 values are determined with Table 1, Table 2 and Figure 1 and their sum is equal to the sound power.

$$LWA = L + L1 + L2 (dB (A))$$

$$LWA = 47 + 4 + (-10) = 41 (dB (A)).$$

# **ACTUATOR CONNECTION**

- € After ØD> 250 mm size, products will be actuator type as standard.
- © On-Off or Proportional Damper Motor options are available. It must be notified before manufacturing.
- © Optionally, 220V or 24V motor options are available.

# **ORDER CODE**

VDD.<A>.<B>.<C>.<D>.<E>.

| Α | Material                                                                                |                                         |  |  |  |
|---|-----------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
|   | GAL                                                                                     | Galvanized                              |  |  |  |
|   | PAS                                                                                     | AISI 304 Stainless Steel                |  |  |  |
| В | Mechanism                                                                               |                                         |  |  |  |
|   | PLS                                                                                     | Plastic Type                            |  |  |  |
|   | MTL                                                                                     | Metal Type                              |  |  |  |
|   | MBU                                                                                     | Actuator Connection, (Without Actuator) |  |  |  |
|   | S59                                                                                     | LM24A-5Nm                               |  |  |  |
|   | S66                                                                                     | LM230A-5Nm                              |  |  |  |
|   | S61                                                                                     | LM24A-SR 5Nm                            |  |  |  |
|   | S64                                                                                     | LMQ24A-4NM                              |  |  |  |
|   | S49                                                                                     | LF24 4Nm                                |  |  |  |
|   | S40                                                                                     | GQD126.1A                               |  |  |  |
|   | S35                                                                                     | GDB131.1E                               |  |  |  |
|   | S85                                                                                     | GSD121.1A                               |  |  |  |
|   | S82                                                                                     | CM24-L 2Nm                              |  |  |  |
|   | S81                                                                                     | TF230                                   |  |  |  |
|   | S80                                                                                     | TF24 2Nm                                |  |  |  |
| C | Installation                                                                            |                                         |  |  |  |
|   | KG                                                                                      | Duct Mounting                           |  |  |  |
| D | Dimension (ØD) [mm]                                                                     |                                         |  |  |  |
|   | 100 - 125 - 150 - 160 - 180 - 200 - 225 - 250 - 280 - 300 - 315 - 355 - 400 - 450 - 500 |                                         |  |  |  |
| E | Color                                                                                   |                                         |  |  |  |
|   | 00                                                                                      | Without Color                           |  |  |  |
|   | S1                                                                                      | Standart Color - RAL 9010               |  |  |  |
|   | S2                                                                                      | Standart Color - RAL 9016               |  |  |  |
|   | XX                                                                                      | Special Color                           |  |  |  |

**Example Order Code;** VDD.GAL.MTL.KG.300.00

| NOTES |        |         |             |   |
|-------|--------|---------|-------------|---|
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       | İKLİML | ENDIRME | HVAC SYSTEM | S |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |
|       |        |         |             |   |







### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477, Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

### Istanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1, Ağaoğlu My Office, Kat: 4/18, Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56















### Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.













### **General Specifications**

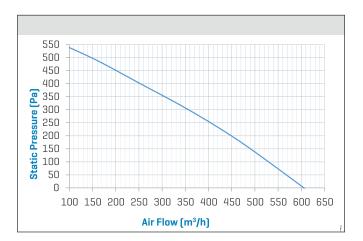
- High efficient plug fans with backward-curved blades for low energy consumption.
- € High efficient aluminum heat exchanger
- Low sound level
- ♠ High static pressure
- S ISO Coarse 55% Filters
- © Optional duct type water heater or electric heater
- © Optional duct type attenuator
- © Optional automation solutions

### Operation

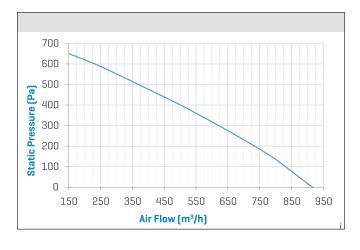
In venues where air conditioned by heating or cooling, low grade climatized indoor air which includes high quantity carbon dioxyde and other harmful gases, occur. While this poor quality of air is exhausted, the heat load of the exhaust air is collected on the heat exchanger. Afterwards, conditioning of the supply air is ensured by this energy load. Thus, the heat load of the air is recycled in the ratio of 50-60%, while poor quality indoor air is exhausted. IGK-Heat Recovery Units perform quietly and efficiently by means of plug fans. Unit can operate at desired air flow by speed control which is delivered as standard.



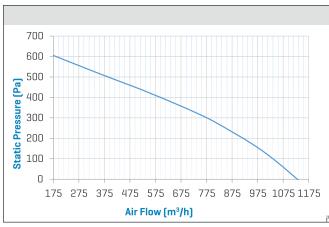
### Material


IGK-Heat Recovery Units are comprised 6 main parts. The case [1] is manufactured from galvanized steel. Inner insulation is 9 mm rubber. Thus, the sound and heat insulation is ensured. The lifetime and visuality are increased by powder. Supply and exhaust fans are plug type [2]. Service doors for easy maintenance for fans[3].ISO Coarse %55 filters [4] in both exhaust and fresh air inlet. Thus, aluminum heat exchanger [5], which is main component of the unit, is kept clear and efficient operation is ensured. The electric connection box [6], which has the terminal connections of the fans, is fixed on the case of unit for easy connection of the unit to the network.

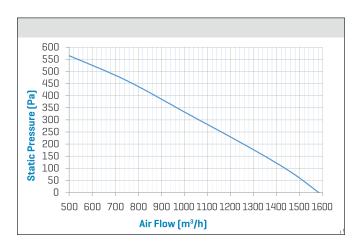



### **IGK-04**

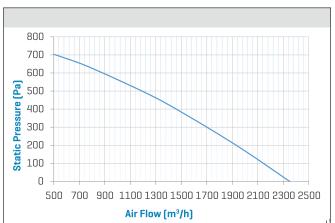
### 


### **IGK-07**

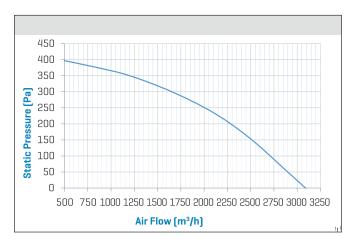



### **IGK-10**

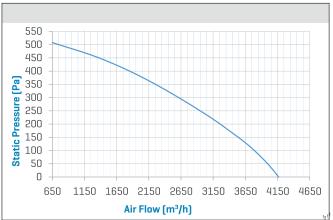



### **IGK-15**

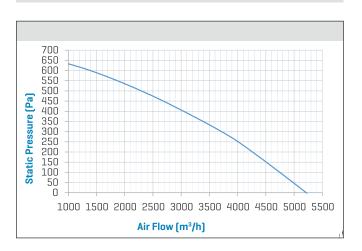



### **IGK-20**




### **IGK-30**



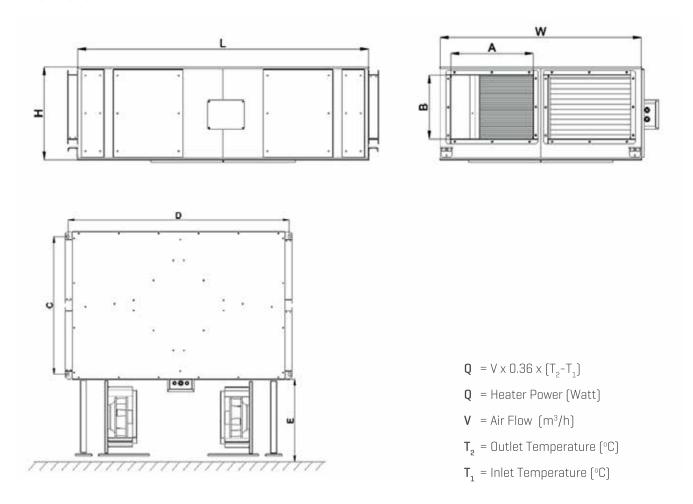

### **IGK-40**



### **IGK-50**



### **IGK-60**



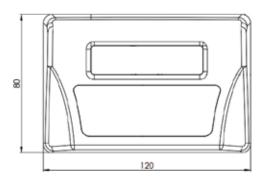

| TECHNICAL DATA        |       |        |        |        |        |        |        |        |        |        |  |  |
|-----------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|
| Unit Models           |       | IGK-04 | IGK-07 | IGK-10 | IGK-15 | IGK-20 | IGK-30 | IGK-40 | IGK-50 | IGK-60 |  |  |
| Air Flow (O Pa ESP)   | m³/h  | 345    | 610    | 910    | 1125   | 1580   | 2350   | 3150   | 4155   | 5250   |  |  |
| Air Flow (150 Pa ESP) | m³/h  | 250    | 500    | 800    | 1000   | 1350   | 2000   | 2500   | 3500   | 4500   |  |  |
| Total Power           | W     | 128    | 270    | 414    | 424    | 634    | 1006   | 916    | 1388   | 2600   |  |  |
| Sound Power           | dB(A) | 48     | 59     | 63     | 58     | 65     | 64     | 65     | 67     | 68     |  |  |

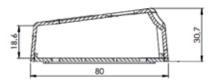
### Note:

Sound power values are 1 meter from the unit.

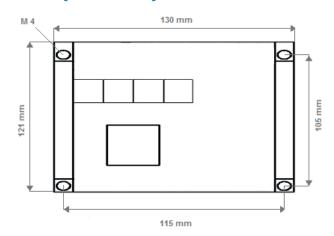
### **Dimensions**




|        |        |          | Capa     | acity    |          |      |      |     |     |     |      |      |     |        |                      |
|--------|--------|----------|----------|----------|----------|------|------|-----|-----|-----|------|------|-----|--------|----------------------|
|        |        | Air Flow | Pressure | Air Flow | Pressure | L    | W    | Н   | A   | В   | С    | D    | E   | Weight | ELECTRICAL<br>HEATER |
|        | Unit   | m³/h     | Pa       | m³/h     | Pa       | mm   | mm   | mm  | mm  | mm  | mm   | mm   | mm  | kg     | Capacity             |
|        | IGK-04 | 345      | 0        | 250      | 150      | 960  | 600  | 305 | 200 | 150 | 530  | 1026 | 320 | 35     | 1 kW-1Stg            |
|        | IGK-07 | 620      | 0        | 500      | 150      | 980  | 650  | 355 | 230 | 200 | 580  | 1046 | 350 | 45     | 2 kW-1Stg            |
|        | IGK-10 | 910      | 0        | 800      | 150      | 1120 | 720  | 355 | 260 | 210 | 650  | 1086 | 400 | 55     | 3 kW-2Stg            |
|        | IGK-15 | 1125     | 0        | 1000     | 150      | 1160 | 800  | 385 | 300 | 240 | 730  | 1126 | 440 | 60     | 4 kW-2Stg            |
| MODELS | IGK-20 | 1570     | 0        | 1350     | 150      | 1430 | 980  | 450 | 390 | 300 | 910  | 1496 | 550 | 105    | 6 kW-3Stg            |
| MO     | IGK-30 | 2350     | 0        | 2000     | 150      | 1590 | 1100 | 510 | 450 | 350 | 1030 | 1656 | 610 | 130    | 9 kW-3Stg            |
|        | IGK-40 | 3100     | 0        | 2500     | 150      | 1900 | 1126 | 620 | 510 | 460 | 1156 | 1966 | 660 | 160    | 10 kW-3Stg           |
|        | IGK-50 | 4155     | 0        | 3500     | 150      | 1930 | 1300 | 675 | 550 | 520 | 1230 | 1996 | 700 | 210    | 15 kW-3Stg           |
|        | IGK-60 | 5550     | 0        | 5000     | 150      | 1930 | 1300 | 675 | 550 | 520 | 1230 | 1996 | 700 | 210    | 15 kW-3Stg           |


### **Control Panel**

The control panel, which is has been designed with thinking all details of the heat recovery units, takes the control of the heat recovery unit one step further. Nowadays as energy costs increase day by day, energy saving is gained importance in air conditioning. It plays a big role in the operating cost decrease with energy saving raise to high levels.


- € 220V AC supply
- Instant motoring of room temperature
- © User-friendly screen interface
- Summer or winter mode
- Automatic or manual operation
- Motoring the fan stages in manual mode
- Ability to communicate between the control unit and the heat recovery device at a distance up to 50 meters

### DCP-6 (Room Panel)





### M1002 (Control Card)



| NOTES |                             |   |
|-------|-----------------------------|---|
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             | ® |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       | İKLİMLENDİRME L HVAC SYSTEM | ς |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |







### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477, Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1, Ağaoğlu My Office, Kat: 4/18, Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56











Four Eco Details



## Venues Breathe with Dogu HVAC Systems!

Dogu HVAC Systems which had started to produce ventilation and air-conditioning equipments in İzmir in 1999, produce two main segments as air outlet equipments and air handling units in accordance with European norms (DIN,EN). Dogu puts the devices on the market with "Four Season" brand.

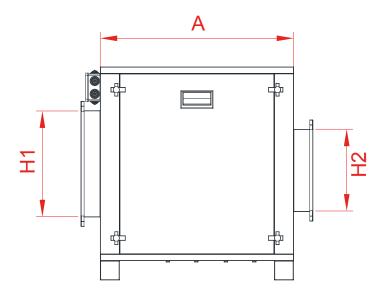
Dogu HVAC Systems which is in business within 45.000m<sup>2</sup> open area with 2 factory, has 120 different types of products. It brings new products to the sector producing Make-up Kitchen Hoods, Laminar Flow Ceiling, One Piece Square Ceiling Diffuser.

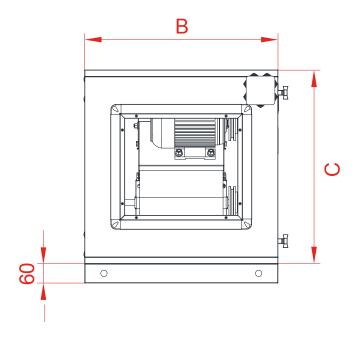
Our R&D journey started in 2004 with the first project of producing Make-up Kitchen Hood is followed by producing dozens of other new products that were designed by special software like Ansys Fluent® and Solidworks® today.

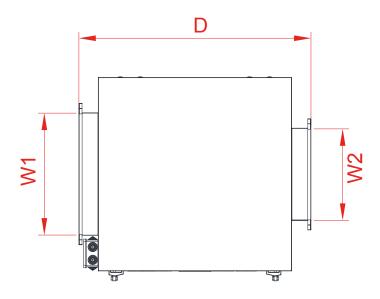




Four Eco


# Contents


- Four Eco
- Quick Selection
- Table
- Features




### **Quick Selection**

| _          | Air<br>Flow       | External<br>Static | Total<br>Pressure | Motor       |      |      | Weight |      |                 |                 |     |
|------------|-------------------|--------------------|-------------------|-------------|------|------|--------|------|-----------------|-----------------|-----|
| Туре       | M <sup>3</sup> /H | Pressure<br>Pa     | Pa                | Kw - D/d    | Α    | В    | С      | D    | W1xH1<br>Return | W2xH2<br>Supply | Kg  |
| FOUR ECO 1 | 2500              | 270                | 400               | 0.75 - 1500 | 600  | 600  | 600    | 720  | 380x330         | 285x255         | 43  |
| FOUR ECO 2 | 3500              | 400                | 500               | 1.1 - 1500  | 750  | 600  | 600    | 870  | 425x375         | 325x285         | 48  |
| FOUR ECO 3 | 5000              | 320                | 450               | 1.5 - 1500  | 800  | 700  | 700    | 920  | 500x425         | 360x315         | 55  |
| FOUR ECO 4 | 7500              | 300                | 450               | 2.2 - 1500  | 850  | 800  | 800    | 990  | 525x500         | 420x370         | 65  |
| FOUR ECO 5 | 10000             | 400                | 530               | 3 - 1500    | 900  | 900  | 900    | 1060 | 775x525         | 500x430         | 80  |
| FOUR ECO 6 | 12500             | 345                | 444               | 3 - 1500    | 1500 | 1050 | 1050   | 1210 | 825x575         | 580x500         | 170 |
| FOUR ECO 7 | 15000             | 294                | 436               | 4 - 1500    | 1500 | 1050 | 1050   | 1210 | 825x575         | 580x500         | 170 |









- · 7 different capacities
- · Direct delivery from the stock,
- $\cdot$  Silent fans motor assembly (curved blade with double inlet fan 3 phase motors)
- · Acoustic insulation
- · Vibration isolator base,
- · Low energy consumption,
- · Corrosion-resistant body with powder-coating
- · Unassembled shipping possibilities

# www.**doguhvac**.com





# We make the difference with 120 different types of products.







#### **Factory**

ITOB Organize Sanayi Bölgesi 10010 Sok. No: 4 35477 Tekeli / Menderes / Izmir / TURKEY Tel: +90 (232) 799 02 40 Faks: +90 (232) 799 92 04

### Istanbul Area

Barbaros Mah. Çigdem Sok. No:1 Agaoglu My Office Kat: 4/18 Atasehir/Istanbul / TURKEY Tel: +90 (216) 250 55 45 Faks: +90 (216) 250 55 46

### Ankara Area

Çetin Emeç Bulvarı 1065 Cad. (Eski 2.Cad) 1309 Sok. No: B/4 Öveçler / Çankaya / ANKARA / TURKEY Tel: +90 (312) 472 11 45 Faks: +90 (312) 472 11 46



www.doguhvac.com





VDM
RECTANGULAR VOLUME
CONTROL DAMPER



### Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in Istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











- ♥ VDM Rectangular Volume Control Damper is a opposite bladed damper used in duct, wall and ceiling applications for air volume and pressure control.
- Thanks to the aerofil blade structure, the effect on the total static pressure of the system is low. In addition, the sound levels are also reduced in this way.
- © Damper blade adjustment can be manually selected with lever or actuator.

### PRODUCT TYPE AND MATERIAL

- ♥ VDM.ALM.AK: The frame and blades are made of aluminum material.
- ♥ VDM.GAL.AK: Its frame is made of galvanized material and its blades are made of aluminum.
- € VDM.GAL.GK: Its frame and blades are manufactured from galvanized material.
- © Galvanized steel shaft.

VDM.ALM.AK



VDM.GAL.AK



VDM.GAL.GK



### **SURFACE COATING**

- € It is unpainted as standard.
- © Optional (VDM.ALM.AK)
  - Electrostatic powder paint in RAL color codes

### **INSTALLATION OPTIONS**

- Duct Installation
- Supply
- Return
- Air Transfer

### **STANDARD SIZES**

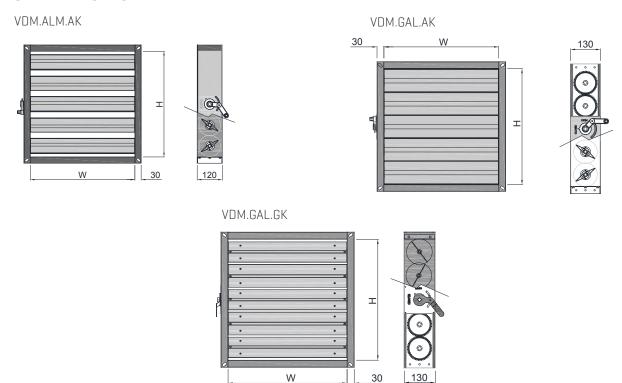



Table 1. Standard Sizes

| Standar  | Standard Sizes |     |     |             |     |     |     | Н ( | Heigh | t) (mm)  | )           |          |          |          |      |
|----------|----------------|-----|-----|-------------|-----|-----|-----|-----|-------|----------|-------------|----------|----------|----------|------|
| Stallual | u 31263        | 100 | 200 | 300         | 400 | 500 | 700 | 800 | 900   | 1000     | 1100        | 1200     | 1300     | 1400     | 1500 |
|          | 100            | ✓   | ✓   | <b>✓</b>    | ✓   | ✓   | ✓   | ✓   | ✓     | <b>✓</b> | <b>✓</b>    | <b>√</b> | ✓        | ✓        | ✓    |
|          | 200            | ✓   | ✓   | <b>✓</b>    | ✓   | ✓   | ✓   | ✓   | ✓     | <b>✓</b> | <b>✓</b>    | ✓        | ✓        | ✓        | ✓    |
|          | 300            | ✓   | ✓   | <b>✓</b>    | ✓   | ✓   | ✓   | ✓   | ✓     | ✓        | ✓           | ✓        | ✓        | ✓        | ✓    |
|          | 400            | ✓   | ✓   | ✓           | ✓   | ✓   | ✓   | ✓   | ✓     | ✓        | ✓           | ✓        | ✓        | ✓        | ✓    |
|          | 500            | ✓   | ✓   | <b>✓</b>    | ✓   | ✓   | ✓   | ✓   | 1     | ✓        | <b>√</b>    | ✓        | ✓        | ✓        | ✓    |
|          | 600            | ✓   | ✓   | ✓           | ✓   | ✓   | ✓   | ✓   | ✓     | <b>✓</b> | <b>✓</b>    | <b>√</b> | ✓        | ✓        | ✓    |
|          | 700            | ✓   | ✓   | <b>✓</b>    | ✓   | ✓   | ✓   | ✓   | ✓     | <b>✓</b> | <b>✓</b>    | <b>√</b> | ✓        | ✓        | ✓    |
| W        | 800            | ✓   | ✓   | <b>✓</b>    | ✓   | ✓   | ✓   | ✓   | ✓     | <b>✓</b> | <b>\</b>    | <b>√</b> | <b>√</b> | ✓        | ✓    |
| (Width)  | 900            | ✓   | ✓   | <b>✓</b>    | ✓   | ✓   | ✓   | ✓   | ✓     | <b>✓</b> | <b>\</b>    | <b>√</b> | <b>√</b> | ✓        | ✓    |
| (mm)     | 1000           | ✓   | ✓   | <b>&gt;</b> | ✓   | ✓   | ✓   | ✓   | ✓     | ✓        | >           | <b>√</b> | <b>✓</b> | ✓        | ✓    |
|          | 1100           | ✓   | ✓   | >           | ✓   | ✓   | ✓   | ✓   | ✓     | ✓        | >           | <b>√</b> | <b>✓</b> | <b>√</b> | ✓    |
|          | 1200           | ✓   | ✓   | ✓           | ✓   | ✓   | ✓   | ✓   | ✓     | ✓        | <b>√</b>    | ✓        | ✓        | ✓        | ✓    |
|          | 1300           | ✓   | ✓   | ✓           | ✓   | ✓   | ✓   | ✓   | ✓     | ✓        | ✓           | ✓        | ✓        | ✓        | ✓    |
|          | 1400           | ✓   | ✓   | <b>✓</b>    | ✓   | ✓   | ✓   | ✓   | ✓     | ✓        | <b>√</b>    | ✓        | <b>√</b> | ✓        | ✓    |
|          | 1500           | ✓   | ✓   | <b>&gt;</b> | ✓   | ✓   | ✓   | ✓   | ✓     | ✓        | <b>&gt;</b> | ✓        | <b>✓</b> | ✓        |      |
|          | 1750           | ✓   | ✓   | <b>&gt;</b> | ✓   | ✓   | ✓   | ✓   | ✓     | ✓        |             |          |          |          |      |
|          | 2000           | ✓   | ✓   | <b>✓</b>    | ✓   | ✓   | ✓   | ✓   | ✓     | ✓        |             |          |          |          |      |
|          | 2250           | ✓   | ✓   | <b>✓</b>    | ✓   | ✓   | ✓   | ✓   |       |          |             |          |          |          |      |
|          | 2500           | ✓   | ✓   | <b>√</b>    | ✓   | ✓   | ✓   | ✓   |       |          |             |          |          |          |      |

Note: When the stainless blade is selected, the W (Width) dimension can be maximum 700 mm.

### **PERFORMANCE DATA**

Table 2. Performance Data

|                   |                                | Damper Position              |                                |                              |                                |                              |                                |                              |                                |                              |  |  |  |
|-------------------|--------------------------------|------------------------------|--------------------------------|------------------------------|--------------------------------|------------------------------|--------------------------------|------------------------------|--------------------------------|------------------------------|--|--|--|
| Air               | 0                              | pen                          | %25 c                          | closed                       | %50                            | closed                       | %75 c                          | closed                       | %100 closed                    |                              |  |  |  |
| Velocity<br>[m/s] | Total<br>Pressure<br>Loss [Pa] | Sound<br>Power<br>Level [dB] | Total<br>Pressure<br>Loss [Pa] | Sound<br>Power<br>Level [dB] | Total<br>Pressure<br>Loss [Pa] | Sound<br>Power<br>Level [dB] | Total<br>Pressure<br>Loss [Pa] | Sound<br>Power<br>Level [dB] | Total<br>Pressure<br>Loss [Pa] | Sound<br>Power<br>Level [dB] |  |  |  |
| 1                 | <1                             | 11                           | 1                              | 16                           | 8                              | 35                           | 87                             | 58                           | 986                            | >90                          |  |  |  |
| 2                 | 1                              | 27                           | 3                              | 32                           | 31                             | 51                           | 348                            | 74                           | >2000                          | >90                          |  |  |  |
| 4                 | 3                              | 43                           | 11                             | 48                           | 122                            | 67                           | 1390                           | >90                          | >2000                          | >90                          |  |  |  |
| 6                 | 7                              | 52                           | 24                             | 57                           | 276                            | 76                           | >2000                          | >90                          | >2000                          | >90                          |  |  |  |
| 8                 | 13                             | 59                           | 43                             | 64                           | 490                            | 83                           | >2000                          | >90                          | >2000                          | >90                          |  |  |  |
| 10                | 21                             | 81                           | 67                             | 69                           | 766                            | 88                           | >2000                          | >90                          | >2000                          | >90                          |  |  |  |
| 12                | 31                             | 90                           | 97                             | 73                           | 1104                           | >90                          | >2000                          | >90                          | >2000                          | >90                          |  |  |  |

**Notes:** As the damper blades are closed, the shut-off effect occurs due to the high pressure that will occur. In order to achieve an air velocity of more than 1 m/s at more than 75% closed blade positions, very high static pressurization must be applied to the duct.

**Table 3.** Damper Closed Position Sound Power Level

| In Duck Statio               |                        |      |      |      |      |      | Flow Field | d (WxH) [n | n²] |     |      |      |      |     |
|------------------------------|------------------------|------|------|------|------|------|------------|------------|-----|-----|------|------|------|-----|
| In-Duct Static Pressure [Pa] | 0,01                   | 0,04 | 0,09 | 0,16 | 0,25 | 0,42 | 0,56       | 0,72       | 0,9 | 1,1 | 1,32 | 1,56 | 1,82 | 2,1 |
| riessuie [ra]                | Sound Power Level [dB] |      |      |      |      |      |            |            |     |     |      |      |      |     |
| 100                          | 38                     | 42   | 45   | 48   | 50   | 52   | 53         | 54         | 55  | 56  | 57   | 58   | 59   | 59  |
| 200                          | 43                     | 49   | 52   | 55   | 57   | 60   | 61         | 63         | 64  | 65  | 66   | 67   | 68   | 69  |
| 400                          | 50                     | 56   | 61   | 64   | 66   | 69   | 71         | 72         | 74  | 75  | 76   | 77   | 78   | 79  |
| 600                          | 55                     | 61   | 66   | 69   | 72   | 75   | 77         | 79         | 80  | 81  | 83   | 84   | 85   | 86  |
| 800                          | 58                     | 65   | 70   | 73   | 76   | 80   | 82         | 83         | 85  | 86  | 88   | 89   | >90  | >90 |
| 1000                         | 61                     | 68   | 73   | 77   | 80   | 83   | 85         | 87         | 89  | >90 | >90  | >90  | >90  | >90 |
| 1250                         | 63                     | 71   | 77   | 80   | 84   | 87   | 90         | >90        | >90 | >90 | >90  | >90  | >90  | >90 |
| 1500                         | 66                     | 74   | 80   | 84   | 87   | >90  | >90        | >90        | >90 | >90 | >90  | >90  | >90  | >90 |
| 1750                         | 68                     | 77   | 82   | 86   | 90   | >90  | >90        | >90        | >90 | >90 | >90  | >90  | >90  | >90 |
| 2000                         | 70                     | 79   | 84   | 89   | >90  | >90  | >90        | >90        | >90 | >90 | >90  | >90  | >90  | >90 |

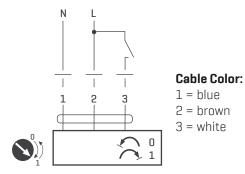
Table 4. Flow Field Table

| Flanc Field | J F 27 |      |      |      |      |      | Н    | (Height ) | [mm] |      |      |      |      |      |      |
|-------------|--------|------|------|------|------|------|------|-----------|------|------|------|------|------|------|------|
| Flow Field  | ı[m-]  | 100  | 200  | 300  | 400  | 500  | 700  | 800       | 900  | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 |
|             | 100    | 0,01 | 0,02 | 0,03 | 0,04 | 0,05 | 0,07 | 0,08      | 0,09 | 0,10 | 0,11 | 0,12 | 0,13 | 0,14 | 0,15 |
|             | 200    | 0,02 | 0,04 | 0,06 | 0,08 | 0,10 | 0,14 | 0,16      | 0,18 | 0,20 | 0,22 | 0,24 | 0,26 | 0,28 | 0,30 |
|             | 300    | 0,03 | 0,06 | 0,09 | 0,12 | 0,15 | 0,21 | 0,24      | 0,27 | 0,30 | 0,33 | 0,36 | 0,39 | 0,42 | 0,45 |
|             | 400    | 0,04 | 0,08 | 0,12 | 0,16 | 0,20 | 0,28 | 0,32      | 0,36 | 0,40 | 0,44 | 0,48 | 0,52 | 0,56 | 0,60 |
|             | 500    | 0,05 | 0,10 | 0,15 | 0,20 | 0,25 | 0,35 | 0,40      | 0,45 | 0,50 | 0,55 | 0,60 | 0,65 | 0,70 | 0,75 |
|             | 600    | 0,06 | 0,12 | 0,18 | 0,24 | 0,30 | 0,42 | 0,48      | 0,54 | 0,60 | 0,66 | 0,72 | 0,78 | 0,84 | 0,90 |
|             | 700    | 0,07 | 0,14 | 0,21 | 0,28 | 0,35 | 0,49 | 0,56      | 0,63 | 0,70 | 0,77 | 0,84 | 0,91 | 0,98 | 1,05 |
|             | 800    | 0,08 | 0,16 | 0,24 | 0,32 | 0,40 | 0,56 | 0,64      | 0,72 | 0,80 | 0,88 | 0,96 | 1,04 | 1,12 | 1,20 |
| W           | 900    | 0,09 | 0,18 | 0,27 | 0,36 | 0,45 | 0,63 | 0,72      | 0,81 | 0,90 | 0,99 | 1,08 | 1,17 | 1,26 | 1,35 |
| (Width)     | 1000   | 0,10 | 0,20 | 0,30 | 0,40 | 0,50 | 0,70 | 0,80      | 0,90 | 1,00 | 1,10 | 1,20 | 1,30 | 1,40 | 1,50 |
| [mm]        | 1100   | 0,11 | 0,22 | 0,33 | 0,44 | 0,55 | 0,77 | 0,88      | 0,99 | 1,10 | 1,21 | 1,32 | 1,43 | 1,54 | 1,65 |
|             | 1200   | 0,12 | 0,24 | 0,36 | 0,48 | 0,60 | 0,84 | 0,96      | 1,08 | 1,20 | 1,32 | 1,44 | 1,56 | 1,68 | 1,80 |
|             | 1300   | 0,13 | 0,26 | 0,39 | 0,52 | 0,65 | 0,91 | 1,04      | 1,17 | 1,30 | 1,43 | 1,56 | 1,69 | 1,82 | 1,95 |
|             | 1400   | 0,14 | 0,28 | 0,42 | 0,56 | 0,70 | 0,98 | 1,12      | 1,26 | 1,40 | 1,54 | 1,68 | 1,82 | 1,96 | 2,10 |
|             | 1500   | 0,15 | 0,30 | 0,45 | 0,60 | 0,75 | 1,05 | 1,20      | 1,35 | 1,50 | 1,65 | 1,80 | 1,95 | 2,10 |      |
|             | 1750   | 0,18 | 0,35 | 0,53 | 0,70 | 0,88 | 1,23 | 1,40      | 1,58 | 1,75 |      |      |      |      |      |
|             | 2000   | 0,20 | 0,40 | 0,60 | 0,80 | 1,00 | 1,40 | 1,60      | 1,80 | 2,00 |      |      |      |      |      |
|             | 2250   | 0,23 | 0,45 | 0,68 | 0,90 | 1,13 | 1,58 | 1,80      |      |      |      |      |      |      |      |
|             | 2500   | 0,25 | 0,50 | 0,75 | 1,00 | 1,25 | 1,75 | 2,00      |      |      |      |      |      |      |      |

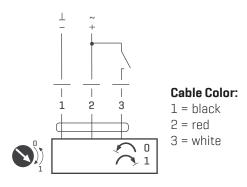
### **ACTUATORS**

The VDM is adjusted as standard with the hand lever. An optional actuator can be used instead of the adjustment lever. Servo motors have on off, proportional, fast reaction and spring return control options.

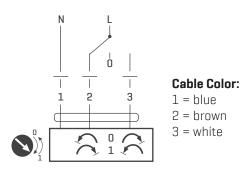
Table 5. Actuator Table


|                                             | Order code | Name     | Control                                               | Voltage        | Torque | Switch Option |
|---------------------------------------------|------------|----------|-------------------------------------------------------|----------------|--------|---------------|
|                                             | S66        | LM230A   | 1 wired control (On Off)<br>2 wired control (3-point) | 100 - 240 V AC | 5Nm    | -             |
|                                             | S59        | LM24A    | 1 wired control (On Off)<br>2 wired control (3-point) | 24 V AC/DC     | 5Nm    | -             |
|                                             | S44        | LM230A   | 1 wired control (On Off)<br>2 wired control (3-point) | 100 - 240 V AC | 5Nm    | S2A           |
|                                             | S20        | LM24A    | 1 wired control (On Off)<br>2 wired control (3-point) | 24 V AC/DC     | 5Nm    | S2A           |
|                                             | N01        | NM230A   | 1 wired control (On Off)<br>2 wired control (3-point) | 100 - 240 V AC | 10Nm   | -             |
| Open Close                                  | S36        | NM24A    | 1 wired control (On Off)<br>2 wired control (3-point) | 24 V AC/DC     | 10Nm   | -             |
| Actuators                                   | S43        | NM230A   | 1 wired control (On Off) 2 wired control (3-point)    | 100 - 240 V AC | 10Nm   | S2A           |
|                                             | S21        | NM24A    | 1 wired control (On Off) 2 wired control (3-point)    | 24 V AC/DC     | 10Nm   | S2A           |
|                                             | S08        | SM230A   | 1 wired control (On Off)<br>2 wired control (3-point) | 100 - 240 V AC | 20Nm   | -             |
|                                             | S04        | SM24A    | 1 wired control (On Off) 2 wired control (3-point)    | 24 V AC/DC     | 20Nm   | -             |
|                                             | S09        | SM230A   | 1 wired control (On Off) 2 wired control (3-point)    | 100 - 240 V AC | 20Nm   | S2A           |
|                                             | S10        | SM24A    | 1 wired control (On Off)<br>2 wired control (3-point) | 24 V AC/DC     | 20Nm   | S2A           |
| Quick Response<br>Open Close Actuator       | S45        | SMQ24A   | 1 wired control (On Off)                              | 24 V AC/DC     | 16Nm   | -             |
| Open Close Actuator<br>With Spring Return   | S65        | NF24A    | Voltage On Off                                        | 24 V AC/DC     | 10Nm   | -             |
|                                             | S61        | LM24A-SR | 2 - 10 V DC                                           | 24 V AC/DC     | 5Nm    | -             |
| Proportional<br>Actuators                   | S36        | NM24A-SR | 2 - 10 V DC                                           | 24 V AC/DC     | 10Nm   | -             |
|                                             | S11        | SM24A-SR | 2 - 10 V DC                                           | 24 V AC/DC     | 20Nm   | -             |
| Proportional Actuator<br>With Spring Return | S96        | NF24A-SR | 2 - 10 V DC                                           | 24 V AC/DC     | 10Nm   | -             |

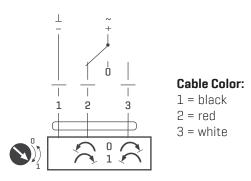
**Table 6.** Actuator Torque Selection Table


| Actuator | Torque |      |      |      |       |       | H (Heigh | t) [mm] |       |       |       |       |       |       |       |
|----------|--------|------|------|------|-------|-------|----------|---------|-------|-------|-------|-------|-------|-------|-------|
| select   | ion    | 100  | 200  | 300  | 400   | 500   | 700      | 800     | 900   | 1000  | 1100  | 1200  | 1300  | 1400  | 1500  |
|          | 100    | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 5 Nm     | 5 Nm    | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  |
|          | 200    | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 5 Nm     | 5 Nm    | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  |
|          | 300    | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 5 Nm     | 5 Nm    | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  |
|          | 400    | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 5 Nm     | 5 Nm    | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  |
|          | 500    | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 5 Nm     | 5 Nm    | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  |
|          | 600    | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 5 Nm     | 5 Nm    | 5 Nm  | 5 Nm  | 5 Nm  | 5 Nm  | 10 Nm | 10 Nm | 10 Nm |
|          | 700    | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 5 Nm     | 5 Nm    | 5 Nm  | 5 Nm  | 5 Nm  | 10 Nm | 10 Nm | 10 Nm | 10 Nm |
|          | 800    | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 5 Nm     | 5 Nm    | 5 Nm  | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm |
| W        | 900    | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 5 Nm     | 5 Nm    | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm |
| (Width)  | 1000   | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 5 Nm     | 10 Nm   | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm |
| [mm]     | 1100   | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 5 Nm     | 10 Nm   | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm |
|          | 1200   | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 10 Nm    | 10 Nm   | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm |
|          | 1300   | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 10 Nm    | 10 Nm   | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 20 Nm | 20 Nm |
|          | 1400   | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 10 Nm    | 10 Nm   | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 20 Nm | 20 Nm | 20 Nm |
|          | 1500   | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 5 Nm  | 10 Nm    | 10 Nm   | 10 Nm | 10 Nm | 10 Nm | 10 Nm | 20 Nm | 20 Nm |       |
|          | 1750   | 5 Nm | 5 Nm | 5 Nm | 5 Nm  | 10 Nm | 10 Nm    | 10 Nm   | 10 Nm | 10 Nm |       |       |       |       |       |
|          | 2000   | 5 Nm | 5 Nm | 5 Nm | 10 Nm | 10 Nm | 10 Nm    | 10 Nm   | 10 Nm | 20 Nm |       |       |       |       |       |
|          | 2250   | 5 Nm | 5 Nm | 5 Nm | 10 Nm | 10 Nm | 10 Nm    | 10 Nm   |       |       |       |       |       |       |       |
|          | 2500   | 5 Nm | 5 Nm | 5 Nm | 10 Nm | 10 Nm | 10 Nm    | 20 Nm   |       |       |       |       |       |       |       |

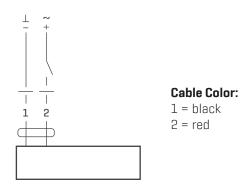
### **ACTUATOR WIRING DIAGRAMS**


### 1 wire control AC 230V (On Off)

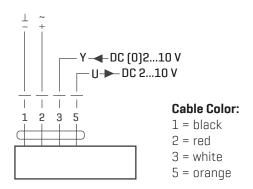



### 1 wire control AC/DC 24V (On Off)




### 2 wire control AC 230V [3 Points]




### 2 wire control AC/DC 24V (3 Points)



### Voltage On Off AC/DC 24 V



### 2-10 V DC Proportional (AC/DC 24 V)



### **PRODUCT SELECTION**

**Example:** A prismatic air control damper will be mount to a duct with an air flow of 500 m³/h. The blade control will be on and off with a 24 V AC/DC servomotor. It is desired that the pressure loss should be less than 15 Pa and the sound power level should be less than 50 dB when the damper is in open and closed positions. When the blade is in the closed position, the static pressure that will occur in the channel will be 100 Pa. Make the product selection.

**Solution**: In order to keep the sound power level less than 50 dB when the static pressure inside the duct is 100Pa and the damper is in the closed position, the damper dimensions are controlled from the Damper Closed Position Sound Level Table (Table 3). According to the table, values less than 50 dB at 100 Pa in-duct static pressure are between 0.01 m² and 0.25 m².

The technical characteristics of the damper in the open position are calculated with the help of performance data. The performance values in the table are found with the air velocity information. The following formula is used for the air velocity:

Velocity = Flow Rate / Flow Area

The values of 0.01 m<sup>2</sup> and 0.25 m<sup>2</sup> are used for the flow area, and 500 m<sup>3</sup>/h is used for the flow rate.

Accordingly, the velocity values that can be selected are between 0.56 m/s and 13.88 m/s. Using these values, a selection is made from Table 2. According to the table, the air flow rate between 0.56 m/s and 4 m/s complies with the performance criteria. For example, 2 m/s can be selected. According to the table, when the air flow rate is 2 m/s when the damper is in the fully open position, the pressure loss is 1 Pa and the sound power level is 27 dB.

To determine the product sizes, the flow area at 2 m/s air flow rate is calculated and the Flow Area Table (Table 4) is used.

Flow Area = Flow Rate / Velocity

According to the formula, the flow area is 0.0694 m². W[Width] x H[Height] dimensions are selected from the table as 1000 mm x 700 mm. Servomotor selection: First, the required torque for the damper is calculated, then the appropriate actuator is selected. Actuator Torque Selection According to the table, a damper actuator with a torque of 1000 mm x 700 mm and a torque of 5 Nm should be selected. Actuator selection is made with the Actuator Table. According to the table, the suitable servomotor is Belimo LM24A.

| Α | Frame Material  |                                              |
|---|-----------------|----------------------------------------------|
|   | ALM             | Aluminum                                     |
|   | GAL             | Galvanized                                   |
| В | Blade Material  |                                              |
|   | AK              | Aluminum Blade                               |
|   | GK              | Galvanized Blade                             |
| C | Mechanism       |                                              |
|   | MEK             | Mechanism Manual Control                     |
|   | MBU             | Suitable for Motor Connection, Without Motor |
|   | S66             | LM230A                                       |
|   | S59             | LM24A                                        |
|   | S44             | LM230A                                       |
|   | S20             | LM24A                                        |
|   | N01             | NM230A                                       |
|   | S36             | NM24A                                        |
|   | S43             | NM230A                                       |
|   | S21             | NM24A                                        |
|   | S08             | SM230A                                       |
|   | S04             | SM24A                                        |
|   | S09             | SM230A                                       |
|   | S10             | SM24A                                        |
| D | Width (W) [mm]  |                                              |
|   | 0000            | Standard Sizes                               |
| E | Height (H) [mm] |                                              |
|   | 0000            | Standard Sizes                               |
| F | Paint           |                                              |
|   | 00              | Unpainted                                    |
|   | S1              | Standard Painted - RAL 9010                  |
|   | S2              | Standard Painted - RAL 9016                  |
|   | XX              | Special Painted                              |

Sample Coding: VDM.GAL.AK.MEK.30.0800.0600.00

| NOTES |             |       |
|-------|-------------|-------|
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       | iklimlendir | STEMS |
|       |             | <br>  |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |
|       |             |       |



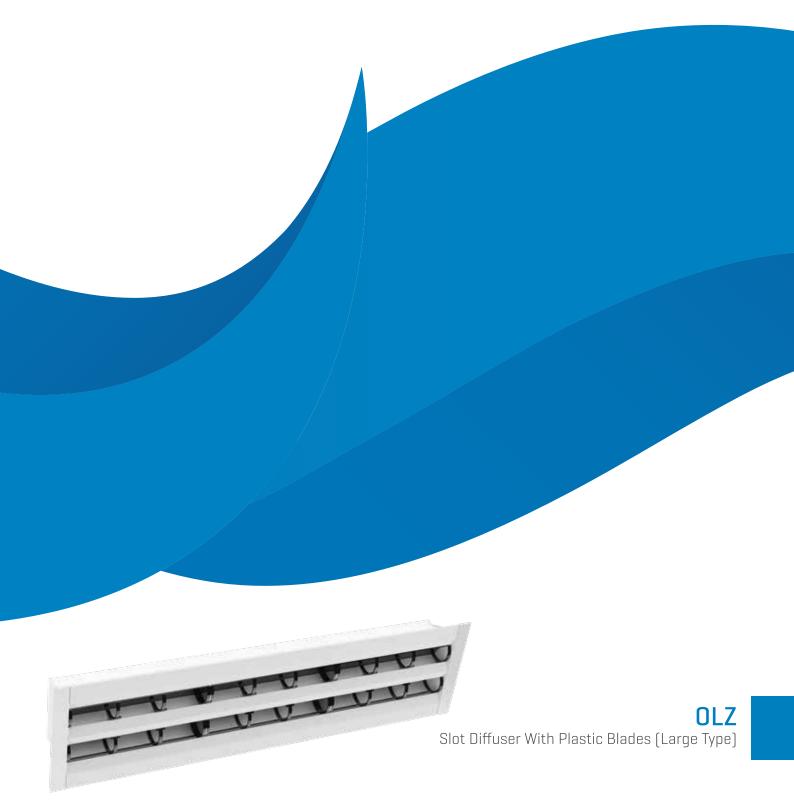




### Headquarter

iTOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TÜRKİYE Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

### **İstanbul Sales Office**


Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, İstanbul/TÜRKİYE Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56











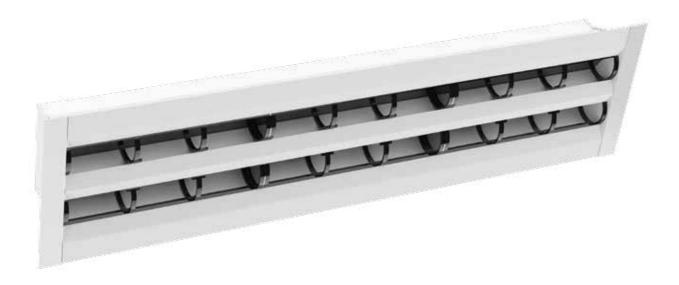


# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











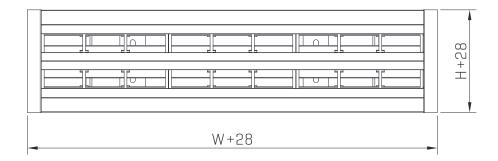

- © OLZ Slot Diffuser With Plastic Blades (Large Type) is both decorative thanks to its cylindrical, moving blades and modular structure and is ideal for meeting comfort parameters in difficult climatic spaces.
- The blade and slot internal structure has been aerodynamically optimized and has a compact structure. It provides energy saving thanks to its low pressure loss and acoustic comfort with low sound level thanks to its wide blade structure.
- They are used in feed or return in ceiling and wall applications. Use for horizontal shot from the ceiling suitable. It creates effective throw geometry in cooling applications with the Coanda effect.
- lt is used in spaces between 2-4 m high.

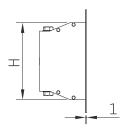


#### **MATERIAL**

- ♠ Aluminum 6063 extrusion profile production
- ABS plastic blades that provide air direction inside the case.

#### **SURFACE COATING**


- RAL 9010 or RAL 9016 electrostatic powder paint as standard
- © Optional
  - Different RAL color codes
  - Unpainted manufacturing
  - Matt anodised aluminum




# **MOUNTING OPTIONS**

### **PRODUCT SELECTION**

#### **STANDARD DIMENSIONS**





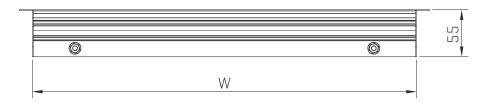



Table 1. Standard Sizes Table

|                |              |             | H (Heigh | nt)[mm]  |          |
|----------------|--------------|-------------|----------|----------|----------|
|                | ndard<br>zes | 1 Slot      | 2 Slots  | 3 Slots  | 4 Slots  |
| 31.            | 262          | 50          | 92       | 133      | 175      |
|                | 155          | <b>~</b>    | <b>~</b> | <b>~</b> | <b>✓</b> |
|                | 300          | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                | 450          | <b>~</b>    | <b>✓</b> | <b>~</b> | <b>✓</b> |
| _              | 600          | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> |
| W [Width] [mm] | 750          | <b>&gt;</b> | <b>✓</b> | <b>~</b> | <b>~</b> |
| ابر-<br>1      | 900          | <b>~</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> |
| 를              | 1050         | <b>~</b>    | <b>✓</b> | <b>~</b> | <b>✓</b> |
| _ ≥            | 1200         | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> |
| >              | 1345         | <b>~</b>    | <b>✓</b> | <b>~</b> | <b>✓</b> |
|                | 1495         | <b>~</b>    | <b>~</b> | <b>~</b> | <b>~</b> |
|                | 1645         | <b>~</b>    | <b>~</b> | <b>✓</b> | <b>~</b> |
|                | 1800         | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>~</b> |
|                | 1940         | <b>~</b>    | <b>✓</b> | <b>✓</b> | <b>~</b> |



### **PERFORMANCE DATA**

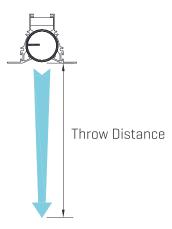
### **EFFECTIVE AREA TABLE**

Table 2. Effective Area Table

| F.66           |                         |        | H (Heigh | nt)[mm] |         |
|----------------|-------------------------|--------|----------|---------|---------|
|                | Effective<br>Area [mm²] |        | 2 Slots  | 3 Slots | 4 Slots |
| Aicu           |                         | 50     | 92       | 133     | 175     |
|                | 155                     | 0.0018 | 0.0029   | 0.0041  | 0.0052  |
|                | 300                     | 0.0031 | 0.0053   | 0.0075  | 0.0098  |
|                | 450                     | 0.0044 | 0.0078   | 0.0111  | 0.0145  |
| _              | 600                     | 0.0058 | 0.0103   | 0.0147  | 0.0193  |
| Ē              | 750                     | 0.0071 | 0.0128   | 0.0183  | 0.0240  |
| )[h            | 900                     | 0.0085 | 0.0153   | 0.0219  | 0.0287  |
| /idt           | 1050                    | 0.0098 | 0.0178   | 0.0255  | 0.0334  |
| W (Width) [mm] | 1200                    | 0.0112 | 0.0202   | 0.0291  | 0.0382  |
| >              | 1345                    | 0.0125 | 0.0226   | 0.0326  | 0.0427  |
|                | 1495                    | 0.0138 | 0.0251   | 0.0362  | 0.0475  |
|                | 1645                    | 0.0152 | 0.0276   | 0.0397  | 0.0522  |
|                | 1800                    | 0.0166 | 0.0302   | 0.0435  | 0.0571  |
|                | 1940                    | 0.0178 | 0.0325   | 0.0468  | 0.0615  |



#### **SUPPLY AIR DATA**


Table 3. Supply Air Data Table

| Flow Rate |                            |        |        |        |        |        |         | Effective | Velocity | / (m/s) |              |              |              |              |              |        |
|-----------|----------------------------|--------|--------|--------|--------|--------|---------|-----------|----------|---------|--------------|--------------|--------------|--------------|--------------|--------|
| (m³/h)    |                            | 0.5    | 1.0    | 1.5    | 2.0    | 2.5    | 3.0     | 3.5       | 4.0      | 4.5     | 5.0          | 6.0          | 7.0          | 8.0          | 9.0          | 10.0   |
|           | Effective Area [m²]        | 0.0278 | 0.0139 | 0.0093 | 0.0069 | 0.0056 | 0.0046  | 0.0040    |          |         |              |              |              |              |              |        |
|           | Pressure Drop [Pa]         | 2      | 3      | 5      | 6      | 7      | 8       | 9         |          |         |              |              |              |              |              |        |
| 50        | Throw Distance [m]         | 1      | 1      | 2      | 5      | 2      | 3       | 3         |          |         |              |              |              |              |              |        |
|           | Sound Power Level [dB[A]]  | <15    | <15    | <15    | <15    | <15    | <15     | <15       |          |         |              |              |              |              |              |        |
|           | Effective Area [m²]        | 0.056  | 0.028  | 0.0185 | 0.0139 | 0.0111 | 0.0093  | 0.0079    | 0.0069   | 0.0062  | 0.0056       | 0.0046       | 0.0040       |              |              |        |
|           | Pressure Drop [Pa]         | 3      | 5      | 7      | 9      | 11     | 13      | 14        | 16       | 18      | 19           | 22           | 25           |              |              |        |
| 100       | Throw Distance [m]         | 1      | 1      | 2      | 2      | 2      | 3       | 3         | 4        | 4       | 4            | 5            | 6            |              |              |        |
|           | Sound Power Level [dB[A]]  | <15    | <15    | <15    | <15    | <15    | <15     | 16        | 18       | 19      | 20           | 23           | 25           |              |              |        |
|           | Effective Area [m²]        | 710    | 0.056  | 0.037  | 0.0278 | 0.0222 | 0.0185  | 0.0159    | 0.0139   | 0.0123  | 0.0111       | 0.0093       | 0.0079       | 0.0069       | 0.0062       | 0.0056 |
|           | Pressure Drop [Pa]         |        | 8      | 11     | 14     | 17     | 20      | 23        | 25       | 28      | 30           | 35           | 39           | 44           | 48           | 52     |
| 200       | Throw Distance [m]         |        | 1      | 2      | 5      | 2      | 3       | 3         | 4        | 4       | 4            | 5            | 6            | 6            | 7            | 8      |
|           | Sound Power Level [dB[A]]  |        | <15    | <15    | 16     | 19     | 22      | 24        | 25       | 27      | 28           | 31           | 33           | 34           | 36           | 37     |
|           | Effective Area [m²]        | _      | 713    | 0.0556 | 0.0417 | 0.0333 | 0.0278  | 0.0238    | 0.0208   | 0.0185  | 0.0167       | 0.0139       | 0.0119       | 0.0104       | 0.0093       | 0.0083 |
|           | Pressure Drop [Pa]         | _      |        | 15     | 19     | 22     |         | 29        | 32       | 36      | 39           | 45           | 51           | 57           | 62           | 68     |
| 300       | Throw Distance [m]         | _      |        | 5      | 5 19   | 2      | 26      |           | 32<br>4  | 4       | 4            | 5            |              | 6            | 7            | 8      |
|           | Sound Power Level [dB(A)]  | _      |        | 17     | 21     | 24     | 3<br>26 | 28<br>28  | 30       | 31      | 33           | 35           | 6<br>37      | 39           | 41           | 42     |
|           | Effective Area [m²]        | -      |        | 1/     |        |        |         |           |          | 0.0247  |              |              |              |              |              | 0.0111 |
|           | Pressure Drop [Pa]         | -      |        |        | 0.0556 | 0.0444 | 0.0370  | 0.0317    | 0.0278   | 43      | 0.0222<br>47 | 0.0185<br>54 | 0.0159<br>61 | 0.0139<br>68 | 0.0123<br>75 | 81     |
| 400       | Throw Distance [m]         | -      |        |        | 22     | 27     | 31      | 35        | 39       |         |              |              |              |              | 75           |        |
|           | Sound Power Level [dB(A)]  | -      |        |        | 2      | 2      | 3       | 3         | 4        | 4       | 4            | 5            | 6            | 6            |              | 8      |
|           |                            | -      |        |        | 24     | 27     | 29      | 31        | 33       | 35      | 36           | 38           | 40           | 42           | 44           | 45     |
|           | Effective Area [m²]        | -      |        |        |        | 0.0556 | 0.0463  | 0.0397    | 0.0347   | 0.0309  | 0.0278       | 0.0231       | 0.0198       | 0.0174       | 0.0154       | 0.0139 |
| 500       | Pressure Drop [Pa]         | _      |        |        |        | 31     | 36      | 40        | 45       | 50      | 54           | 62           | 71           | 78           | 86           | 94     |
| 500       | Throw Distance [m]         | _      |        |        |        | 2      | 3       | 3         | 4        | 4       | 4            | 5            | - 6          | 6            | 7            | 8      |
|           | Sound Power Level [dB(A)]  | _      |        |        |        | 30     | 32      | 34        | 36       | 37      | 39           | 41           | 43           | 45           | 46           | 48     |
|           | Effective Area [m²]        | -      |        |        |        |        | 0.0556  | 0.0476    | 0.0417   | 0.0370  | 0.0333       | 0.0278       | 0.0238       | 0.0208       | 0.0185       | 0.0167 |
| 600       | Pressure Drop [Pa]         | _      |        |        |        |        | 40      | 45        | 51       | 56      | 61           | 70           | 79           | 88           | 97           | 105    |
| 000       | Throw Distance [m]         |        |        |        |        |        | 3       | 3         | 4        | 4       | 4            | 5            | 6            | 6            | 7            | 8      |
|           | Sound Power Level [dB(A)]  |        |        |        |        |        | 34      | 36        | 38       | 39      | 41           | 43           | 45           | 47           | 48           | 50     |
|           | Effective Area [m²]        |        |        |        |        |        |         | 0.0556    | 0.0486   | 0.0432  | 0.0389       | 0.0324       | 0.0278       | 0.0243       | 0.0216       | 0.0194 |
| 700       | Pressure Drop [Pa]         |        |        |        |        |        |         | 50        | 56       | 61      | 67           | 77           | 87           | 97           | 107          | 116    |
| 700       | Throw Distance [m]         |        |        |        |        |        |         | 3         | 4        | 4       | 4            | 5            | 6            | 6            | 7            | 8      |
|           | Sound Power Level [dB(A)]  |        |        |        |        |        |         | 38        | 40       | 41      | 42           | 45           | 47           | 49           | 50           | 51     |
|           | Effective Area [m²]        |        |        |        |        |        |         | 0.0635    | 0.0556   | 0.0494  | 0.0444       | 0.0370       | 0.0317       | 0.0278       | 0.0247       | 0.0222 |
| 000       | Pressure Drop [Pa]         |        |        |        |        |        |         | 55        | 61       | 67      | 73           | 84           | 95           | 106          | 117          | 127    |
| 800       | Throw Distance [m]         |        |        |        |        |        |         | 3         | 4        | 4       | 4            | 5            | 6            | 6            | 7            | 8      |
|           | Sound Power Level [dB(A)]  |        |        |        |        |        |         | 39        | 41       | 43      | 44           | 46           | 48           | 50           | 52           | 53     |
|           | Effective Area [m²]        |        |        |        |        |        |         |           | 0.0625   | 0.0556  | 0.0500       | 0.0417       | 0.0357       | 0.0313       | 0.0278       | 0.0250 |
| 000       | Pressure Drop [Pa]         |        |        |        |        |        |         |           | 66       | 72      | 78           | 91           | 103          | 114          | 126          | 137    |
| 900       | Throw Distance [m]         |        |        |        |        |        |         |           | 4        | 4       | 4            | 5            | 6            | 6            | 7            | 8      |
|           | Sound Power Level [dB(A)]  |        |        |        |        |        |         |           | 42       | 44      | 45           | 48           | 50           | 51           | 53           | 54     |
|           | Effective Area [m²]        |        |        |        |        |        |         |           |          | 0.0617  | 0.0556       | 0.0463       | 0.0397       | 0.0347       | 0.0309       | 0.0278 |
|           | Pressure Drop [Pa]         |        |        |        |        |        |         |           |          | 77      | 84           | 97           | 110          | 122          | 134          | 146    |
| 1000      | Throw Distance [m]         |        |        |        |        |        |         |           |          | 4       | 4            | 5            | 6            | 6            | 7            | 8      |
|           | Sound Power Level [dB(A)]  |        |        |        |        |        |         |           |          | 45      | 46           | 49           | 51           | 53           | 54           | 55     |
|           | Effective Area [m²]        |        |        |        |        |        |         |           | İ        |         |              | 0.0579       | 0.0496       | 0.0434       |              |        |
|           | Pressure Drop [Pa]         |        |        |        |        |        |         |           |          |         |              | 112          | 127          | 141          |              |        |
| 1250      | Throw Distance [m]         |        |        |        |        |        |         |           |          |         |              | 5            | 6            | 6            |              |        |
|           | Sound Power Level [dB[A]]  |        |        |        |        |        |         |           |          |         |              | 51           | 53           | 55           |              |        |
|           | Effective Area [m²]        |        |        |        |        |        |         |           |          |         |              |              | 0.0595       |              |              |        |
|           | Pressure Drop [Pa]         |        |        |        |        |        |         |           |          |         |              |              | 142          |              |              |        |
| 1500      | Throw Distance [m]         |        |        |        |        |        |         |           |          |         |              |              | 6            |              |              | _      |
|           | Sound Power Level [dB(A)]  |        |        |        |        |        |         |           |          |         |              |              | 55           |              |              |        |
|           | Ooding Fower Level [ub[A]] |        |        |        |        |        |         |           |          |         |              |              | - 00         |              |              |        |

Quick Selection: Design Upper Limit High Pressure Drop

**Note**: Data is obtained with blades in a straight position. If the throw is adjusted horizontally, the pressure drop and sound power level data in the table have acceptable variability.

Throw distance: The vertical distance of the air in the comfort zone leaving the air distribution equipment at a speed of 0.25 m/s.





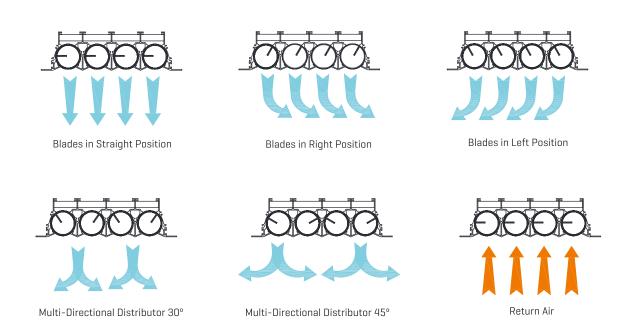
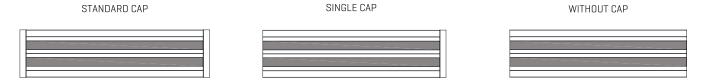

#### THROW DISTANCE CORRECTION TABLE

Table 4. Throw Distance Correction Table

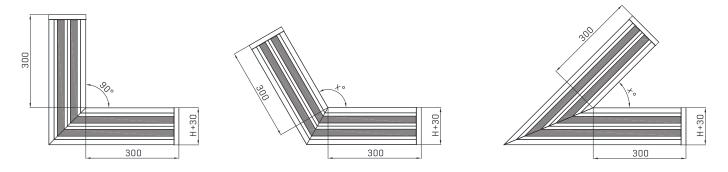
| Heating Mode (△T)         | 4    | 6    | 8    | 10   | 12   |
|---------------------------|------|------|------|------|------|
| Throw Distance Multiplier | 1.07 | 1.02 | 1    | 0.90 | 0.83 |
| Cooling Mode (△T)         | 4    | 6    | 8    | 10   | 12   |
| Throw Distance Multiplier | 1.31 | 1.36 | 1.42 | 1.48 | 1.54 |

#### **AIR FLOW DIRECTION**


Below are sample application examples for air throw and air collector wing position.



**Note:** OLZ - Slot Diffuser With Plastic Blades (Large Type) is suitable for use in variable flow rate systems and the air throw directing characteristic remains constant between 100% and 25% flow rate.

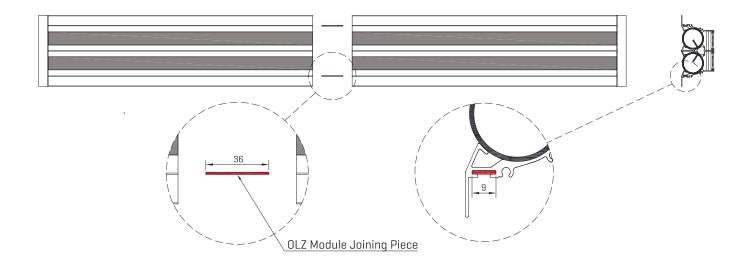

#### **COVER OPTIONS**

If specified in the order, the slot diffuser can be produced in the following ways, with a single cover or without covers on both sides. If the cover option is not specified in the order, standard cover production is made.



#### **CORNER JOINING**

In order to ensure the continuity of OLZ assembly in wall-to-wall applications, a stylish appearance is provided by the corner joining system that allows different angles of transitions.

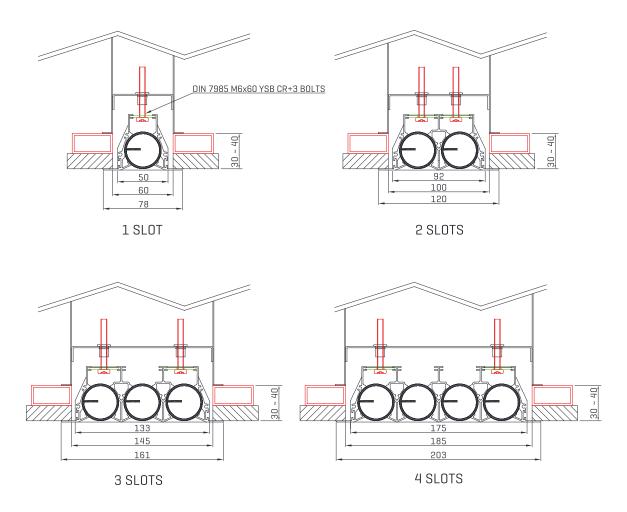



Standard corner joint length is 300 mm.

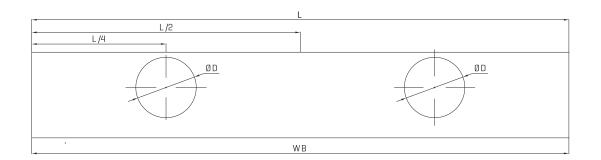
**x:** Corner piece angle. The standard corner joint is right angle (90 °). The desired angle dimensions must be specified in the order. Corner piece angle is minimum 45°.

#### **MODULE ASSEMBLY**

When the slot length (W) given in orders for OLZ - Slot Diffuser With Plastic Blades (Large Type) is over 2300 mm, the slot profiles are assembled with the module joining piece. In this way, the slot diffuser is seen in one piece as well as preserving its strength.




Number of Modules=Round Up (Order Size/2300)


#### **ASSEMBLY**

#### **MOUNTING BRACKET**

Bracket assembly is made as standard. For each slot module, there are 2 mounting plates on OLZ and 2 mounting plates (bracket) on the box. Bolt is screwed into the mounting plate on OLZ, a nut is screwed into the mounting plate and the assembly is completed by screwing the bolt with a screw driver.



#### **BOX DIMENSIONS**



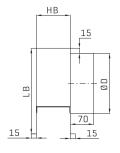



Table 5. Box Size Table

| Number of | Box Size Table         |                |                |                | 8              | Slot Length [mm] |                |                 |                 |                 |
|-----------|------------------------|----------------|----------------|----------------|----------------|------------------|----------------|-----------------|-----------------|-----------------|
| Slots     | Property               | 400            | 600            | 800            | 1000           | 1200             | 1400           | 1600            | 1800            | 2000            |
|           | Box Neck (ØD) [mm]     | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø150 - 1 Piece   | Ø150 - 1 Piece | Ø150 - 2 Pieces | Ø150 - 2 Pieces | Ø200 - 2 Pieces |
| ,         | Box Height (LB) [mm]   | 175            | 175            | 225            | 225            | 225              | 275            | 275             | 275             | 275             |
| _         | Box 1st Size (WB) [mm] | 410            | 610            | 810            | 1010           | 1210             | 1410           | 1610            | 1810            | 2010            |
|           | Box 2nd Size (HB) [mm] | 60             | 60             | 60             | 60             | 60               | 60             | 60              | 60              | 60              |
|           | Box Neck (ØD) [mm]     | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece   | Ø200 - 1 Piece | Ø200 - 2 Pieces | Ø200 - 2 Pieces | Ø200 - 2 Pieces |
| 2         | Box Height (LB) [mm]   | 175            | 175            | 225            | 225            | 275              | 275            | 275             | 325             | 325             |
| _         | Box 1st Size [WB] [mm] | 410            | 610            | 810            | 1010           | 1210             | 1410           | 1610            | 1810            | 2010            |
|           | Box 2nd Size (HB) [mm] | 100            | 100            | 100            | 100            | 100              | 100            | 100             | 100             | 100             |
|           | Box Neck (ØD) [mm]     | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø200 - 1 Piece   | Ø200 - 1 Piece | Ø200 - 2 Pieces | Ø250 - 2 Pieces | Ø250 - 2 Pieces |
| 3         | Box Height (LB) [mm]   | 175            | 225            | 225            | 275            | 275              | 275            | 325             | 325             | 325             |
| 3         | Box 1st Size (WB) [mm] | 410            | 610            | 810            | 1010           | 1210             | 1410           | 1610            | 1810            | 2010            |
|           | Box 2nd Size (HB) [mm] | 145            | 145            | 145            | 145            | 145              | 145            | 145             | 145             | 145             |
|           | Box Neck (ØD) [mm]     | Ø100 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø200 - 1 Piece | Ø200 - 1 Piece   | Ø200 - 1 Piece | Ø250 - 2 Pieces | Ø250 - 2 Pieces | Ø250 - 2 Pieces |
| 4         | Box Height (LB) [mm]   | 175            | 225            | 225            | 275            | 275              | 275            | 325             | 325             | 325             |
| ,         | Box 1st Size (WB) [mm] | 410            | 610            | 810            | 1010           | 1210             | 1410           | 1610            | 1810            | 2010            |
|           | Box 2nd Size (HB) [mm] | 185            | 185            | 185            | 185            | 185              | 185            | 185             | 185             | 185             |

#### **PRODUCT SELECTION**

**Example:** The air flow distributed in the space is determined as 400 m<sup>3</sup>/h and the temperature difference is -8K. 3 meter slot diffuser will be used in supply application. Make your product selection.

**Solution:** From the supply data table (Table 3), the effective areas corresponding to the appropriate pressure loss and flow rate values are selected. The method to be used for the desired lengths of performance data is made by calculating the number of modules. The result is reached by correcting the data found for 1 module.

Number of modules for 3 meters of slot diffuser: Round up [3000/2000]=2 modules.

1 module length=3000/2 [Module]=1500 mm [Length to be used in calculation]

Required flow rate for 1 module=400/2 [Module] 200 m³/h [Flow Rate Used in Calculation]

From the effective area table (Table 2), the effective areas of the 1500 mm wide slot diffusers are selected according to the number of slots. Accordingly, the effective area values are approximately 0.0139 m² (1 slot), 0.0252 m² (2 slot), 0.0363 m² (3 slot) and 0.0476 m² (4 slot) according to the number of slots.

Using the effective area value obtained from the supply data table (Table 3) and the required flow rate for 1 module, the appropriate effective area is determined. Performance data:

#### 1 slot 3 slots

Pressure Drop: 25 Pa
Throw Distance: 3.5 m
Pressure Drop: 11.6 Pa
Throw Distance: 1.5 m

Sound Power Level: 25.3 dB(A) Sound Power Level: <15 dB(A)

2 slots 4 slots

Pressure Drop:  $9.32 \, \text{Pa}$ Throw Distance:  $2.1 \, \text{m}$ Sound Power Level:  $17.5 \, \text{dB}[A]$ Pressure Drop:  $9.32 \, \text{Pa}$ Throw Distance:  $1.2 \, \text{m}$ Sound Power Level:  $17.5 \, \text{dB}[A]$ 

#### **Throw Distance Correction Table**

In the 2-module slot diffuser selection, the throw distance was found to be 1.9 m. For cooling mode -8 K, refer to the Throw Distance Correction Chart (Table 4). The multiplier value is 1.42.

Corrected throw distance=2.1 m x 1.42=2.98 m



#### PRODUCT ORDER CODE

You can place your orders according to the following coding format.

#### OLZ .ALM.KP. < A > . < B > . < C >


| Α | Slot Width (W) [mm]                      |                             |
|---|------------------------------------------|-----------------------------|
|   | 0000                                     | Standard dimensions         |
| В | Vertical Size (H) [mm] & Number of Slots |                             |
|   | 050-01                                   | 50 mm - 1 Slot              |
|   | 092-02                                   | 92 mm - 2 Slots             |
|   | 133-03                                   | 133 mm - 3 Slots            |
|   | 175-04                                   | 175 mm - 4 Slots            |
| С | Paint                                    |                             |
|   | 00                                       | Unpainted                   |
|   | S1                                       | Standard Painted - RAL 9010 |
|   | S2                                       | Standard Painted - RAL 9016 |
|   | XX                                       | Special Painted             |
|   | EK                                       | Matt Anodized Coating       |

Sample Coding; OLZ.ALM.KP.01000.133-03.S1

| NOTES |                              |   |
|-------|------------------------------|---|
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       | IKLIMLENDIRME   HVAC SYSTEMS | ) |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |
|       |                              |   |







#### Fabrika

İTOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477, Tekeli, Menderes, İzmir/TÜRKİYE Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### İstanbul Satış Ofisi

Barbaros Mah. Ciğdem Sk. No: 1, Ağaoğlu My Office, Kat: 4/18, Ataşehir, İstanbul/TÜRKİYE

Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56









# **FOUR DKS**Air Handling Unit



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











**FOUR SEASONS** Air Handling Units are manufactured in 28 different sections. Volume flow rate in units for cooling and ventilation is 900-133.000 m³ / h and 900-177.000 m³ / h only for heating units.



**FOUR SEASON** Air Handling Units are modular and have double-walled panels. It can be produced by using panels of 50 mm or 60 mm thickness with rock wool, glass wool or polyurethane insulation, depending on demand and application. The outer surfaces are painted sheet metal in standard RAL 9002 color, and the inner surfaces can be galvanized, painted or stainless steel according to the request and application. It is easy to clean with its smooth inner surface and dust accumulation is prevented.

**FOUR SEASON** air handling units form a strong structure with specially designed aluminum profiles with electrostatic furnace painted and plastic corner fasteners. EPDM-based seals are used to ensure impermeability.

Filter selections are made taking into account the needs of the environment and the process in which the unit operates. With special designs, leaks that may occur during air flow are prevented, and high efficiency is achieved in coils and filters.

Optionally, plate, rotor or coil type heat recovery units are used for energy efficiency, which is of great importance today.

The fan-motor group is selected in the most efficient way, taking into account the air flow and total static pressure. Fans are selected according to the intended use and desired design criteria, with forward curved dense blades, backward inclined sparse blades, airfoil or plug types. Fans with approved performance tests are used. The motors are in IP55 class as standard and comply with CE norms.

Dampers used in Air Handling Units are manufactured using aluminum profiles, aluminum blades and plastic-based gears. The gears are out of the air stream. It provides sealing between specially shaped plastic gaskets and damper blades.

#### **AIR HANDLING UNITS SELECTION PROGRAM**

The technical report containing the selection, sizing and performance data sheet of **FOUR SEASONS** brand air handling units can be created easily with **FOUR DKS** air handling unit selection program.

Thanks to the air handling unit selection program: According to the desired air flow rate, you can see the air velocities in different unit sections and on the coil surface and determine the most suitable cross section. You can create the unit you want by bringing the elements you have determined side by side. For every element you can specify the accessories. In the selection of each element, you can see the brand model alternatives together with their price rates, you can choose the most suitable option in terms of parameters such as efficiency and price. You can determine how many parts the unit will consist of and the maximum cell size. You can see the dimensions and weights of the parts that make up the unit. You can see the technical report of the unit you choose, including its price, its sized picture and the necessary information.

|                 | Air Handling Unit<br>Internal Section |         | ng / Ventilation | Heating / Ventilation |
|-----------------|---------------------------------------|---------|------------------|-----------------------|
| Model           | W x H                                 | Flow Ra | te m³/h          | Flow Rate m³/h        |
|                 | (mm) x (mm)                           | Minimum | Maximum          | Maximum               |
| DKS-S 062 - 046 | 620 x 465                             | 926     | 1852             | 2469                  |
| DKS-S 062 - 062 | 620 x 620                             | 1296    | 2592             | 3456                  |
| DKS-S 093 - 062 | 930 x 620                             | 2160    | 4321             | 5761                  |
| DKS-S 124 - 062 | 1240 x 620                            | 3024    | 6049             | 8065                  |
| DKS-S 093 - 093 | 930 x 930                             | 3395    | 6789             | 9053                  |
| DKS-S 124 - 093 | 1240 x 930                            | 4753    | 9505             | 12674                 |
| DKS-S 155 - 093 | 1550 x 930                            | 6110    | 12221            | 16295                 |
| DKS-S 124 - 124 | 1240 x 1240                           | 6481    | 12962            | 17282                 |
| DKS-S 155 - 124 | 1550 x 1240                           | 8332    | 16665            | 22220                 |
| DKS-S 186 - 124 | 1860 x 1240                           | 10184   | 20368            | 27158                 |
| DKS-S 155 - 155 | 1550 x 1550                           | 10554   | 21109            | 28145                 |
| DKS-S 186 - 155 | 1860 x 1550                           | 12900   | 25800            | 34400                 |
| DKS-S 217 - 155 | 2170 x 1550                           | 15245   | 30491            | 40654                 |
| DKS-S 186 - 186 | 1860 x 1860                           | 15610   | 31221            | 41628                 |
| DKS-S 217 - 186 | 2170 x 1860                           | 18449   | 36897            | 49196                 |
| DKS-S 248 - 186 | 2480 x 1860                           | 21287   | 42574            | 56765                 |
| DKS-S 217 - 217 | 2170 x 2170                           | 21671   | 43341            | 57789                 |
| DKS-S 248 - 217 | 2480 x 2170                           | 25005   | 50009            | 66679                 |
| DKS-S 279 - 217 | 2790 x 2480                           | 28339   | 56677            | 75570                 |
| DKS-S 310 - 217 | 3100 x 2480                           | 31673   | 63345            | 84460                 |
| DKS-S 248 - 248 | 2480 x 2480                           | 27775   | 55550            | 74066                 |
| DKS-S 279 - 248 | 2790 x 2480                           | 31478   | 62956            | 83942                 |
| DKS-S 310 - 248 | 3100 x 2480                           | 35182   | 70363            | 93817                 |
| DKS-S 341 - 248 | 3410 x 2480                           | 38885   | 77770            | 103693                |
| DKS-S 403 - 248 | 4030 x 2480                           | 44440   | 88880            | 118506                |
| DKS-S 465 - 248 | 4650 x 2480                           | 51846   | 103693           | 138257                |
| DKS-S 527 - 248 | 5270 x 2480                           | 59253   | 118506           | 158008                |
| DKS-S 589 - 248 | 5890 x 2480                           | 66660   | 133320           | 177759                |

#### **CASSETTE STRUCTURE**

Special extrusion aluminum profiles, intermediate profiles and panels are used in the Four Seasons framed Air Handling Unit. Aluminum profiles are electrostatic powder painted, resistant to corrosion. Profiles are combined with each other specially designed plastic corners.

Panels are produced in standard sizes, with double walls and rock wool, glass wool or polyurethane are used as insulation material between them. Panel thickness is 50 mm or 60 mm. The outer sheet of the panels is painted as standard in RAL 9002 color, coated with protective polyfilm, and the inner surfaces are made of galvanized, stainless or painted sheet. Sheet thickness is in the range of 0.8–1.2 mm. Panels are removable from outside of the air handling unit. The internal surfaces of the unit are designed to be completely smooth. Panels are fastened directly to the profiles with special self-drilling screws. EPDM-based sealing gaskets are used between panels and profiles. Intermediate profiles are used between the panels. The intermediate profiles are also filled with insulation material.

Leak-proof sealed service doors are installed at required places on the power plant. Service doors can also be manufactured with sight glass on request or according to the purpose of application (hygienic, etc.).

Air handling unit base can be in one piece or in pieces on the basis of cells, depending on the size of the unit. Air handling units are placed on a 141 mm base at low pressures and 200 mm at high pressures. There are lifting holes in the base for easy transportation.

In outdoor units, the unit is protected from external weather conditions by a specially designed roof.

Air Handling Unit can be shipped in modular or disassembled form and assembled on site in order to provide ease of transportation. It can be connected to each other with special connection elements in cell assembly. Special EPDM gasket is used to seal the joint interface.

#### **ACCESSORIES**

In Four Seasons Air Handling Units, optional lighting, sight glass, mano-meter, flexible connection in the throw and suction nozzles, siphon, maintenance switch, damper motor and rain protection are used.









#### **FILTERS**

The entire cross section of Four Seasons Air Handling Units is used as a filter transition area in accordance with international standards. The filters are cassette type and can be easily attached and detached. Air leaks are prevented with suitable designs. There are maintenance and replacement service doors for filter cells. Optionally, manometer, illumination and sight glass are used.

Considering the importance of indoor air quality in air handling units, filters of different types and efficiency are used. Generally, filter types are panel filter, bag filter, metal filter, active carbon filter, compact filter, hepa filter.

Panel filters are used as pre-filters. The filter material is synthetic or metallic. Metal filters have the feature of holding oil. The filter classes we use are; for synthetic material: G2, G3, G4, for metallic material: G2, G3.

Bag filters are used for high efficiency air filtration. Their dust holding capacity is high. They should be used in conjunction with a pre-filter to increase their life. Bag lengths vary as 305 mm, 508 mm, 635 mm according to air flow. The filter classes we use are G4, F5, F6, F7, F8.

Compact filters are high efficiency filters. They must be used in conjunction with a pre-filter. Since their depth is 292 mm, they occupy less space in the air handling unit. Due to the filter structure, it is possible to distribute the air evenly over the entire filter surface. The filter classes we use are F6, F7, F8, F9.

Hepa filters are used for hygienic environments. Their efficiency is very high. These filters are installed after the fan and must be used with a pre-filter. The filter classes we use are H10, H12, H13, H14.

Activated carbon filters are used to absorb malodorous gas or vapor molecules from the air (such as exhaust fumes, rubber odor, alcohol, hydrocarbon, chlorine, and odors from other chemical production processes). An alternative model is available to absorb odors from other industrial processes such as hydrogen sulfide, sulfur dioxide, and they must be used with a pre-filter to increase their life.



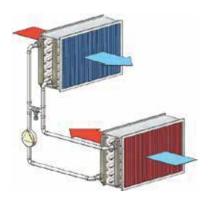


#### **ASPIRATOR-MIXTURE-VENTILATOR CELLS**

#### **DAMPERS**

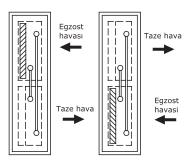
Damper sections are sized in accordance with the air velocity. Dampers with opposed blades in aerofoil structure are used as standard. The material of the damper frame and blades is aluminum. Air leakage has been minimized by using gaskets on the wing edges. Dampers are manufactured in accordance with manual or servo motor control.

Optional servo motor, rain protection and flexible connection can be attached.


Damper dimensions are standard according to the type of plant and are designed to pass 100% air flow rate.



#### **HEAT RECOVERY SYSTEM**


Today, energy efficiency is of great importance. For this reason, the use of heat recovery units has started to be preferred in air handling units. Serpentine, plate and rotor heat recovery elements are used in Four Seasons Air Handling Units.

Generally, efficiency varies between 30-50% in serpentine type heat recovery units, 40-60% in plate type, and 60-80% in rotor type.



#### SERPENTINE HEAT RECOVERY

With double coil heat recovery, heat transfer between fresh air and exhaust air is realized by the fluid circulating in the coils in a closed circuit. Heat transfer is carried out from air to water - from water to air. There is no mixing of fresh air and exhaust air. Ethylene glycol is used in areas with risk of freezing. There is a need for a circulation pump and balance tank in the system. A condensation pan is used on the exhaust side.



#### **PLATE HEAT RECOVERY**

Cross flow plate type heat recovery elements allow heat transfer between fresh air and exhaust air without moving parts. It is possible to provide full sealing even in high pressure differences. It can operate between -30°C and 90°C. Plates are made of aluminum, epoxy-coated aluminum or stainless steel. They are manufactured with by-pass dampers to prevent freezing at low temperatures. In the exhaust part, a condensation pan is installed against condensation that may occur.



#### PLATE HEAT RECOVERY

They have a compact structure and high thermal performance. Heat transfer is performed with the wavy sheet-like aluminum plates placed inside the rotor. Rotor rotation is provided by a belt-pulley driven electric motor.

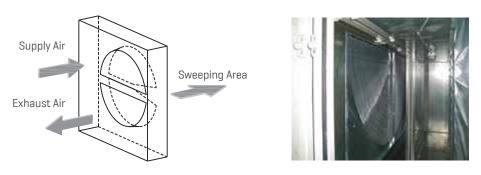
#### It can generally be grouped into 3 types:

#### 1-Condensing heat wheels:

In standard comfort ventilation, it is a low cost solution that provides heat recovery by condensing and draining the water vapor in the air.

#### 2-Dehumidifying heat wheels:

It transfers moisture with its special surface at appropriate temperature ranges in standard comfort ventilation applications.


#### 3-Enthalpic heat wheels:

It is preferred in climatic conditions with high temperature and humidity. It transfers higher amounts of moisture thanks to the filling surfaces coated with desiccant materials. With its pre-cooling and dehumidification feature, it reduces the energy spent for cooling. Therefore, as chillers are used in smaller capacities, it provides significant energy savings.

The filling diameter is between 250-5000 mm. It takes up less space due to its compact structure. The temperature efficiency of the heat wheels has been optimized for a rotational velocity of 12 rpm per minute. It is increased according to the application situation. If capacity control is required according to variable climate conditions, velocity control can be done with a frequency converter. Capacity control request must be notified in the order. There is no risk of freezing.

# DETERMINATION OF THE FAN POSITION IN AIR HANDLING UNITS WITH ROTARY TYPE HEAT RECOVERY SYSTEM

While determining the fan rotor positions on the heat wheel, attention should be paid to the sweeping zone that occurs. Allowable contamination-leakage amount in heat wheel according to EN308 and ARI 1060 is maximum 3%. Leakage is below 0.5% on a correctly configured, pressurized and manufactured heat wheel with a standard sweeping chamber. Sweep zone angle according to fan positions and pressure difference is given in the table.



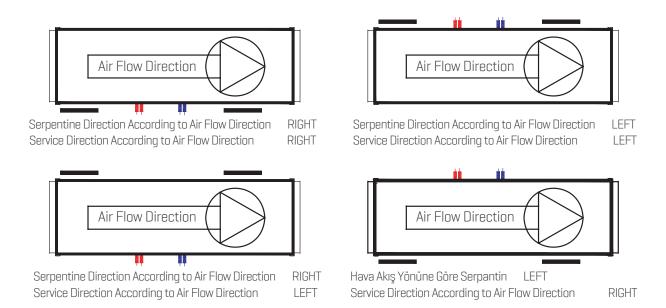
#### **AIR HANDLING UNITS SELECTION PROGRAM**

| Fan Position                       | ∆ <b>P&lt;200 Pa</b>        | △ <b>P 200~500 Pa</b>       | △ P 500~800 Pa  | 800 Pa<∆P                   |
|------------------------------------|-----------------------------|-----------------------------|-----------------|-----------------------------|
| SUPPLY AIR  P1  P2  EXHAUST  AIR   | Sweep Zone<br>Not Necessary | Sweep Zone<br>Not Necessary | 2.5°            | Sweep Zone<br>Not Necessary |
| SUPPLY AIR P1 P2 EXHAUST AIR       | Sweep Zone<br>Not Necessary | Sweep Zone<br>Not Necessary | 2.5°            | Sweep Zone Not<br>Necessary |
| SUPPLY AIR P1 P2 EXHAUST AIR       | Sweep Zone<br>Not Necessary | Sweep Zone<br>Not Necessary | 2.5°            | Sweep Zone<br>Not Necessary |
| SUPPLY AIR P1  P2  EXHAUST AIR  P3 |                             |                             | Not Recommended | I                           |

#### Note:

 $\Delta P = P1 - P3$  (Pressure difference between supply air and return air)

#### **HEAT RECOVERY SYSTEM**


Electric heater is used optionally in Four Seasons Air Handling Units. It is used at the entrance of the power plant in areas with high risk of freezing. It is also used at the exit of the power plantin sensitive systems that require instant heating. The electric heater frame is optionally manufactured from galvanized or stainless steel. Its elements are stainless material. Protection class is IP43. It can be made gradually or proportionally. It has CE certificate. As standard. there are automatic reset limit thermostats and manual reset safety thermostats in the heaters. If the heater is over 30 kW, it is recommended to run the air handling unit's fan for another 2-3 minutes after the power is cut off. If there is an electric heater in the air handling unit, precautions must be taken to deactivate the electric heater in cases where the fan does not operate or operates at very low speeds (less than  $1.5 \, \text{m/s}$ ].



#### **HEATING AND COOLING SERPENTINS**

Heating and cooling processes are carried out with coils. Serpentine pipes can be copper or steel, blades can be aluminum, copper, steel, epoxy coated aluminum or epoxy coated copper. Direct expansion coils are manufactured as copper tube-aluminum fins and collectors are copper. Serpentine frame is made of galvanized steel plates. Test pressure is 20 bar. Pipe inlet-outlet openings in hot and cold water coils are threaded; In superheated and steam coils, pipe inlet-outlet openings are flanged. It is designed to be easily taken out for maintenance. Air is only allowed to pass through the serpentine surface with special by-pass plates. Air and water are designed as counter flow in order to provide high efficiency. In hot and cold water coils, the water inlet is from the bottom and the water outlet is from the top. In the cooling coils, thanks to the condensation pan that is embedded in the panel, the surface area of the coil is used efficiently. The condensation pan is made of stainless steel with double slope. A separator is used to keep the condensed water in the air after the cooling coil.

#### Serpentine and Service Directions



#### **HUMIDIFIER**

The desired humidity rate in the location is provided by humidifiers. Steam type, filled type, isothermal gas burning and atomizer humidification units are used in Four Seasons Air Handling Units.





#### **STEAM HUMIDIFIER**

It generates steam from water with electrical energy. It is microprocessor controlled. The steam taken from the humidifier unit is humidified with the help of steam distribution pipes in the air handling unit. There are many models in the range of 1.5-130 kg/h that operate with On-Off or proportional control.

#### **FILLER TYPE HUMIDIFIERS**

It is evaporative humidification in which the air is passed over the wet filling. The filling is wetted by the circulation pump system. The efficiency of the humidifiers used is 65% -85% -95%. A separator is placed in the humidifier section at air velocities above 3.5 m/s.

#### **ISOTHERMIC GAS BURNING HUMIDIFIERS**

Isothermal gas-burning humidifiers can produce isothermal steam by burning gas thanks to their compact structure. It can burn natural gas (G20 or G25), propane (G30) or butane (G31) without changing parts during assembly. Isothermal steam humidifiers are installed outside the unit and the generated steam is directed into the air handling unit through steam distribution pipes.



#### **ATOMIZER HUMIDIFIERS**

They are devices that produce high amount of steam by consuming very low energy. There are models ranging from 100 to 600 kg/h. These devices, which operate proportionally, have the ability to be connected to more than one air handling unit. It works with demineralized water. It sprays and pulverizes the water at a pressure of up to 75 bar, thus allowing it to mix with air completely. It consumes approximately 4 watts of energy for each liter / hour humidification. The system complies with DIN 1946 hygiene standards. This type of humidifier is also used for adiabatic cooling. Equipments:

- A frequency controlled pump
- Control unit
- Distribution pipes
- Automatic column valves
- Drain valves
- Stainless steel sprayers
- Drop holder

#### **SILENCERS**

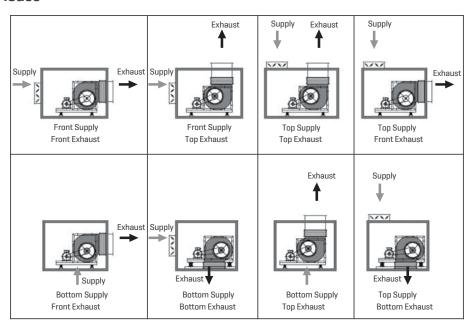
The noise level, which is of great importance in ventilation systems, is reduced to an acceptable sound level in the room with the help of silencers. The sound absorption coefficient of the silencers varies according to the silencer size used. The silencer cell consists of coulettes in which rock wool is placed in galvanized or stainless sheet metal. Silencer elements are designed not to be deformed at 20m / s air speed. 6 different silencer lengths are offered in Four Seasons Air Handling Units. Sound absorption capacities are given in the following tables according to the silencer sizes.

| SILENCER       |       | SOUND ABSORPTION CAPACITY (dB) |        |        |         |         |         |         |  |  |  |
|----------------|-------|--------------------------------|--------|--------|---------|---------|---------|---------|--|--|--|
| LENGTH<br>(mm) | 63 hz | 125 hz                         | 250 hz | 500 hz | 1000 hz | 2000 hz | 4000 hz | 8000 hz |  |  |  |
| 600            | 5     | 9                              | 15     | 16     | 16      | 11      | 8       | 8       |  |  |  |
| 900            | 6     | 12                             | 21     | 22     | 23      | 16      | 11      | 11      |  |  |  |
| 1200           | 7     | 15                             | 27     | 28     | 29      | 20      | 12      | 12      |  |  |  |
| 1500           | 9     | 19                             | 33     | 34     | 36      | 25      | 17      | 17      |  |  |  |
| 1800           | 10    | 22                             | 39     | 40     | 42      | 29      | 20      | 20      |  |  |  |
| 2100           | 11    | 25                             | 45     | 46     | 48      | 33      | 23      | 23      |  |  |  |

#### **FANS AND MOTORS**

Various fan types are presented in accordance with the air flow rate and total pressure drop in each section. Static and dynamically balanced fans in accordance with international standards can be forward curved, backward inclined or airfoil blades, depending on the purpose of use and customer demand. Fan motor group is selected considering high efficiency, low noise level and minimum energy consumption, depending on the air flow and total static pressure. In order to prevent vibration, the fan-motor group is connected to the device with spring insulators.

In our units, bushed, fixed diameter pulleys are used as standard. It is possible to use variable diameter pulleys optionally. SPZ, SPA, SPB and SPC belt types are available. The belt is tensioned by a special mechanism. There is a safety guarded service door in the fan cell for service and maintenance. In special cases, plug type fans are used and they are directly coupled to the motor. The motors are in IP55 protection class as standard and comply with CE norms. The motors are single-speed as standard and double-speed motors can be used optionally. A frequency converter for motor speed control is available as an accessory.










#### **Fan Operating Modes**



#### **ATOMIZER HUMIDIFIERS**

Diffusers are used to ensure a homogeneous distribution of air over these elements in case there are elements such as filters, serpentines, and silencers after the fan.

# **AIR HANDLING UNITS SELECTION PROGRAM**

| FUNCTION-EQUIPMENT                                                                                                                                                                    | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STANDARD - ST<br>OPTIONAL - OP |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Emergency stop button                                                                                                                                                                 | Emergency stop button that stops the system in an emergency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ST                             |
| External links are made terminal board.                                                                                                                                               | Motor terminals are moved to an easily accessible panel outside the unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ST                             |
| AUTOMATIC CONTROL  Electronic control panel  Duct type temperature sensor  Duct type humidity sensor  Valve servomotors  Damper servomotors  Frequency Converters                     | Air temperature control at the desired point or points. Humidity control at the desired point or points. Control of two-way or three-way valves. Control of dampers. Air pressure control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OP<br>OP<br>OP<br>OP<br>OP     |
| MICROPROCESSOR CONTROL Microprocessor Duct type temperature sensor Duct type humidity sensor Differential pressure switches Valve servomotors Damper servomotors Frequency Converters | <ul> <li>Air flow is controlled. Pressure control between two spaces can be made. Generating alarm information in case the desired flow cannot be achieved (blockage, malfunction, contamination).</li> <li>Adjustable ventilator flow rate according to operating altitude and temperature.</li> <li>Preheating, heating and cooling algorithms optionally input, output or according to preheating temperatures. Blowing temperature limit control can be made.</li> <li>Detecting the pollution of all filters used separately and generating alarm information.</li> <li>Efficient working conditions are obtained by controlling DX coils.</li> <li>It is possible to see and change all parameters with the terminal on it.</li> <li>All exchanges can be communicated as a network.</li> <li>Operation and configuration parameters can be encrypted.</li> <li>Audible and visual alarm information can be given.</li> <li>Daily, weekly work-stop time can be adjusted.</li> <li>Turkish and English options</li> <li>The entire system can be connected to a central computer with additional hardware, managed and accessed over the internet.</li> <li>When the unit configuration changes, a new configuration can be easily defined parametrically (adding humidification or dehumidification, valve and damper control changes, changing the fan control type, etc.)</li> <li>Temperature control can be done parametrically, proportional, proportional + integral or proportional + integral + derivative.</li> <li>Compensation can be made according to outdoor temperature and can be adjusted parametrically.</li> <li>The control of the fans can be done parametrically, thermostatic, continuously, gradually or proportionally.</li> <li>The way the fan motors start up (direct, star, triangle) is parametrically adjustable.</li> <li>Each piece of equipment can be tested by running it individually.</li> <li>All kinds of alarm information are kept in memory (Differential pressure switches, thermal, sensor, emergency stop, etc.).</li> </ul> | OP                             |

| NOTES |                             |   |
|-------|-----------------------------|---|
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       | İKLİMLENDİRME L HVAC SYSTEM | S |
|       | THE THINK OF OTEN           |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |
|       |                             |   |

| NOTES |               |              |
|-------|---------------|--------------|
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       | iklimlendirme | HVAC SYSTEMS |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |







# Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

Yenimahalle, Ankara/TURKEY

**Antalya Sales Office**Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel.: +90 242 505 87 77

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A

Blok Kat:11 Ofis:1104 06520 Söğütözü,

#### **Adana Sales Office**

Mimar Selim Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301







DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC quaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 45001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], have TSEK and CE quality certifications. Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK and CE quality certifications.

































İTOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### İstanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Atasehir, İstanbul/TURKEY Tel.: +90 216 250 55 45 | Fax:+90 216 250 55 56

#### Ankara Sales Office

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A Blok Kat:11 Ofis:1104 06520 Söğütözü, Yenimahalle, Ankara/TURKEY Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

#### **Antalya Sales Office**

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel.: +90 242 505 87 77

#### Adana Sales Office

Mimar Semih Rüstem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301







**PRODUCTS** 



#### **FOUR DKS AIR HANDLING UNIT**

- € Flow rate range of 2.000 100.000 m³/h
- Furnient certified
- © DIN 1946/4 & VDI 6022 hygiene certified • Steel profile case with D1 - L1 - T3 - TB2
- Thermal bridgeless aluminum profile case with D1 - L1 - T2 - TB2
- Easy installation and commissioning Pluq&Play
- Modbus, BACnet, LonWorks

### **FOUR ECRH ROOFTOP UNIT**

FOUR ECRH 030/045/060/075/095/125/155/180

Flow rate range of 4.400 − 35.200 m³/h

• Operation with 0-100% fresh air

€ Eco-friendly R32 refrigerant gas.

Independent dual circuit cooling

© Optional rotary type heat exchanger

© Optional thermodynamic heat recovery

© Optional water, electric or natural gas heater

EC plug fan and EC axial fan

© Optional economizer

Modbus, BACnet, LonWorks

Coptional return fan

Pluq&Play

High seasonal efficiency

© Compatible with ECODESIGN ErP 2021 Lot 21

© Double skin case (50 mm rock wool insulation)

**PACKAGE POOL DEHUMIDIFIER UNIT** 

**FOUR POOL** 

FOUR POOL-CRF/FOUR POOL-00 30/45/60/80 /100/120/ 160/180/200/250



- € Flow rate range of 3.000 25.000 m³/h • Hydrophilic coated plate heat exchanger
- High efficiency AC plug fan
- Double skin case (50 mm rock wool insulation)
- Absolute humidity control Mechanical cooling
- Free cooling
- Optional EC plug fans
- Plug&Play
- Modbus, BACnet, LonWorks

# RESIDENTIAL HEAT RECOVERY UNIT

FOUR HOME 27/35/50/65/85

FOUR HOME

FOUR HOME CEILING 35/50



- Flow rate range of 270 850 m<sup>3</sup>/h Compliant with ERP 2018 directives
- € A+ energy class Counterflow plastic heat recovery exchanger
- EC plug fan € 19 mm rubber insulated case Low sound level
- Interchangeable service direction from right or left Switchable duct connection from top or front
- ♠ By-pass damper (%100)
- Optional CO<sub>2</sub> and humidity sensor
- © Optional wireless control Optional ISO ePM1 filter
- © Optional duct type electric heater
- Optional duct type DX/heating/cooling coil Pluq&Play
- Modbus

**FOUR HOME CEILING** 

RESIDENTIAL HEAT RECOVERY UNIT

(CEILING TYPE)

- Flow rate range of 350 500 m<sup>3</sup>/h
- Compliant with ERP 2018 directives A+ energy Class
- Counterflow plastic heat recovery exchanger
- EC plug fan • 19 mm rubber insulated case
- Low sound level
- Interchangeable service direction from right or left
- By-pass damper (%100) Optional CO<sub>a</sub> and humidity sensor
- Optional wireless control
- Optional ISO ePM1 filter
- Optional duct type electric heater Optional duct type DX/heating/cooling coil
- Plug&Play Modbus

## **B-FRESH AIR PURIFIER**

B-FRESH 05/08/12/20



- 33.9 dB sound level at minimum speed thanks to 30 mm rock wool insulation.
- High efficiency low sound level EC fans.
- lt can be used in areas up to 270 m<sup>2</sup> such as lobby, meeting room, office, gym, classroom, nursery, market, mosque, public building, hairdressers.
- Adjustable 5 level fan speed.
- Ontinnal D99 dose ozone-free LIV-Clamp.

# GLC / GLD **LAMINAR FLOW CEILING SYSTEM**

€ DIN 25414, ÖNORM H6020, SWKI VA 105-01, HTM 03-01 € HEPA filter with MDF or aluminum frame

**GFP HEPA FILTER BOX** 

€ 100% leakproof quarantee

sheet manufacturing

© DKP sheet or AISI 304 quality stainless steel

Inner surface resistant to disinfection processes.

DIN 1946-4, DIN 24194, DIN 25414 hygiene standards.

### **VGF FIRE AND SMOKE DAMPER**



- € El 120 (ve, ho i <-> o) S fire resistance according to EN 13501-3:2005+A1:2009 standard € CE certificate according to EN 15650:2010 standard
- Easy installation
- Single module production between 200x200 mm and © Complies with VDI 6022, VDI 3803, EN 16798, ISO EN 14644, 1300x800 mm dimensions

# **FOUR RTER ROTARY ENERGY RECOVERY UNIT**

FOUR RTER 010/018/025/035/050 /070/090/110/140/200



- € Flow rate range of 1,000 20,000 m³/h
- Compliant with ERP 2018 directives
- Rotary energy recovery exchanger EC plug fan
- Switchable duct connection from top or front
- Interchangeable service direction from right or left Low sound level
- © Double skin case (50 mm rock wool insulation) © Optional duct type attenuator and damper
- © Optional duct type electric heater
- © Optional duct type DX/heating/cooling coil
- Plug&Play
- Modbus, BACnet, LonWorks

## **FOUR FHR** COUNTER FLOW **HEAT RECOVERY UNIT**

FOUR FHR 010/016/025/040/060/085/110/140/170



- € Flow rate range of 1.000 17.000 m³/h
- Compliant with ERP 2018 directives
- Counterflow aluminum heat recovery exchanger
- Low sound level

Plug&Play

- By-pass damper (%100)
- ● Double skin case (50 mm rock wool insulation)
- Optional duct type attenuator and damper
- Optional duct type electric heater
- Optional duct type DX/heating/cooling coil
- Modbus, BACnet, LonWorks

# **COUNTER FLOW HEAT RECOVERY UNIT** (VERTICAL TYPE)

**FOUR FHR-T** 



- Flow rate range of 1.000 − 7.000 m³/h Compliant with ERP 2018 directives
- Counterflow aluminum heat recovery exchanger
- EC plug fan
- Low sound level
- By-pass damper (%100)

- Optional duct type DX/heating/cooling coil
- Vertical[Top Outlet]
- Double skin case (50 mm rock wool insulation)
- Optional duct type attenuator and damper Optional duct type electric heater
- Plug&Play
- Modbus, BACnet, LonWorks

## FOUR CFHR **COUNTER FLOW HEAT** RECOVERY UNIT (CEILING TYPE)

FOUR CFHR/CFHR-S 05/07/10/12

/16/25/28/33/40



- Flow rate range of 500 − 4.000 m³/h Compliant with ERP 2018 directives
- Counterflow aluminum heat recovery exchanger (CFHR) Crossflow paper energy recovery exchanger (CFHR-S)

By-pass damper (%100)

- © Double skin case (30 mm rock wool insulation) Low sound level
- € Optional CO₂ and humidity sensor Optional ISO ePM1 filter
- Optional duct type electric heater © Optional duct type DX/heating/cooling coil
- Modbus

# **FOUR HPGK HEAT PUMP HEAT RECOVERY UNIT**

FOUR HPGK 07/10/15/20/30/40



€ Flow rate range of 700 – 4.000 m³/h

Optional duct type DX/heating/cooling coil

- Integrated heat pump system Cross flow heat exchanger
- € EC / AC plug fan
- © Optional attenuator and damper © Optional duct type electric heater
- Plug&Play Modbus

# **FOUR KITCHEN ECOLOGY UNIT**

FOUR KITCHEN 021/042/063/084

/105/126/147/168



- Flow rate range of 3.500 − 30.000 m³/h
- Compact design Optional stainless steel internal surface
- Cyclone metal filter, greasestop filter, electrostatic filter, activated carbon filter
- Fan flow control according to filter pollution Plug&Play

Optional V-UV lamp

# FOUR SMOKE SOOT & GREASE ABATEMENT SYSTEM

€ 100% leakproof quarantee

99.995% filter efficiency

hygiene standards.

€ AISI 304 quality stainless steel manufacturing

€ Complies with ISO EN 14644, DIN 1946/4, DIN 24194,



- Flow rate range of 3.000 − 10.000 m³/h
- Compact design
- AISI 304 quality stainless steel manufacturing
- Low water consumption Low energy consumption
- High efficiency filtration system
- Plug&Play Modbus

### HWW MAKE-UP AIR HOOD **WITH WATER WASH**

FOUR SMOKE 030/050/075/100



- AISI 304 quality stainless steel manufacturing € Up to 95% particle capture ability
- Easy maintenance thanks to the washing system 40% lower exhaust flow and operating cost
- Fast and accurate product selection with the selection program







- Flow adjustment according to comfort needs
- High precision calibration in the VAV-CAV laboratory
- € Compliance with VDI 6022,DIN 1946-4,VDI 3803, EN 16798-3 hygiene standards
- Optional acoustic insulation





**GFP** Hepa Filter Box



# Venues Breathe with DOGU HVAC Systems!

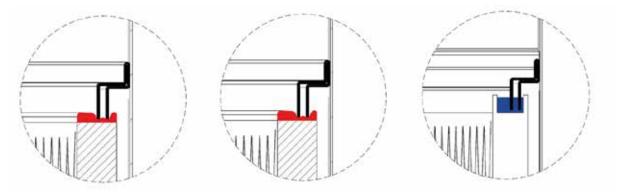
DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.












- GFP Hepa Filter Box is designed for sterile rooms, operating rooms and clean rooms (pharmaceutical, chemical, food industries).
- € All Hepa filter boxes are tested according to DIN 1946/4 during production with 100% leakage guarantee.
- © GFP fully responds to application requirements with its wide product range.
- © GFP has differential pressure measuring tips to measure filter contamination.
- The inside of the box is resistant to disinfection.

#### **MATERIAL**

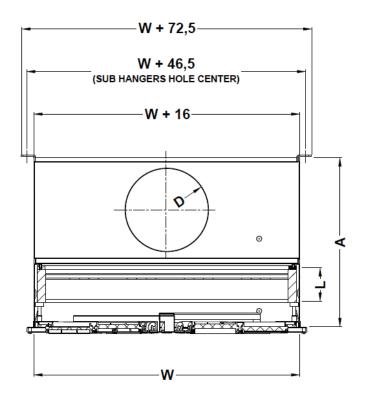
- Hepa filter box is produced from sheet steel or optional AISI 304 quality stainless sheet.
- All accessories are corrosion resistant.
- Flat profile type in hepa filter is compatible with both EPDM and Gel type seals.

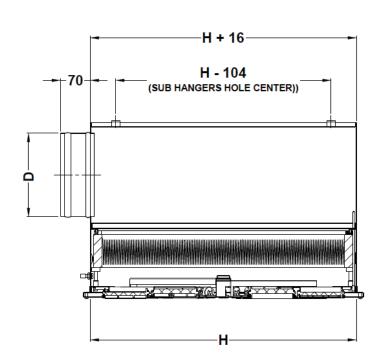


Aluminium Filter Case with EPDM Sealing MDF Filter Case with EPDM Sealing

Aluminium Filter Case filled with Gel

€ MDF and Aluminum options are available for the frame of the Hepa filter. At the same time, the filter pile heights can be chosen 50 mm or 125 mm depending on the dimensions of the Hepa filter.


#### **COLOR**


- RAL 9010 or RAL 9016 Electrostatic powder paint
- Optional
  - -Different RAL Codes

### COLOR

- © Center Support Installation
- © Corner Screw System Installation

### **DIMENSIONS**





**Table 1.** Dimensions Table

| Dimensions [W x H x Filter Height] (mm x mm x mm) |                 |  |  |  |  |  |
|---------------------------------------------------|-----------------|--|--|--|--|--|
| 305 x 305 x 78                                    | 305 x 305 x 149 |  |  |  |  |  |
| 305 x 610 x 78                                    | 305 x 610 x 149 |  |  |  |  |  |
| 457 x 457 x 78                                    | 457 x 457 x 149 |  |  |  |  |  |
| 457 x 610 x 78                                    | 457 x 610 x 149 |  |  |  |  |  |
| 535 x 535 x 78                                    | 535 x 535 x 149 |  |  |  |  |  |
| 575 x575 x 78                                     | 575 x 575 x 149 |  |  |  |  |  |
| 610 x 610 x 78                                    | 610 x 610 x 149 |  |  |  |  |  |
| 762 x 762 x 78                                    | 762 x 762 x 149 |  |  |  |  |  |

When L (Filter height) is 78 mm, A (Box height) = D + 190. When L (Filter height) is 149 mm, A (Box height) = D + 270.

### **PERFORMANCE DATA**

Table 2. Performance Data

| Dimensions<br>(mm x mm x mm) | Pleat<br>Length | Flow Rate<br>[m³/h] |     | Filter<br>Drop [Pa] | Dirty<br>Pressure | Filter<br>Drop [Pa] | Recommended Flex Pipe Diameter [mm] |
|------------------------------|-----------------|---------------------|-----|---------------------|-------------------|---------------------|-------------------------------------|
|                              | (mm)            | נייי ייין           | H13 | H14                 | H13               | H14                 | r ipo Biamotoi [iiim]               |
| 305 x 305 x 78               | 50              | 150                 | 100 | 125                 | 200               | 250                 | Ø125                                |
| 305 x 610 x 78               | 50              | 300                 | 100 | 125                 | 200               | 250                 | Ø160                                |
| 457 x 457 x 78               | 50              | 340                 | 100 | 125                 | 200               | 250                 | Ø160                                |
| 457 x 610 x 78               | 50              | 450                 | 100 | 125                 | 200               | 250                 | Ø180                                |
| 535 x 535 x 78               | 50              | 465                 | 100 | 125                 | 200               | 250                 | Ø180                                |
| 575 x 575 x 78               | 50              | 535                 | 100 | 125                 | 200               | 250                 | Ø200                                |
| 610 x 610 x 78               | 50              | 600                 | 100 | 125                 | 200               | 250                 | Ø200                                |
| 762 x 762 x 78               | 50              | 940                 | 100 | 125                 | 200               | 250                 | Ø250                                |
| 305 x 305 x 149              | 125             | 150                 | 55  | 70                  | 110               | 140                 | Ø125                                |
| 305 x 610 x 149              | 125             | 300                 | 55  | 70                  | 110               | 140                 | Ø160                                |
| 457 x 457 x 149              | 125             | 340                 | 55  | 70                  | 110               | 140                 | Ø160                                |
| 457 x 610 x 149              | 125             | 450                 | 55  | 70                  | 110               | 140                 | Ø180                                |
| 535 x 535 x 149              | 125             | 465                 | 55  | 70                  | 110               | 140                 | Ø180                                |
| 575 x 575 x 149              | 125             | 535                 | 55  | 70                  | 110               | 140                 | Ø200                                |
| 610 x 610 x 149              | 125             | 600                 | 55  | 70                  | 110               | 140                 | Ø200                                |
| 762 x 762 x 149              | 125             | 940                 | 55  | 70                  | 110               | 140                 | Ø250                                |

Note: The values in the table are valid when the filter face velocity is 0.45 m/s  $\,$ 

### **AIR DISTRIBUTOR DATA**

Table 3. Air Distributor Data

| Hepa Filter Box<br>Dimensions [mm x mm] | Air Distributor Equipment        | Corresponding<br>Equipment Size<br>[mm x mm] | Maximum<br>Flow [m³/h] | Pressure Drop<br>[Pa] |
|-----------------------------------------|----------------------------------|----------------------------------------------|------------------------|-----------------------|
| 305x305                                 | OSB - Prismatic Swirl Diffuser   | 355x355                                      | 150                    | 20                    |
| 3U3X3U3                                 | OAK - Square Ceiling Diffuser    | 201x201                                      | 120                    | 3                     |
| 305x610                                 | OSB - Prizmatik Swirl Difüzör    | 355x660                                      | 200                    | 38                    |
| 202X010                                 | OAP - Prismatic Ceiling Diffuser | 201x506                                      | 300                    | 4                     |
| (157.4157                               | OSB - Prizmatik Swirl Difüzör    | 507x507                                      | 2/10                   | 14                    |
| 457x457                                 | OAK - Square Ceiling Diffuser    | 353x353                                      | 340                    | 2                     |
| //57.010                                | OSB - Prizmatic Swirl Difüzör    | 507x660                                      | //50                   | 25                    |
| 457x610                                 | OAP - Prismatic Ceiling Diffuser | 353x506                                      | 450                    | 2                     |
| F0F. F0F                                | OSB - Prizmatic Swirl Difüzör    | 585x585                                      | //05                   | 13                    |
| 535x535                                 | OAK - Square Ceiling Diffuser    | 431x431                                      | 465                    | 2                     |
| F3F F3F                                 | OSB - PrizmaticSwirl Difüzör     | 625x625                                      | F0F                    | 18                    |
| 575x575                                 | OAK - Square Ceiling Diffuser    | 471x471                                      | 535                    | 2                     |
| 010-010                                 | OSB - Prizmatic Swirl Difüzör    | 660x660                                      | COO                    | 23                    |
| 610x610                                 | OAK - Square Ceiling Diffuser    | 506x506                                      | 600                    | 2                     |
| 700700                                  | OSB - Prizmatic Swirl Difüzör    | 812x812                                      | 0/10                   | 20                    |
| 762x762                                 | OAK - Square Ceiling Diffuser    | 658x658                                      | 940                    | 4                     |

## **INSTALLATION**

### **EXPLODED VIEW**

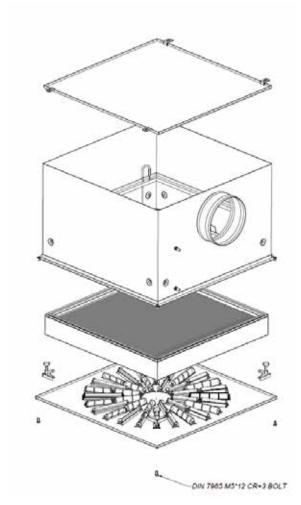



Figure 1. Corner Screw System Installation

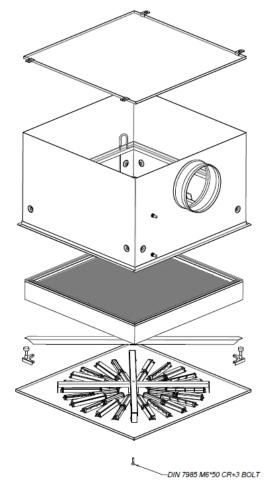
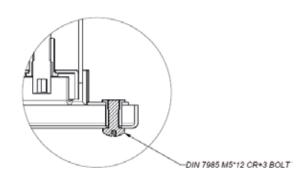
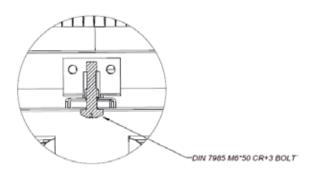
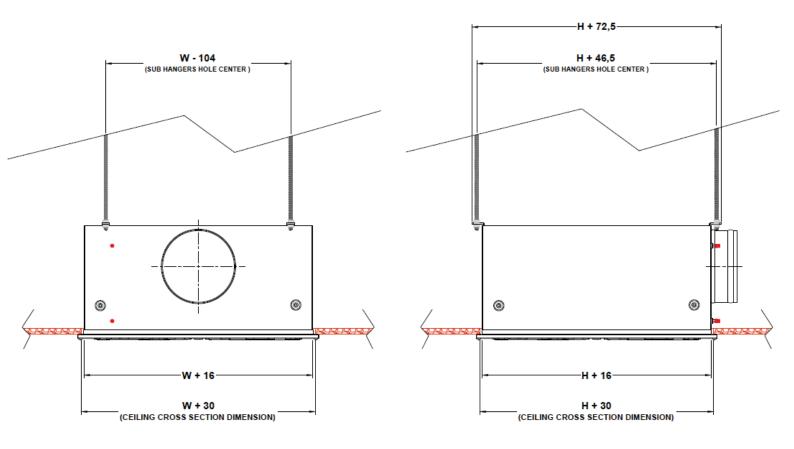





Figure 2. Center Support Installation


## **Corner Screw System Installation Detail**



## **Center Support Installation Detail**



### HANGING LUGS INSTALLATION DETAIL



#### **PRODUCT SELECTION**

**Example:** Supply flow rate of Hepa filter is determined as 450 m<sup>3</sup>/h. H13 filter type with a pleat height of 50 mm will be selected. Swirl diffuser will be used as air distribution equipment.

Solution: From the performance data table (Table 3) for 450 m<sup>3</sup>/h flow rate, appropriate size:

457 x 610 x 78

Corresponding clean filter pressure loss is 100 Pa.

For the air distributor data to be used in the product, the air distributor table (Table 4) is referenced. For the swirl diffuser, there is a pressure loss of 20 Pa at 450 m<sup>3</sup>/h air flow.

Total pressure loss = Filter Pressure Loss + Air Distributor Pressure Loss

Total pressure loss = 100 Pa + 20 Pa = 120 Pa.

| NOTES |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

## **WALL BRACLET INSTALLATION DETAIL**

### FILTER ORDER CODE

|                |                    |                       |           | Dimensions [mm x mm] |           |           |           |           |           |           |  |
|----------------|--------------------|-----------------------|-----------|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| Filter<br>Type | Filter Frame       | Filter Length<br>[mm] | 305 x 305 | 305 x 610            | 457 x 457 | 457 x 610 | 535 x 535 | 575 x 575 | 610 x 610 | 762 x 762 |  |
|                | MDF                | 78                    | F01       | F09                  | F02       | F94       | F03       | F04       | F05       | F20       |  |
|                | EPDM Gasket        | 149                   | F07       | F48                  | F06       | F94       | F08       | F14       | F17       | F20       |  |
| H13            | Aluminum           | 78                    | F21       | H11                  | F22       | H13       | F23       | F43       | F24       | F89       |  |
| птэ            | EPDM Gasket        | 149                   | H01       | F46                  | H02       | H17       | F93       | H03       | F91       | H19       |  |
|                | Aluminum           | 78                    | F27       | H21                  | F28       | H22       | F29       | F30       | F31       | H23       |  |
|                | Gel Gasket         | 149                   | H24       | H25                  | H26       | H27       | H28       | H29       | H30       | H31       |  |
|                | MDF                | 78                    | F60       | F66                  | F61       | H08       | F62       | F63       | F64       | F75       |  |
|                | EPDM Gasket        | 149                   | F68       | H09                  | F69       | H10       | H04       | F82       | F65       | F75       |  |
| U1/I           | Aluminum           | 78                    | F97       | H12                  | F96       | H14       | F95       | F18       | F15       | H15       |  |
| H14 E          | <b>EPDM Gasket</b> | 149                   | H05       | H16                  | H06       | H18       | F88       | H07       | F25       | H20       |  |
|                | Aluminum           | 78                    | H32       | H33                  | H34       | H35       | H36       | H37       | H38       | H39       |  |
|                | Gel Gasket         | 149                   | H40       | H41                  | H42       | H43       | H44       | H45       | H46       | H47       |  |

You can place your orders according to the coding format below.

### GFD.< A > . < B > . < C > . < D > . < E > . < F >

| Α | Raw Material Type                                                                 |                                        |  |  |  |  |
|---|-----------------------------------------------------------------------------------|----------------------------------------|--|--|--|--|
|   | DKP                                                                               | Painted DKP Sheet                      |  |  |  |  |
|   | PAS                                                                               | AISI 304 Quality Stainless Steel       |  |  |  |  |
| В | Filter                                                                            |                                        |  |  |  |  |
|   | F00                                                                               | Without Filter                         |  |  |  |  |
|   | XXX You can check the Filter Order Code Table                                     |                                        |  |  |  |  |
| С | Installation Option                                                               |                                        |  |  |  |  |
|   | GC                                                                                | Bolted from Center                     |  |  |  |  |
|   | KM                                                                                | Bolted from Corners                    |  |  |  |  |
| D | Width (W) [mm]                                                                    |                                        |  |  |  |  |
|   | 0000                                                                              | You can check the Standard Sizes Table |  |  |  |  |
| E | Height (W) [mm]                                                                   |                                        |  |  |  |  |
|   | 0000                                                                              | You can check the Standard Sizes Table |  |  |  |  |
| F | Flex Diameter (Ø) [mm]                                                            |                                        |  |  |  |  |
|   | 100 - 125 - 150 - 160 - 180 - 200 - 229 - 250 - 255 - 280 - 300 - 315 - 350 - 356 |                                        |  |  |  |  |

**Sample Coding;** GFD.DKP.F03.KM.0535.0535.0078.180

| NOTES |             |            |     |
|-------|-------------|------------|-----|
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            | (R) |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       | <br>LENURME | HVAC SYSTE | MS  |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |
|       |             |            |     |

| NOTES |                                 |   |
|-------|---------------------------------|---|
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       | IVI IVI ENDIDNE I JIVAO OVOTEMO |   |
|       | IKLIMLENDIRME   HVAC SYSTEMS    | ) |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |
|       |                                 |   |







Tel.: +90 216 250 55 45 | Fax:+90 216 250 55 56

#### **Ankara Sales Office**

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A Blok Kat:11 Ofis:1104 06520 Söğütözü, Yenimahalle, Ankara/TURKEY Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

### **Antalya Sales Office**

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel.: +90 242 505 87 77

#### **Adana Sales Office**

Mimar Selim Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301













**FOUR ECRH**Rooftop Air Conditioner



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 3 sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











#### **GENERAL SPECIFICATIONS**

Roof type (ROOFTOP) package air conditioners, which operate either only cooling or reversible with the direct expansion refrigerant system providing the conditioning of the air indoor through ducts, which will meet the fresh air requirement needed and can perform all heating, cooling and ventilation processes in a compact unit. FOUR ECRH is designed for climates that need cooling only or reversible. Various capacity options available according to the size of the environment to be air-conditioned.

Main applications are business centers, airports, cinema and theatre halls, conference halls, industrial buildings, shopping malls, restaurants etc. Optimized heat recovery, fully automated system, economizer damper and free-cooling configurations available according to the needs of the place which will be conditioned efficiently with low energy consumption. Four ECRH ranges are fully automated with several options – options differ depending on the working scenarios-. Thanks to its Plug&Play feature and design, installation and commissioning time is short.



**FOUR ECRH / Rooftop Air Conditioner FOUR ECRH / Rooftop Air Conditioner** 

#### **COMPONENTS**

#### **EC PLUG FANS**

High efficient EC Plug Fans are used for supply side optionally. Economical AC plug fans might be used conditionally.

Easy clean and reusable filters. As standard EU ISO Course 55% (ISO 16890 - EN779 for G4). Filters are placed in front of the supply coil, at return air side and fresh air side of the rotary wheel. 2-stage filtration used as optionally with F class panel filters. Filters comply with EN779 and EN16890 standards. Filter impurities can be monitored from the control panel with the differential pressure switch.

#### EC AXIAL FANS

Four ECRH units are equipped with self-coupled electric motors with low consumption and suitable for outdoor conditions. EC axial fans with high efficiency and low energy consumption are used. In this way opportunity to control air flow provided without any additional electronic components according to weather conditions and operation capacity. Economical AC axial fans might be used conditionally.



#### INDOOR HEAT EXCHANGER COIL

Coils are made of copper pipes-aluminum fins. The design criteria of the coils are selected according to air and fluid side, pressure drop, air velocity, unit capacity, air flow rate and energy efficiency. In double circuit systems, custom made coils used. Optionally the fins might be coated with epoxy and hydrophilic. The drain pans of the coils are made of stainless steel and cleanable.

#### ECONOMIZER & BYPASS DAMPERS

Economizer is used to proportionally adjust the fresh air demand needed between 0-100% with a return fan. This adjustment is made automatically by control system with the sensors, located on the supply side in addition, it provides an opportunity of free cooling when outdoor and indoor conditions are suitable. Bypass damper, on the other hand, direct air mixture provided by stopping heat recovery where heat recovery is not possible (like mid seasons) between outdoor air and indoor air, direct air mixture can be made by stopping the heat recovery system with bypass damper.

#### REFRIGERANT CIRCUIT

Four ECRH ranges designed as only one compressor for each circuit. Compressors are hermetic scroll compressors with. thermal protection, crankcase heater and compressors suitable for R410A as refrigerant fluid type. Thermostatic expansion valves used for each inlet of coil. And dryer, inspection glass, check valves, 4-way valve and accumulator used for each independent circuit. Safe operation of refrigeration cycle is ensured by low pressure and high-pressure sensors.



www.doquhvac.com


**FOUR ECRH / Rooftop Air Conditioner FOUR ECRH / Rooftop Air Conditioner** 


#### **CASING**

Double skin insulation with 50 mm rockwool, density 70 kg/m3, frameless structure and without roofcurb. The inner surface of the Four ECRH ranges is made of aluzinc material which has resistance for corrosion and atmospheric oxidation. Outer surface is made of electro static powder coated galvanized steel. Condensation drain stainless steel condensation drain pans are used. Inspection doors are installed to base for easy maintenance and installation.

#### CONTROL PANEL

Standard Four ECRH ranges equipped with microprocessor based with indoor monitored control system. it is compatible with ModBus protocol to comply with the building automation systems. Besides, different compatible protocols such as, BACnet, LonWorks, BMS available. As a feature of the Plug&Play, Four ECRH ranges can operate without any external module. All system could work [cooling, heating, air conditioning included) at once and automatically. Properties such as (CO2 sensors, smoke detector, differential pressure switch etc.) optionally available.





#### DRAIN PAN

The drain pan of evaporator is used to take out the condensation that will occur in the evaporator. It is made of stainless steel and cleanable.

#### RETURN FAN

EC Pluq Fan as option for return air side. If the return fan is used, thermodynamic heat recovery feature is also added. Some of the air taken from the indoor environment is passed over the condenser coil with return fan. Thus, thermodynamic heat recovery is provided. In models with return fan, energy consumption is reduced while increasing the compressor efficiency with thermodynamic heat recovery.

### OUTDOOR HEAT EXCHANGER COIL

Coils are made of copper pipes-aluminum-fins. Apart from the supply coils, two condenser coils are used in couple independent circuits. The design criteria of the coils are selected according to air and fluid side, pressure drop, air velocity, unit capacity, air flow rate and energy efficiency... Optionally the fins might be coated with epoxy and hydrophilic.



prevent pollution in the Rotary wheel.

Enthalpy rotary wheels, which have high efficiency,

Eurovent certified and compliant to ERP regulation, Heat

and moisture transfer are made between the fresh and

exhaust air by means of rotary wheels. Optionally high

efficient sorption or economical condensation rotary

wheel. Filters on fresh and exhaust air sides used to

#### **FOUR ECRH - 030~180**

- ♦ High Energy Efficient Packaged Air Conditioners
- € Eco-Friendly R410A Refrigerant Gas
- © Operating with 100% Fresh Air
- Thermodynamic Heat Recovery

- 3 Stage (Asymmetric) Cooling
- € Independent Dual Circuit Cooling
- Advanced Microprocessor Control
- ♠ High Installation Flexibility and Easy Commissioning
- ♥ Wide and Versatile Range (3 casings, 8 sizes)

### 3 Different Ranges: Bsc, Eco and Energy



**Four ECRH – BSC:** The heating and cooling for rooms ensured by BSC ranges, which operates with %100 return air, high efficiency and low energy consumption.



**Four ECRH – ECO:** Units with economizer dampers in fresh air inlet, return air and exhaust outlet. The economic operation of the unit is provided by adjusting the fresh air rate up to %30. This rate can be up to %100 according to the external weather conditions with free-cooling. Economizer dampers are controlled with the sensitive sensors on fresh and return air side.



**Four ECRH – ENERGY:** Units with economizer dampers and rotary type heat exchanger. Designed for areas, which requires high fresh air. With heat exchangers that have high efficiency and low pressure drop, sensible and latent heat transfer is made between exhaust and fresh air.

| Model    | Air Flow   | Cooling & Heating Capacities | EER  | COP  | SEER | SCOP |
|----------|------------|------------------------------|------|------|------|------|
| ECRH-030 | 5500 m³/h  | 28.5<br>28.7                 | 3,19 | 3,77 | 3,31 | 2,99 |
| ECRH-045 | 8000 m³/h  | 42.4<br>42.7                 | 3,44 | 3,99 | 3,62 | 3,15 |
| ECRH-060 | 11000 m³/h | 57.3<br>57.6                 | 3,29 | 3,58 | 3,55 | 3,14 |
| ECRH-075 | 14000 m³/h | 75.6<br>74.8                 | 3,43 | 3,65 | 3,58 | 3,22 |
| ECRH-095 | 18000 m³/h | 93<br>91.4                   | 3,41 | 3,61 | 3,66 | 3,15 |
| ECRH-125 | 22000 m³/h | 122.6<br>123.2               | 3,23 | 3,84 | 3,49 | 3,06 |
| ECRH-155 | 27000 m³/h | 155.4<br>158                 | 3,24 | 3,61 | 3,42 | 3,24 |
| ECRH-180 | 32000 m³/h | 178<br>175.5                 | 3,27 | 3,61 | 3,48 | 3,14 |

### **TECHNICAL DATA**

| FOUR ECRH             | 030  | 045             | 060  | 075   |       |  |  |  |
|-----------------------|------|-----------------|------|-------|-------|--|--|--|
| FANS                  |      |                 |      |       |       |  |  |  |
| Indoor Fan Type       |      | EC Plug Fan     |      |       |       |  |  |  |
| Outdoor Fan Type      |      | EC Axial Fan    |      |       |       |  |  |  |
| Number of Outdoor Fan | pcs. | 1 1 2           |      |       |       |  |  |  |
| Min Air Flow          | m³/h | 4400            | 6400 | 8800  | 11200 |  |  |  |
| Nominal Air Flow      | m³/h | 5500 8000 11000 |      |       |       |  |  |  |
| Max Air Flow          | m³/h | 6050            | 8800 | 12100 | 15400 |  |  |  |
| Nominal ESP           | Pa   | 200             | 200  | 200   | 200   |  |  |  |

| NOMINAL THERMAL PERFORMANCES - COOLING MODE |    |       |       |       |       |  |  |
|---------------------------------------------|----|-------|-------|-------|-------|--|--|
| (1)Cooling Capacity kW 28,5 42,4 57,3 75,6  |    |       |       |       |       |  |  |
| (1)EER                                      |    | 3,19  | 3,44  | 3,29  | 3,43  |  |  |
| (1)Total Installed Power                    | kW | 15,63 | 18,77 | 28,39 | 32,92 |  |  |
| Eurovent Energy Class                       |    | A     | A     | А     | A     |  |  |

| NOMINAL THERMAL PERFORMANCES - HEATING MODE |  |      |      |      |      |  |
|---------------------------------------------|--|------|------|------|------|--|
| (1)Heating Capacity kW 28,7 42,7 57,6 74,8  |  |      |      |      |      |  |
| (1)COP                                      |  | 3,77 | 3,99 | 3,58 | 3,65 |  |
| Eurovent Energy Class                       |  | A    | A    | А    | A    |  |

| SEASONAL EFFICIENCIES                       |   |        |        |        |       |  |  |  |
|---------------------------------------------|---|--------|--------|--------|-------|--|--|--|
| (2)Seasonal Energy Efficiency Ratio(SEER)   |   | 3,31   | 3,62   | 3,55   | 3,58  |  |  |  |
| (2)Seasonal Energy Efficiency ŋs,c          | % | 129,58 | 141,85 | 138,95 | 144,4 |  |  |  |
| (2)Seasonal Coefficient of Performance SCOP |   | 2,99   | 3,15   | 3,14   | 3,22  |  |  |  |
| (2)Seasonal Energy Efficiency ŋs,h          | % | 116,62 | 122,91 | 122,26 | 125,6 |  |  |  |

| COMPRESSOR             |      |      |       |       |       |  |  |  |  |
|------------------------|------|------|-------|-------|-------|--|--|--|--|
| Refrigerant Type       |      |      | R4:   | 10a   |       |  |  |  |  |
| Number of Compressor   | pcs. | 1    | 1     | 2     | 2     |  |  |  |  |
| Compressor Type        |      |      | Sc    | roll  |       |  |  |  |  |
| Cooling Circuit        | pcs. | 1    | 1     | 2     | 2     |  |  |  |  |
| Capacity Control       |      | 1    | 1     | 3     | 3     |  |  |  |  |
| Total Compressor Power | kW   | 7,65 | 10,58 | 14,79 | 19,02 |  |  |  |  |
| Current (Nominal)      | А    | 14,8 | 18,62 | 27,52 | 34,31 |  |  |  |  |

| OPTIONAL NATURAL GAS HEATER                                                                    |    |                       |             |             |            |  |  |  |  |
|------------------------------------------------------------------------------------------------|----|-----------------------|-------------|-------------|------------|--|--|--|--|
| Capacity(Min-Max)         kW         7,6-34,85         12,4-65         12,4-65         16,4-82 |    |                       |             |             |            |  |  |  |  |
| Burner Pressure                                                                                | Pa | 90                    | 120         | 120         | 120        |  |  |  |  |
| Supply Voltage                                                                                 | V  | 230 V-50 Hz Monophase |             |             |            |  |  |  |  |
| Power Input(Min-Max)                                                                           | kW | 0,011-0,074           | 0,015-0,097 | 0,015-0,097 | 0,02-0,123 |  |  |  |  |

| OPTIONAL ELECTRIC HEATER |    |    |    |    |     |  |  |  |
|--------------------------|----|----|----|----|-----|--|--|--|
| Capacity (∆T=10 °C)      | kW | 20 | 30 | 40 | 50  |  |  |  |
| Capacity (∆T=20 °C)      | kW | 40 | 60 | 80 | 100 |  |  |  |

| OPTIONAL WATER HEATER |                                   |  |     |     |  |  |  |  |
|-----------------------|-----------------------------------|--|-----|-----|--|--|--|--|
| Capacity              | <b>Capacity</b> kW 82 117 135 210 |  |     |     |  |  |  |  |
| Water Fluctuation     | °C                                |  | 80, | /60 |  |  |  |  |

| SOUND DATA           |     |    |    |    |    |  |  |  |  |
|----------------------|-----|----|----|----|----|--|--|--|--|
| Sound Level Power    | dBA | 75 | 76 | 78 | 80 |  |  |  |  |
| Sound Pressure (1 m) | dBA | 66 | 68 | 71 | 72 |  |  |  |  |
| Sound Pressure (5 m) | dBA | 52 | 54 | 57 | 57 |  |  |  |  |

### NOTES:

(1) According to Eurovent conditions:

Cooling: · Outdoor temperature = 35°C DB · Entering coil temperature 27°C DB / 19°C WB Heating: · Outdoor temperature = 7°C DB / 6°C WB · Indoor temperature = 20°C DB

(2) According to EN 14825



| FOUR ECRH             |      | 095   | 125    | 155    | 180   |  |  |  |  |
|-----------------------|------|-------|--------|--------|-------|--|--|--|--|
| FANS                  |      |       |        |        |       |  |  |  |  |
| Indoor Fan Type       |      |       | EC Plu | ıg Fan |       |  |  |  |  |
| Outdoor Fan Type      |      |       | EC Axi | al Fan |       |  |  |  |  |
| Number of Outdoor Fan | pcs. | 2     | 2      | 2      | 2     |  |  |  |  |
| Min Air Flow          | m³/h | 14400 | 17600  | 21600  | 25600 |  |  |  |  |
| Nominal Air Flow      | m³/h | 18000 | 22000  | 27000  | 32000 |  |  |  |  |
| Max Air Flow          | m³/h | 19800 | 24200  | 29700  | 35200 |  |  |  |  |
| Nominal ESP           | Pa   | 200   | 200    | 200    | 200   |  |  |  |  |
|                       |      |       |        |        |       |  |  |  |  |

| NOMINAL THERMAL PERFORMANCES - COOLING MODE |    |       |       |       |       |  |  |  |
|---------------------------------------------|----|-------|-------|-------|-------|--|--|--|
| (1)Cooling Capacity kW 93 122,6 155,4 178   |    |       |       |       |       |  |  |  |
| (1)EER                                      |    | 3,41  | 3,23  | 3,24  | 3,27  |  |  |  |
| (1)Total Installed Power                    | kW | 38,37 | 54,76 | 65,19 | 71,27 |  |  |  |
| Eurovent Energy Class                       |    | А     | A     | A     | А     |  |  |  |

| NOMINAL THERMAL PERFORMANCES - HEATING MODE |  |      |      |      |      |  |  |  |  |
|---------------------------------------------|--|------|------|------|------|--|--|--|--|
| (1)Heating Capacity kW 91,4 123,2 158 175,5 |  |      |      |      |      |  |  |  |  |
| (1)COP                                      |  | 3,61 | 3,84 | 3,61 | 3,61 |  |  |  |  |
| Eurovent Energy Class                       |  | A    | A    | A    | A    |  |  |  |  |

| SEASONAL EFFICIENCIES                                         |   |        |        |        |        |  |  |  |
|---------------------------------------------------------------|---|--------|--------|--------|--------|--|--|--|
| [2]Seasonal Energy Efficiency Ratio(SEER) 3,66 3,49 3,42 3,48 |   |        |        |        |        |  |  |  |
| (2)Seasonal Energy Efficiency ŋs,c                            | % | 143,43 | 136,48 | 133,61 | 136,14 |  |  |  |
| (2)Seasonal Coefficient of Performance SCOP                   |   | 3,15   | 3,06   | 3,24   | 3,14   |  |  |  |
| (2)Seasonal Energy Efficiency ŋs,h                            | % | 122,95 | 119,37 | 126,64 | 122,68 |  |  |  |

| COMPRESSOR             |      |       |         |       |       |  |  |  |
|------------------------|------|-------|---------|-------|-------|--|--|--|
| Refrigerant Type       |      |       | R4:     | 10a   |       |  |  |  |
| Number of Compressor   | pcs. | 2     | 2 2 2 2 |       |       |  |  |  |
| Compressor Type        |      |       | Sc      | roll  |       |  |  |  |
| Cooling Circuit        | pcs. | 2     | 2       | 2     | 2     |  |  |  |
| Capacity Control       |      | 3     | 3       | 3     | 3     |  |  |  |
| Total Compressor Power | kW   | 22,89 | 33,46   | 42,39 | 45,07 |  |  |  |
| Current (Nominal)      | А    | 41,26 | 59,15   | 73,45 | 79,03 |  |  |  |

| OPTIONAL NATURAL GAS HEATER                                                                  |    |                         |             |            |           |  |  |  |  |
|----------------------------------------------------------------------------------------------|----|-------------------------|-------------|------------|-----------|--|--|--|--|
| Capacity[Min-Max]         kW         21-100         12,4-130         16,4-164         21-200 |    |                         |             |            |           |  |  |  |  |
| Burner Pressure                                                                              | Pa | 120                     | 120         | 120        | 120       |  |  |  |  |
| Supply Voltage                                                                               | V  | V 230 V-50 Hz Monophase |             |            |           |  |  |  |  |
| Power Input(Min-Max)                                                                         | kW | 0,02-0,130              | 0,015-0,194 | 0,02-0,246 | 0,02-0,26 |  |  |  |  |

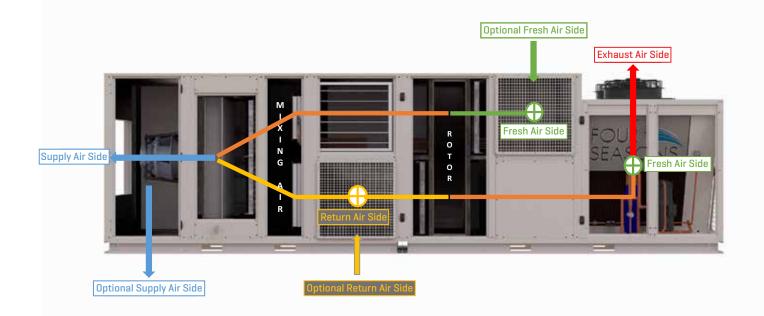
| OPTIONAL ELECTRIC HEATER |    |     |     |     |     |  |
|--------------------------|----|-----|-----|-----|-----|--|
| Capacity (∆T=10 °C)      | kW | 65  | 80  | 100 | 120 |  |
| Capacity (∆T=20 °C)      | kW | 130 | 165 | 190 | 230 |  |

| OPTIONAL WATER HEATER      |    |     |     |     |     |  |  |
|----------------------------|----|-----|-----|-----|-----|--|--|
| Capacity                   | kW | 258 | 318 | 405 | 465 |  |  |
| Water Fluctuation °C 80/60 |    |     |     |     |     |  |  |

| SOUND DATA           |     |    |    |    |    |  |  |
|----------------------|-----|----|----|----|----|--|--|
| Sound Level Power    | dBA | 79 | 81 | 81 | 84 |  |  |
| Sound Pressure (1 m) | dBA | 72 | 73 | 73 | 76 |  |  |
| Sound Pressure (5 m) | dBA | 58 | 59 | 60 | 62 |  |  |

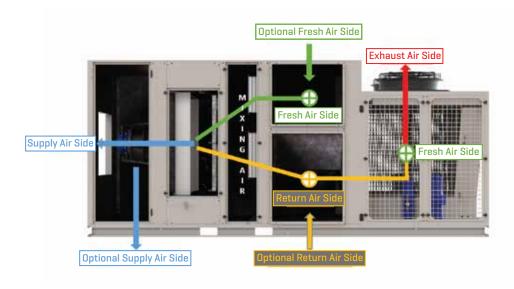
#### NOTES:

[1] According to Eurovent conditions:


Cooling: · Outdoor temperature = 35°C DB · Entering coil temperature 27°C DB / 19°C WB

Heating: · Outdoor temperature = 7°C DB / 6°C WB · Indoor temperature = 20°C DB

(2) According to EN 14825


#### **AIR CONFIGURATIONS**

### Four ECRH - Energy Series:



In ECRH ENERGY with heat recovery and economizer dampers, heat recovery and thermodynamics heat recovery are performed by the return fan. Some of the exhaust air is passed through the rotary type heat recovery unit according to the mixing ratio. Then, the heat transferred air is passed over the condenser coil directly. In this way, energy saving is achieved by thermodynamics heat recovery.

#### Four ECRH - ECO Series



In ECRH ECO with economizer dampers, thermodynamics heat recovery is performed by the return fan. Some of the exhaust air is mixed according to the mixing ratio. Then, the rest of the exhaust air is passed directly over the condenser coil.

### **AIR CONFIGURATIONS**

## Four ECRH - ECO Series:



| Models | 030  | 045  | 060  | 075  | 095  | 125  | 155  | 180  |
|--------|------|------|------|------|------|------|------|------|
| W      | 1300 | 1500 | 1900 | 2100 | 2100 | 2270 | 2600 | 2700 |
| L      | 3770 | 3970 | 4570 | 4770 | 5250 | 5750 | 6350 | 6650 |
| Н      | 1605 | 1805 | 2005 | 2175 | 2425 | 2575 | 2785 | 3075 |

All dimensions are in mm.

### Four ECRH - ENERGY Series



| Models | 030  | 045  | 060  | 075  | 095  | 125  | 155  | 180  |
|--------|------|------|------|------|------|------|------|------|
| W      | 1300 | 1500 | 1900 | 2100 | 2100 | 2270 | 2600 | 2700 |
| L      | 5350 | 5650 | 6370 | 6570 | 7350 | 8010 | 8750 | 9170 |
| Н      | 1605 | 1805 | 2005 | 2175 | 2425 | 2575 | 2785 | 3075 |

All dimensions are in mm.

| OTANDADDO O ODTIONO                               |     | SERIES |        |
|---------------------------------------------------|-----|--------|--------|
| STANDARDS & OPTIONS                               | BSC | ECO    | ENERGY |
| Cooling Only                                      | 0   | 0      | 0      |
| Reversible (Heating/Cooling)                      | S   | S      | S      |
| EC plug fan for supply side                       | S   | S      | S      |
| Plug fan for supply side                          | 0   | 0      | 0      |
| EC axial fan for condenser side                   | S   | S      | S      |
| AC axial fan for condenser side                   | 0   | 0      | 0      |
| Roofcurb                                          | 0   | 0      | 0      |
| Economizer                                        | Х   | х      | х      |
| Bypass damper                                     | Х   | х      | x      |
| Thermodynamics heat recovery                      | Х   | x      | х      |
| Rotary type heat exchanger                        | Х   | х      | х      |
| Return Fan for exhaust side                       | 0   | 0      | 0      |
| Operation with %100 return air                    | S   | S      | S      |
| Operation with partial fresh air (up to %30)      | Х   | х      | х      |
| Operation with %100 fresh air                     | Х   | x      | х      |
| Free-Cooling                                      | Х   | х      | х      |
| Electronix expansion valve                        | 0   | 0      | 0      |
| Low and high electric heater                      | 0   | 0      | 0      |
| Natural gas heater                                | 0   | 0      | 0      |
| Hot Water Heater                                  | 0   | 0      | 0      |
| ISO Course filter (G Class)                       | S   | S      | S      |
| ePM1 filter (F Class)                             | 0   | 0      | 0      |
| ISO Course + ePM1 filters                         | 0   | 0      | 0      |
| Coil coating                                      | 0   | 0      | 0      |
| Control with room temperature sensor              | S   | S      | S      |
| Differencial pressure switch (Dirty filter alarm) | 0   | 0      | 0      |
| CO2 sensor                                        | 0   | 0      | 0      |
| Enthalpy control                                  | 0   | 0      | 0      |
| Smoke dedector and fire alarm                     | 0   | 0      | 0      |
| Fire alarm                                        | 0   | 0      | 0      |
| Touch Panel                                       | 0   | 0      | 0      |
| ModBus                                            | S   | S      | S      |
| Bacnet MSTP                                       | 0   | 0      | 0      |
| LonWorks FTT                                      | 0   | 0      | 0      |

S : Standard

O: Options

X : Not Available

| NOTES |  |       |       |     |      |        |     |  |
|-------|--|-------|-------|-----|------|--------|-----|--|
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        | R   |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  | İKLİM | LENDI | RME | HVAC | SYSTEM | IS. |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |
|       |  |       |       |     |      |        |     |  |

| NOTES |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY

Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56













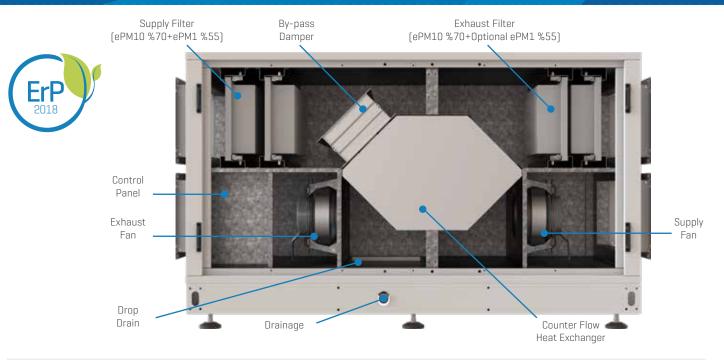
**FOUR-FHR**Counter Flow Heat Recovery Unit



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.














#### **FOUR-FHR**

- E High efficient EC fans with low sound level.
- © Optional electrical heater or heating/cooling coil.
- 3 stage airflow speed control.
  [All stages can be set between 0-100%]
- © Double skin, 50 mm insulation.

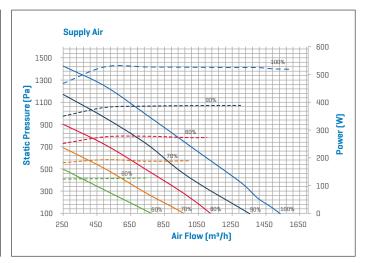
### **Heat Exchanger**

- High efficiency aluminium counter flow heat exchanger.
- Efficiency up to %94. [calculated for balanced air flows]
- Special application for the anti-freeze protection
- **Fans**
- For low power consuption and low sound level use of EC-plug fan sprefered with in FHR series units. [EBM-Papst]
- € 10 years exploitation time. (40.000 hours)

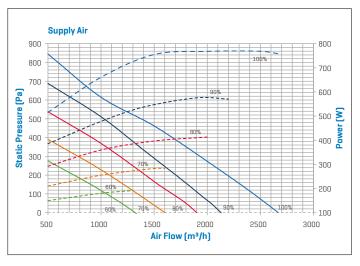
|         | SPI      | SFP       | SFP Class   |
|---------|----------|-----------|-------------|
|         | [W/m³/h] | [kW/m³/s] | EN 13142    |
| FHR-010 | 0,23     | 1,22      | SFP Class 3 |
| FHR-016 | 0,33     | 2,25      | SFP Class 5 |
| FHR-025 | 0,20     | 2,04      | SFP Class 5 |
| FHR-040 | 0,32     | 2,38      | SFP Class 5 |
| FHR-060 | 0,32     | 2,22      | SFP Class 5 |
| FHR-085 | 0,36     | 2,31      | SFP Class 5 |
| FHR-110 | 0,34     | 2,38      | SFP Class 5 |
| FHR-140 | 0,36     | 2,42      | SFP Class 5 |
| FHR-170 | 0,47     | 2,94      | SFP Class 5 |

- Hygienic Condensate Drip Tray.
- Plug & Play
- Bypass damper. (Night cooling, free cooling and anti-freeze protection of the heat exchanger)

#### **Filters**


- Large filtering area for energy efficiency and long service period. (up to 6 months)
- ePM10 %70 filters on both supply and extract air side, also for exhaust side optional ePM1 %55 Filter available.

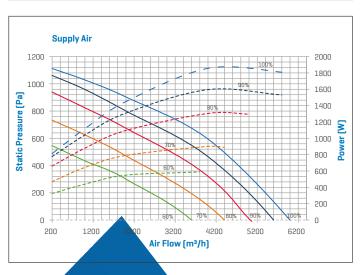
$$SPI = \frac{P_{E} [W]}{q_{v} \left(\frac{m^{3}}{h}\right)}$$
 [According to EN 13142]

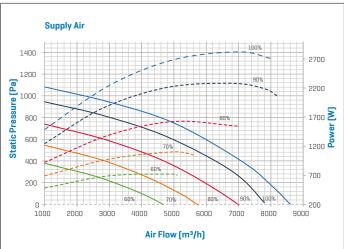

$$SFP = \frac{Psfm + Pefm (kW)}{qmax \left(\frac{m^3}{s}\right)}$$
 [According to EN 13779]

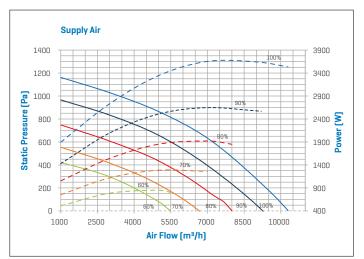
#### 600 200 500 160 Static Pressure (Pa) 120 300 200 60 100 0 400 850 250 700 Air Flow (m³/h)


#### **FHR-16**

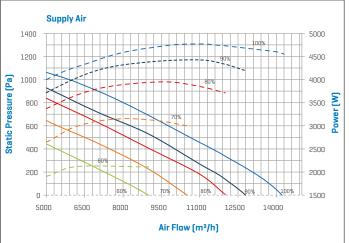



#### **FHR-25**



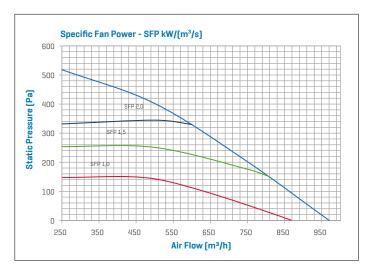


### **FHR-40**

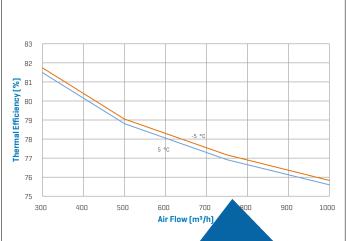


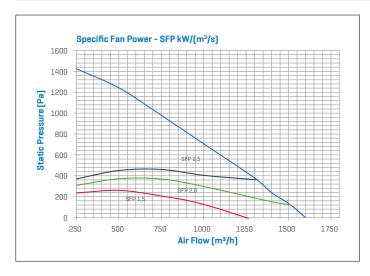

#### **FHR-60**

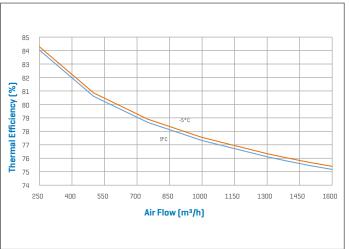




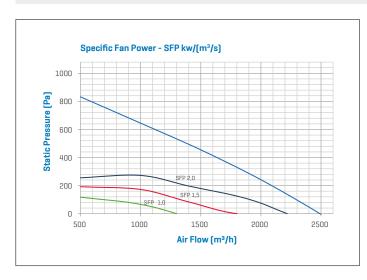


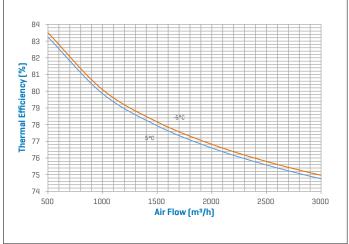


#### FHR-140

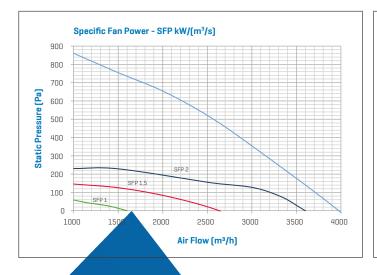


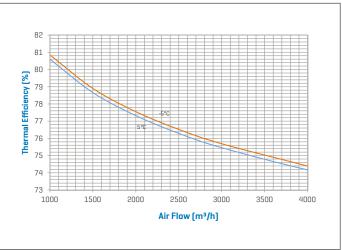


### **FHR-170**

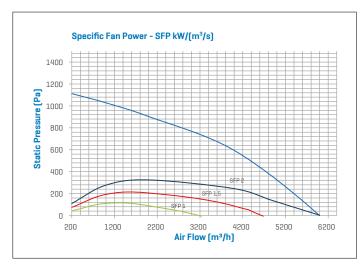


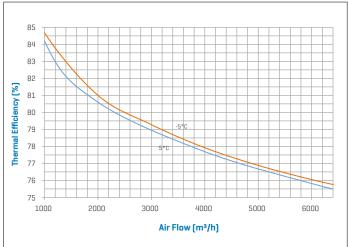


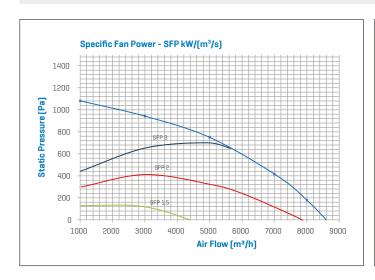



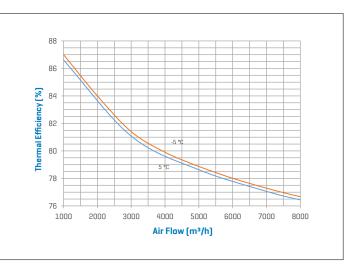





### **FHR-25**

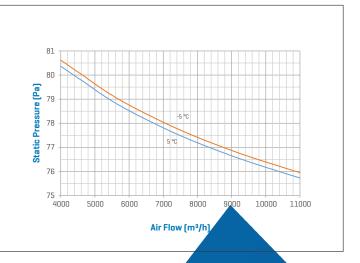


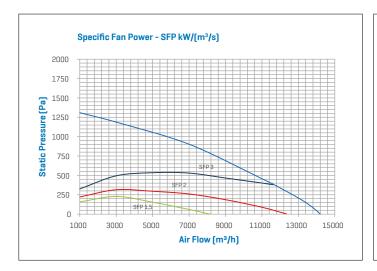


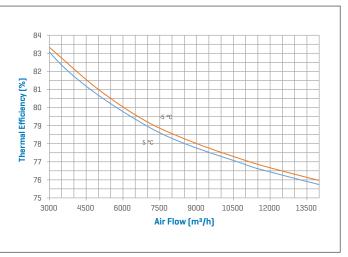



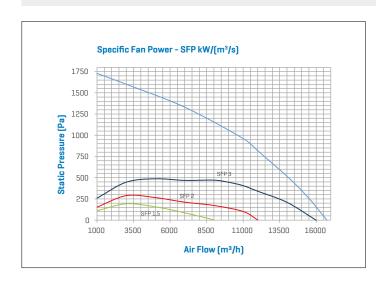



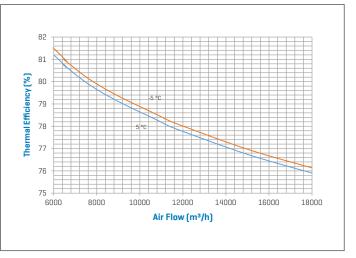




### **FHR-85**









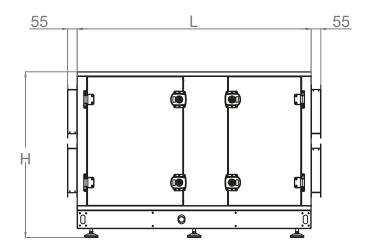


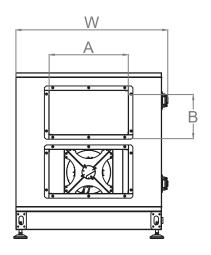


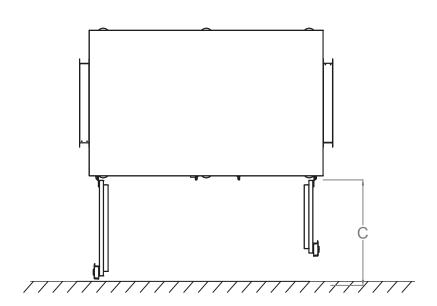

# **Air Flow Directions**

FHR - 10/16/25

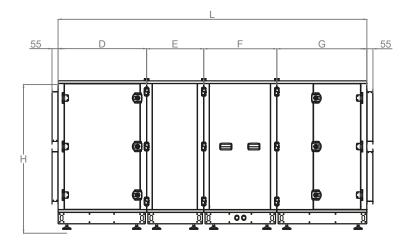


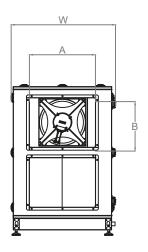

FHR - 40/60/85/110/140/170

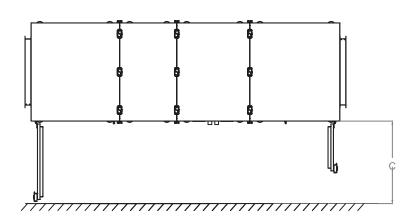




| FA          | FANS                |           | FHR-16    | FHR-25    | FHR-40     | FHR-60     | FHR-85     | FHR-110    | FHR-140    | FHR-170*   |
|-------------|---------------------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|
|             | Voltage (V)         | 230V~1    | 230V~1    | 230V~1    | 380~3      | 380~3      | 380~3      | 380~3      | 380~3      | 380~3      |
| SUPPLY FAN  | RPM(1/min)          | 2510      | 3740      | 2100      | 2060       | 2180       | 2040       | 1910       | 1750       | 2680       |
|             | Power/current (W/A) | 170W/1,4A | 500W/2,2A | 750W/3,3A | 1320W/2,1A | 1850W/2,9A | 2730W/4,2A | 3510W/5,4A | 4700W/7,3A | 3470W/5,3A |
|             | Voltage (V)         | 230V~1    | 230V~1    | 230V~1    | 380~3      | 380~3      | 380~3      | 380~3      | 380~3      | 380~3      |
| EXTRACT FAN | RPM(1/min)          | 2510      | 3740      | 2100      | 2060       | 2180       | 2040       | 1910       | 1750       | 2680       |
|             | Power/current (W/A) | 170W/1,4A | 500W/2,2A | 750W/3,3A | 1320W/2,1A | 1850W/2,9A | 2730W/4,2A | 3510W/5,4A | 4700W/7,3A | 3470W/5,3A |

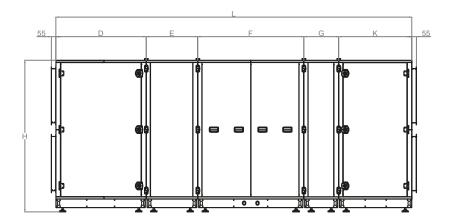
 $<sup>^{*}\</sup>mbox{In FHR-}170$  units, two fans are used for supply and exhaust side.

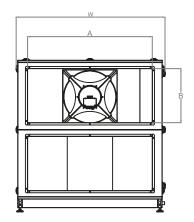

| MODELS         |       | FHR-10 | FHR-16               | FHR-25 | FHR-40 | FHR-60     | FHR-85 | FHR-110 | FHR-140 | FHR-170 |  |  |
|----------------|-------|--------|----------------------|--------|--------|------------|--------|---------|---------|---------|--|--|
| Supply Filter  | Class |        | ePM10 %70 + ePM1 %55 |        |        |            |        |         |         |         |  |  |
| Extract Filter | Class |        | ePM10 %70            |        |        |            |        |         |         |         |  |  |
| Insulation     |       |        | 50 mm                |        |        |            |        |         |         |         |  |  |
| Control System |       |        |                      |        |        | Integrated |        |         |         |         |  |  |

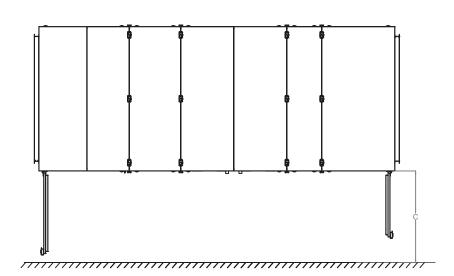






| MODEL  | L    | W   | Н    | Α   | В   | C   | Weight (KG) |
|--------|------|-----|------|-----|-----|-----|-------------|
| FHR-10 | 1330 | 865 | 945  | 450 | 250 | 650 | 300         |
| FHR-16 | 1555 | 865 | 945  | 550 | 300 | 750 | 350         |
| FHR-25 | 2060 | 865 | 1225 | 550 | 350 | 850 | 500         |






| MODEL   | L    | W    | Н    | Α    | В   | С    | D   | E   | F   | G   | Weight (KG) |
|---------|------|------|------|------|-----|------|-----|-----|-----|-----|-------------|
| FHR-40  | 2810 | 950  | 1355 | 600  | 450 | 750  | 805 | 518 | 664 | 818 | 750         |
| FHR-60  | 3155 | 1230 | 1515 | 950  | 500 | 850  | 895 | 518 | 868 | 868 | 1250        |
| FHR-85  | 3165 | 1790 | 1515 | 1200 | 500 | 1100 | 905 | 518 | 868 | 868 | 1950        |
| FHR-110 | 3165 | 2075 | 1655 | 1450 | 600 | 1300 | 905 | 518 | 868 | 868 | 2520        |







| MODEL   | L    | W    | Н    | Α    | В   | C    | D    | E   | F    | G   | K   | Weight (KG) |
|---------|------|------|------|------|-----|------|------|-----|------|-----|-----|-------------|
| FHR-140 | 4280 | 1790 | 1825 | 1500 | 650 | 1100 | 1085 | 618 | 1275 | 418 | 878 | 3200        |
| FHR-170 | 4885 | 1790 | 1955 | 1500 | 650 | 1100 | 885  | 818 | 1680 | 618 | 878 | 3950        |



| Operation              | Description                                                                                                                                                                                                                                                                                                                              | Availability |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| On / Off               | Control panel or external start stop function is available.                                                                                                                                                                                                                                                                              | Standard     |
| Display                | Digital control panel is available.                                                                                                                                                                                                                                                                                                      | Standard     |
| Display                | Wireless controller is avaliable as option.                                                                                                                                                                                                                                                                                              | Optional     |
| Fan Speed Control      | 3 steps fan speed control of supply and exhaust fan is available.                                                                                                                                                                                                                                                                        | Standard     |
| Fan Speed Control      | Constant air flow is available with pressure sensors.                                                                                                                                                                                                                                                                                    | Optional     |
| Fan Speed Control      | Airflow control based on the air quality sensor is available.                                                                                                                                                                                                                                                                            | Optional     |
| Bypass Damper Function | Free cooling is available, by controlling the indoor and outdoor air conditions.                                                                                                                                                                                                                                                         | Standard     |
| ModBus                 | It controls all functions of unit via PC or central control system board.                                                                                                                                                                                                                                                                | Standard     |
| Filter Function        | There are 2 alternatives to control filters: Alternative 1: It records run time of the unit and when set time expires, control panel gives an alert for filter change. Alternative 2: Filter change time can be controlled with pressure switch mechanically. By this way, control panel gives an alert when filter needs to be changed. | Standard     |
| Boost Function         | It is used in order to increase fan speed:<br>Alternative 1: Via boast button on the control panel.<br>Alternative 2: Via dry contact or light power input (230V) on PCB board.                                                                                                                                                          | Standard     |
| Safety                 | It automatically stops operating in case of interfering to the unit while it is working.                                                                                                                                                                                                                                                 | Standard     |
| Fire Alarm Function    | It will be active in case of fire.                                                                                                                                                                                                                                                                                                       | Standard     |
| Wireless Sensors       | Upon request, wireless CO2, differential pressure, temperature and humidity sensors are avaliable.                                                                                                                                                                                                                                       | Optional     |
| Heating Coil           | Heating coil valves on the devices which include optional heating coil, are controlled by proportional valve motors with PID logic and sensitivity.                                                                                                                                                                                      | Optional     |
| Frost Control          | Optional heating coils also include frost thermostat to prevent coil freeze                                                                                                                                                                                                                                                              | Optional     |

| NOTES                        |  |
|------------------------------|--|
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
| İKLİMLENDİRME L HVAC SYSTEMS |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |

| NOTES |                      |          |
|-------|----------------------|----------|
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      | (R)      |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       | IKLIMLENDIRME L HVAC | SYSTEMS  |
|       | THE THE THE THE      | 21012110 |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |
|       |                      |          |







### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477, Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

### Istanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1, Ağaoğlu My Office, Kat: 4/18, Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56













**DPA**Adjustable Louvre



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











- © DPA Adjustable Louvre allows its blades to be easily adjusted with the adjustment lever.
- It is generally preferred for natural ventilation of the environment in bathroom or WC applications.



# **MATERIAL**

- Frame and blades made of aluminum 6063 extruded profile
- € 32 mm frame

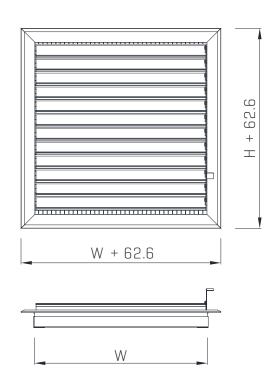
### **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard
- Optional
  - Different RAL color codes
  - Matt aluminum anodized finish for a matte and metallic look
  - Unpainted manufacturing


### **MOUNTING OPTIONS**

- Screwed System
- Without Mounting Hole

### **ACCESORIES**


- © Optional
  - 2x2 wires

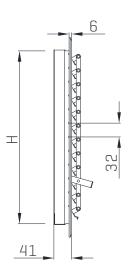


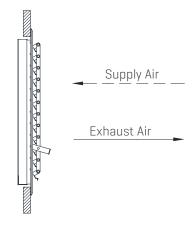


# **PRODUCT SELECTION**

# **STANDARD DIMENSIONS**







Table 1. Standard Dimensions

| Star           | ndard  |          |          |             | н (н     | leight) [n  | nm]      |          |          |             |
|----------------|--------|----------|----------|-------------|----------|-------------|----------|----------|----------|-------------|
| Dime           | nsions | 100      | 200      | 300         | 400      | 500         | 600      | 700      | 800      | 900         |
|                | 100    | <b>✓</b> | <b>~</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    |          |          |          |             |
|                | 200    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b>    |
|                | 300    | <b>✓</b> | <b>~</b> | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b>    |
|                | 400    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    |
| _              | 500    | <b>✓</b> | <b>✓</b> | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>~</b>    |
| 臣              | 600    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>~</b> | <b>~</b>    | <b>~</b> | <b>~</b> | <b>~</b> | <b>~</b>    |
| ٦              | 700    | <b>~</b> | <b>✓</b> | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>~</b> | <b>~</b> | <b>✓</b> | <b>~</b>    |
| W [Width] [mm] | 800    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    |
| ٤              | 900    | <b>✓</b> | <b>✓</b> | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    |
| >              | 1000   | <b>~</b> | <b>~</b> | <b>~</b>    | <b>~</b> | <b>~</b>    | <b>~</b> | <b>~</b> | <b>~</b> | <b>~</b>    |
|                | 1100   | <b>✓</b> | <b>✓</b> | <b>~</b>    | <b>✓</b> | <b>&gt;</b> | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>~</b>    |
|                | 1200   | <b>✓</b> | <b>~</b> | <b>&gt;</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>&gt;</b> |
|                | 1300   | <b>✓</b> | <b>✓</b> | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>~</b>    |
|                | 1400   | <b>✓</b> | <b>~</b> | >           | <b>~</b> | >           | <b>~</b> | >        | <b>~</b> | >           |
|                | 1500   | <b>✓</b> | <b>~</b> | <b>~</b>    | <b>V</b> | <b>✓</b>    | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b>    |



# **PERFORMANCE DATA**

Performance data are given below according to the fresh air supply into the space and the exhaust air from the space to the outside. Product dimensions are determined from the effective area provided according to the desired performance criteria.



### **EFFECTIVE AREA TABLE**

**Table 2.** Effective Area

| Effective /    | Area[m²] | 100   | 200   | 300   | 400   | 500   | 600   | 700   | 800   | 900   |
|----------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | 100      | 0.009 | 0.014 | 0.019 | 0.024 | 0.029 |       |       |       |       |
|                | 200      | 0.014 | 0.024 | 0.034 | 0.043 | 0.053 | 0.063 | 0.073 | 0.083 | 0.092 |
|                | 300      | 0.019 | 0.034 | 0.048 | 0.063 | 0.078 | 0.092 | 0.107 | 0.122 | 0.137 |
|                | 400      | 0.024 | 0.043 | 0.063 | 0.083 | 0.102 | 0.122 | 0.142 | 0.161 | 0.181 |
|                | 500      | 0.029 | 0.053 | 0.078 | 0.102 | 0.127 | 0.151 | 0.176 | 0.200 | 0.225 |
| W [Width] [mm] | 600      | 0.034 | 0.063 | 0.092 | 0.122 | 0.151 | 0.181 | 0.210 | 0.240 | 0.269 |
| _ <u></u>      | 700      | 0.038 | 0.073 | 0.107 | 0.142 | 0.176 | 0.210 | 0.245 | 0.279 | 0.313 |
| 喜              | 800      | 0.043 | 0.083 | 0.122 | 0.161 | 0.200 | 0.240 | 0.279 | 0.318 | 0.358 |
| ≥_             | 900      | 0.048 | 0.092 | 0.137 | 0.181 | 0.225 | 0.269 | 0.313 | 0.358 | 0.402 |
| >              | 1000     | 0.053 | 0.102 | 0.151 | 0.200 | 0.250 | 0.299 | 0.348 | 0.397 | 0.446 |
|                | 1100     | 0.058 | 0.112 | 0.166 | 0.220 | 0.274 | 0.328 | 0.382 | 0.436 | 0.490 |
|                | 1200     | 0.063 | 0.122 | 0.181 | 0.240 | 0.299 | 0.358 | 0.416 | 0.475 | 0.534 |
|                | 1300     | 0.068 | 0.132 | 0.196 | 0.259 | 0.323 | 0.387 | 0.451 | 0.515 | 0.578 |
|                | 1400     | 0.073 | 0.142 | 0.210 | 0.279 | 0.348 | 0.416 | 0.485 | 0.554 | 0.623 |
|                | 1500     | 0.078 | 0.151 | 0.225 | 0.299 | 0.372 | 0.446 | 0.519 | 0.593 | 0.667 |

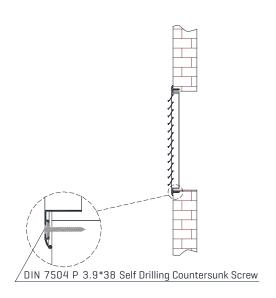


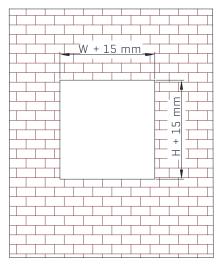
# **FRESH AIR DATA**

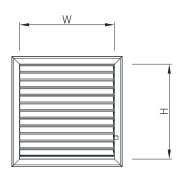
**Table 3.** Fresh Air Data

| Flow Rate |                                                | Effective Speed (m/s) |             |            |              |             |          |              |             |              |              |             |
|-----------|------------------------------------------------|-----------------------|-------------|------------|--------------|-------------|----------|--------------|-------------|--------------|--------------|-------------|
| (m³/h)    |                                                | 0.5                   | 1.0         | 1.5        | 2.0          | 2.5         | 3.0      | 3.5          | 4.0         | 4.5          | 5.0          | 6.0         |
|           | Effective Area [m²]                            | 0.0278                | 0.0139      | 0.0093     |              |             |          |              |             |              |              |             |
| 50        | Pressure Drop [Pa]                             | <1                    | <1          | 2          |              |             |          |              |             |              |              |             |
|           | Sound Power Level [dB(A)]                      | <15                   | <15         | <15        |              |             |          |              |             |              |              |             |
|           | Effective Area [m²]                            | 0.0556                | 0.278       | 0.019      | 0.014        | 0.011       | 0.009    |              |             |              |              |             |
| 100       | Pressure Drop [Pa]                             | <1                    | <1          | 2          | 4            | 8           | 14       |              |             |              |              |             |
|           | Sound Power Level [dB(A)]                      | <15                   | <15         | <15        | <15          | <15         | 15       | 0.010        | 0.014       | 0.010        | 0.011        | 0.000       |
| 200       | Effective Area [m²] Pressure Drop [Pa]         | 0.111                 | 0.056<br><1 | 0.037<br>2 | 0.028<br>4   | 0.022<br>8  | 0.019    | 0.016<br>23  | 34          | 0.012        | 0.011        | 0.009       |
| 200       | Sound Power Level [dB(A)]                      | <15                   | <15         | <15        | <15          | <15         | 18       | 24           | 29          | 33           | 37           | 44          |
|           | Effective Area [m²]                            | 0.167                 | 0.083       | 0.056      | 0.042        | 0.033       | 0.028    | 0.024        | 0.021       | 0.019        | 0.017        | 0.014       |
| 300       | Pressure Drop [Pa]                             | <1                    | <1          | 2          | 4            | 8           | 14       | 22           | 34          | 48           | 67           | 117         |
|           | Sound Power Level [dB(A)]                      | <15                   | <15         | <15        | <15          | <15         | 19       | 25           | 30          | 35           | 39           | 46          |
|           | Effective Area [m²]                            | 0.222                 | 0.111       | 0.074      | 0.056        | 0.044       | 0.037    | 0.032        | 0.028       | 0.025        | 0.022        | 0.019       |
| 400       | Pressure Drop [Pa]                             | <1                    | <1          | 2          | 4            | 8           | 14       | 22           | 33          | 48           | 66           | 115         |
|           | Sound Power Level [dB(A)]                      | <15                   | <15         | <15        | <15          | <15         | 21       | 26           | 31          | 36           | 40           | 47          |
|           | Effective Area [m²]                            | 0.278                 | 0.139       | 0.093      | 0.069        | 0.056       | 0.046    | 0.040        | 0.035       | 0.031        | 0.028        | 0.023       |
| 500       | Pressure Drop [Pa]                             | <1                    | <1          | 2          | 4            | 8           | 14       | 22           | 33          | 47           | 65           | 114         |
|           | Sound Power Level [dB(A)]                      | <15                   | <15         | <15        | <15          | <15         | 21       | 27           | 32          | 37           | 41           | 48          |
| 000       | Effective Area [m²]                            | 0.333                 | 0.167       | 0.111      | 0.083        | 0.067       | 0.056    | 0.048        | 0.042       | 0.037        | 0.0333       | 0.028       |
| 600       | Pressure Drop [Pa] Sound Power Level [dB[A]]   | <1<br><15             | <1<br><15   | 2<br><15   | <15          | 8<br>15     | 14<br>22 | 22<br>28     | 33<br>33    | 47<br>37     | 65<br>41     | 114         |
|           | Effective Area [m²]                            | 0.389                 | 0.194       | 0.130      | 0.097        | 0.078       | 0.065    | 0.056        | 0.049       | 0.043        | 0.0389       | 48          |
| 700       | Pressure Drop [Pa]                             | <1                    | <1          | 2          | 4            | 8           | 13       | 22           | 33          | 47           | 65           | 0.032       |
| 700       | Sound Power Level [dB[A]]                      | <15                   | <15         | <15        | <15          | 16          | 23       | 29           | 34          | 38           | 42           | 49          |
|           | Effective Area [m²]                            | 0.444                 | 0.222       | 0.148      | 0.111        | 0.089       | 0.074    | 0.063        | 0.056       | 0.049        | 0.0444       | 0.037       |
| 800       | Pressure Drop [Pa]                             | <1                    | <1          | 2          | 4            | 8           | 13       | 22           | 32          | 47           | 64           | 113         |
| 000       | Sound Power Level [dB(A)]                      | <15                   | <15         | <15        | <15          | 16          | 23       | 29           | 34          | 39           | 43           | 49          |
|           | Effective Area [m²]                            | 0.500                 | 0.250       | 0.167      | 0.125        | 0.100       | 0.083    | 0.071        | 0.063       | 0.056        | 0.500        | 0.042       |
| 900       | Pressure Drop [Pa]                             | <1                    | <1          | 2          | 4            | 8           | 13       | 21           | 32          | 46           | 64           | 112         |
|           | Sound Power Level [dB(A)]                      | <15                   | <15         | <15        | <15          | 17          | 24       | 30           | 35          | 39           | 43           | 50          |
|           | Effective Area [m²]                            | 0.556                 | 0.278       | 0.185      | 0.139        | 0.111       | 0.093    | 0.079        | 0.069       | 0.062        | 0.556        | 0.046       |
| 1000      | Pressure Drop [Pa]                             | <1                    | <1          | 2          | 4            | - 8         | 13       | 21           | 32          | 46           | 64           | 112         |
|           | Sound Power Level [dB(A)]  Effective Area [m²] | <15                   | <15         | <15        | <15          | 17          | 24       | 30           | 35          | 39           | 43           | 50          |
|           | Pressure Drop [Pa]                             |                       | 0.347       | 0.231      | 0.174<br>4   | 0.139       | 0.116    | 0.099        | 0.087       | 0.077        | 0.0694       | 0.058       |
| 1250      | Sound Power Level [dB(A)]                      | _                     | <15         | <15        | <15          | 8           | 13<br>25 | 21           | 32          | 46           | 63           | 111         |
|           | Effective Area [m²]                            |                       | 0.417       | 0.278      | 0.208        | 18<br>0.167 | 0.139    | 31<br>0.119  | 36<br>0.104 | 40<br>0.0926 | 44<br>0.0833 | 51<br>0.069 |
| 1500      | Pressure Drop [Pa]                             |                       | <1          | 2          | 4            | 8           | 13       | 21           | 32          | 45           | 63           | 110         |
| 1300      | Sound Power Level [dB[A]]                      |                       | <15         | <15        | <15          | 19          | 26       | 32           | 37          | 41           | 45           | 52          |
|           | Effective Area [m²]                            |                       | 0.486       | 0.324      | 0.243        | 0.194       | 0.162    | 0.139        | 0.122       | 0.1080       | 0.0972       | 0.081       |
| 1750      | Pressure Drop [Pa]                             |                       | <1          | 2          | 4            | 7           | 13       | 21           | 32          | 45           | 62           | 109         |
|           | Sound Power Level [dB(A)]                      |                       | <15         | <15        | <15          | 20          | 26       | 32           | 37          | 42           | 46           | 53          |
|           | Effective Area [m²]                            |                       | 0.556       | 0,.370     | 0.278        | 0.222       | 0.185    | 0.159        | 0.139       | 0.1235       | 0.1111       | 0.093       |
| 2000      | Pressure Drop [Pa]                             |                       | <1          | 2          | 4            | 7           | 13       | 21           | 31          | 45           | 62           | 109         |
|           | Sound Power Level [dB(A)]                      |                       | <15         | <15        | <15          | 20          | 27       | 33           | 38          | 42           | 46           | 53          |
|           | Effective Area [m²]                            |                       |             | 0.463      | 0.347        | 0.278       | 0.231    | 0.198        | 0.174       | 0.1543       | 0.1389       | 0.116       |
| 2500      | Pressure Drop [Pa]                             | -                     |             | 2<br><15   | 4            | 7           | 13       | 21           | 31          | 45           | 62           | 108         |
|           | Sound Power Level [dB(A)]  Effective Area [m²] |                       |             | 0.556      | <15<br>0.417 | 21          | 28       | 34           | 39          | 43           | 47           | 54          |
| 0000      | Pressure Drop [Pa]                             |                       |             | 2          | 4            | 0.333<br>7  | 0.2778   | 0.2381<br>21 | 0.2083      | 0.1852<br>44 | 0.1667       | 0.139       |
| 3000      | Sound Power Level [dB(A)]                      |                       |             | <15        | <15          | 22          | 13<br>29 | 34           | 39          | 44           | 61<br>48     | 107<br>55   |
|           | Effective Area [m²]                            |                       |             | 10         | 0.556        | 0.444       | 0.370    | 0.3175       | 0.2778      | 0.2469       | 0.2222       | 0.185       |
| 4000      | Pressure Drop [Pa]                             |                       |             |            | 4            | 7           | 13       | 20           | 31          | 44           | 61           | 106         |
| 1000      | Sound Power Level [dB[A]]                      |                       |             |            | <15          | 23          | 30       | 36           | 41          | 45           | 49           | 56          |
|           | Effective Area [m²]                            |                       |             |            |              | 0.556       | 0.4630   | 0.3968       | 0.3472      | 0.3086       | 0.2778       | 0.231       |
| 5000      | Pressure Drop [Pa]                             |                       |             |            |              | 7           | 13       | 20           | 30          | 44           | 60           | 105         |
|           | Sound Power Level [dB(A)]                      |                       |             |            |              | 24          | 31       | 36           | 41          | 46           | 50           | 57          |
|           | Effective Area [m²]                            |                       |             |            |              |             |          | 0.5952       | 0.5208      |              | 0.4167       | 0.347       |
| 7500      | Pressure Drop [Pa]                             |                       |             |            |              |             |          | 20           | 30          | 43           | 59           | 104         |
|           | Sound Power Level [dB(A)]                      |                       |             |            |              |             |          | 38           | 43          | 47           | 51           | 58          |
|           | Effective Area [m²]                            |                       |             |            |              |             |          |              |             | 0.6173       | 0.5556       | 0.463       |
| 10000     | Pressure Drop [Pa]                             |                       |             |            |              |             |          |              |             | 42           | 59           | 103         |
|           | Sound Power Level [dB(A)]                      |                       |             |            |              |             |          |              |             | 49           | 53           | 59          |
|           | Effective Area [m²]                            |                       |             |            |              |             |          |              |             |              |              | 0.579       |
| 12500     | Pressure Drop [Pa]                             |                       |             |            |              |             |          |              |             |              |              | 102         |
|           | Sound Power Level [dB[A]]                      | 1                     |             | I          | I            | 1           | I        | 1            | I           | I            | I            | 60          |

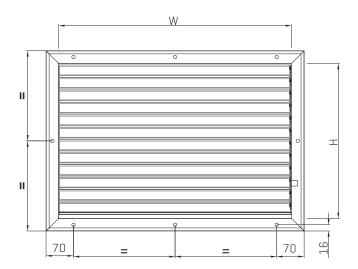



# **EXHAUST AIR DATA**


**Table 4.** Exhaust Air Data


| Flow Rate |                                                | Effective Speed (m/s) |              |              |             |             |             |             |             |              |              |             |
|-----------|------------------------------------------------|-----------------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|-------------|
| (m³/h)    |                                                | 0.5                   | 1.0          | 1.5          | 2.0         | 2.5         | 3.0         | 3.5         | 4.0         | 4.5          | 5.0          | 6.0         |
|           | Effective Area [m²]                            | 0.0278                | 0.0139       | 0.0093       |             |             |             |             |             |              |              |             |
| 50        | Pressure Drop [Pa]                             | <1                    | 3            | 6            |             |             |             |             |             |              |              |             |
|           | Sound Power Level [dB(A)]  Effective Area [m²] | <15                   | <15          | <15          | 0.01//      | 0.011       | 0.000       |             |             |              |              |             |
| 100       | Pressure Drop [Pa]                             | 0.0556                | 0.278        | 0.019<br>6   | 0.014       | 0.011<br>17 | 0.009<br>25 |             |             |              |              |             |
| 100       | Sound Power Level [dB(A)]                      | <15                   | <15          | <15          | <15         | 16          | 21          |             |             |              |              |             |
|           | Effective Area [m²]                            | 0.111                 | 0.056        | 0.037        | 0.028       | 0.022       | 0.019       | 0.016       | 0.014       | 0.012        | 0.011        | 0.009       |
| 200       | Pressure Drop [Pa]                             | <1                    | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55           | 68           | 97          |
|           | Sound Power Level [dB(A)]                      | <15                   | <15          | <15          | <15         | 19          | 24          | 28          | 31          | 34           | 37           | 42          |
|           | Effective Area [m²]                            | 0.167                 | 0.083        | 0.056        | 0.042       | 0.033       | 0.028       | 0.024       | 0.021       | 0.019        | 0.017        | 0.014       |
| 300       | Pressure Drop [Pa] Sound Power Level [dB(A)]   | <1                    | 3            | 6            | 11          | 17          | 25          | 33<br>30    | 44<br>33    | 55<br>36     | 68<br>39     | 97<br>44    |
|           | Effective Area [m²]                            | <15<br>0.222          | <15<br>0.111 | <15<br>0.074 | 15<br>0.056 | 21<br>0.044 | 26<br>0.037 | 0.032       | 0.028       | 0.025        | 0.022        | 0.019       |
| 400       | Pressure Drop [Pa]                             | <1                    | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55           | 68           | 97          |
| 100       | Sound Power Level [dB[A]]                      | <15                   | <15          | <15          | 16          | 22          | 27          | 31          | 34          | 37           | 40           | 45          |
|           | Effective Area [m²]                            | 0.278                 | 0.139        | 0.093        | 0.069       | 0.056       | 0.046       | 0.040       | 0.035       | 0.031        | 0.028        | 0.023       |
| 500       | Pressure Drop [Pa]                             | <1                    | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55           | 68           | 97          |
|           | Sound Power Level [dB(A)]                      | <15                   | <15          | <15          | 17          | 23          | 28          | 32          | 35          | 38           | 41           | 46          |
| 000       | Effective Area [m²]                            | 0.333                 | 0.167        | 0.111        | 0.083       | 0.067       | 0.056       | 0.048       | 0.042       | 0.037        | 0.0333       | 0.028       |
| 600       | Pressure Drop [Pa] Sound Power Level [dB[A]]   | <1<br><15             | 3<br><15     | 6<br><15     | 11<br>18    | 17<br>24    | 25<br>29    | 33          | 44<br>36    | 55<br>39     | 68<br>42     | 97<br>47    |
|           | Effective Area [m²]                            | 0.389                 | 0.194        | 0.130        | 0.097       | 0.078       | 0.065       | 0.056       | 0.049       | 0.043        | 0.0389       | 0.032       |
| 700       | Pressure Drop [Pa]                             | <1                    | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55           | 68           | 97          |
|           | Sound Power Level [dB(A)]                      | <15                   | <15          | <15          | 19          | 25          | 29          | 33          | 37          | 40           | 43           | 47          |
|           | Effective Area [m²]                            | 0.444                 | 0.222        | 0.148        | 0.111       | 0.089       | 0.074       | 0.063       | 0.056       | 0.049        | 0.0444       | 0.037       |
| 800       | Pressure Drop [Pa]                             | <1                    | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55           | 68           | 97          |
|           | Sound Power Level [dB(A)]  Effective Area [m²] | <15                   | <15<br>0.250 | <15<br>0.167 | 19          | 25          | 30          | 34          | 37          | 40           | 43           | 48          |
| 900       | Pressure Drop [Pa]                             | 0.500<br><1           | 3            | 6            | 0.125<br>11 | 0.100<br>17 | 0.083<br>25 | 0.071<br>33 | 0.063       | 0.056<br>55  | 0.500<br>68  | 0.042<br>97 |
| 900       | Sound Power Level [dB[A]]                      | <15                   | <15          | <15          | 20          | 26          | 30          | 34          | 38          | 41           | 44           | 48          |
|           | Effective Area [m²]                            | 0.556                 | 0.278        | 0.185        | 0.139       | 0.111       | 0.093       | 0.079       | 0.069       | 0.062        | 0.556        | 0.046       |
| 1000      | Pressure Drop [Pa]                             | <1                    | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55           | 68           | 97          |
|           | Sound Power Level [dB(A)]                      | <15                   | <15          | <15          | 20          | 26          | 31          | 35          | 385         | 41           | 44           | 49          |
|           | Effective Area [m²]                            |                       | 0.347        | 0.231        | 0.174       | 0.139       | 0.116       | 0.099       | 0.087       | 0.077        | 0.0694       | 0.58        |
| 1250      | Pressure Drop [Pa] Sound Power Level [dB[A]]   |                       | 3<br><15     | 6<br><15     | 11<br>21    | 17<br>27    | 25          | 33          | 44          | 55<br>42     | 68<br>45     | 97<br>50    |
|           | Effective Area [m²]                            |                       | 0.417        | 0.278        | 0.208       | 0.167       | 32<br>0.139 | 36<br>0.119 | 39<br>0.104 | 0.0926       | 0.833        | 0.069       |
| 1500      | Pressure Drop [Pa]                             |                       | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55           | 68           | 97          |
| 1000      | Sound Power Level [dB(A)]                      |                       | <15          | <15          | 22          | 28          | 33          | 37          | 40          | 43           | 46           | 51          |
|           | Effective Area [m²]                            |                       | 0.486        | 0.324        | 0.243       | 0.194       | 0.162       | 0.139       | 0.122       | 0.1080       | 0.972        | 0.081       |
| 1750      | Pressure Drop [Pa]                             |                       | 3            | 6            | 11          | 17          | 25          | 33          | 44          | 55           | 68           | 97          |
|           | Sound Power Level [dB(A)]                      |                       | <15          | 15           | 23          | 29          | 33          | 37          | 41          | 44           | 47           | 51          |
| 0000      | Effective Area [m²] Pressure Drop [Pa]         |                       | 0.556        | 0.370<br>6   | 0.278<br>11 | 0.222<br>17 | 0.185<br>25 | 0.159<br>33 | 0.139       | 0.1235<br>55 | 0.1111<br>68 | 0.093<br>97 |
| 2000      | Sound Power Level [dB(A)]                      |                       | <15          | 16           | 23          | 29          | 34          | 38          | 41          | 44           | 47           | 52          |
|           | Effective Area [m²]                            |                       |              | 0.463        | 0.347       | 0.278       | 0.231       | 0.198       | 0.174       | 0.1543       | 0.1389       | 0.116       |
| 2500      | Pressure Drop [Pa]                             |                       |              | 6            | 11          | 17          | 25          | 33          | 44          | 55           | 68           | 97          |
|           | Sound Power Level [dB(A)]                      |                       |              | 17           | 24          | 30          | 35          | 39          | 42          | 45           | 48           | 53          |
|           | Effective Area [m²]                            |                       |              | 0.556        | 0.417       | 0.333       | 0.2778      | 0.2381      | 0.2083      | 0.1852       | 0.1667       | 0.139       |
| 3000      | Pressure Drop [Pa] Sound Power Level [dB[A]]   |                       |              | 6<br>18      | 11<br>25    | 17<br>31    | 25<br>36    | 33<br>40    | 44          | 55<br>46     | 68<br>49     | 97<br>54    |
|           | Effective Area [m²]                            |                       |              | 10           | 0.556       | 0.444       | 0.370       | 0.3175      | 0.2778      | 0.2469       | 0.2222       | 0.185       |
| 4000      | Pressure Drop [Pa]                             |                       |              |              | 11          | 17          | 25          | 33          | 44          | 55           | 68           | 97          |
| .500      | Sound Power Level [dB(A)]                      |                       |              |              | 26          | 32          | 37          | 41          | 44          | 47           | 50           | 55          |
|           | Effective Area [m²]                            |                       |              |              |             | 0.556       | 0.4630      | 0.3968      | 0.3472      | 0.3086       | 0.2778       | 0.231       |
| 5000      | Pressure Drop [Pa]                             |                       |              |              |             | 17          | 25          | 33          | 44          | 55           | 68           | 97          |
|           | Sound Power Level [dB(A)]                      |                       |              |              |             | 33          | 38          | 42          | 45          | 48           | 51           | 56          |
| 7500      | Effective Area [m²] Pressure Drop [Pa]         |                       |              |              |             |             |             | 0.5952      | 0.5208      | 0.4630<br>55 | 0.4167       | 0.347<br>97 |
| 7500      | Sound Power Level [dB(A)]                      |                       |              |              |             |             |             | 44          | 47          | 50           | 53           | 58          |
|           | Effective Area [m²]                            |                       |              |              |             |             |             |             | <u> </u>    | 0.6173       |              | 0.463       |
| 10000     | Pressure Drop [Pa]                             |                       |              |              |             |             |             |             |             | 55           | 68           | 97          |
|           | Sound Power Level [dB(A)]                      |                       |              |              |             |             |             |             |             | 51           | 54           | 59          |
|           | Effective Area [m²]                            |                       |              |              |             |             |             |             |             |              |              | 0.579       |
| 12500     | Pressure Drop [Pa]                             |                       |              |              |             |             |             |             |             |              |              | 97          |
|           | Sound Power Level [dB(A)]                      |                       |              |              |             |             |             |             |             |              | <u> </u>     | 60          |

# **INSTALLATION**


# **SCREW SYSTEM**



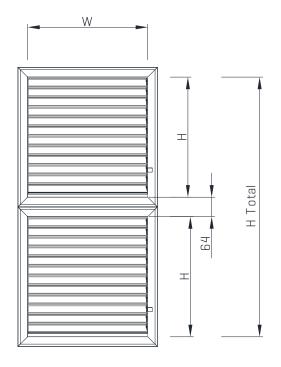




The assembly of the product is done as shown in the above figure with screws.



The number of screw holes used for a profile in various order sizes are given in the table below.


| W (Width) [mm]  | Number of Holes in Horizontal |
|-----------------|-------------------------------|
| W ≤ 300         | 1                             |
| 300 < W ≤ 900   | 2                             |
| 1000 < W ≤ 1500 | 3                             |

| H (Height) [mm] | Number of Holes in Vertical |
|-----------------|-----------------------------|
| 600 < H ≤ 900   | 1                           |

### **SIZE PARAMETERS**

In case of  $\mathbf{W} \leq \mathbf{1500} - \mathbf{H} \geq \mathbf{900}$ , the louvers are produced as modules by dividing the H dimension.

You can use 30 mm x 60 mm profile in module assemblies.



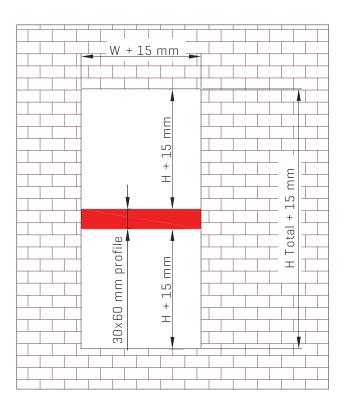
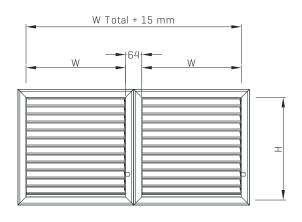




Figure 1

In the case of  $W \ge 1200 - H \le 900$ , the louvres are produced as modules by dividing from W dimensions. During the assembly, a profile must be placed at the module junction as shown in Figure.2.

You can use 30 mm x 60 mm profile in module assemblies.



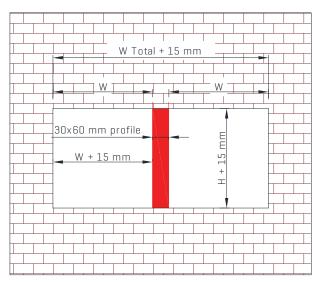
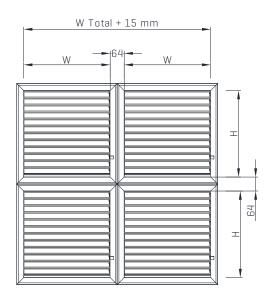




Figure 2

In case of  $W \ge 2300 - H \ge 2100$ , the louvres are produced as modules by dividing both W and H dimensions. During the assembly, a profile must be placed at the module junction as shown in Figure.3.

You can use 30 mm x 60 mm profile in module assemblies.



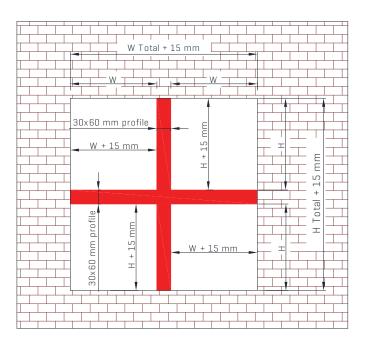



Figure 3

#### Module and Hole Size Calculation

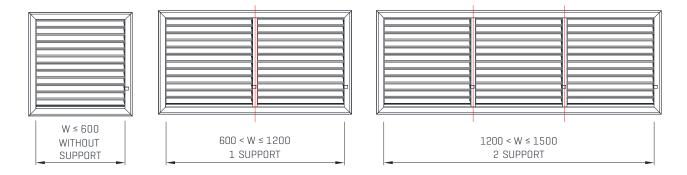
W Total = W x n + (n-1) x 64 mm

W Total [mm]: Module louvre throat size

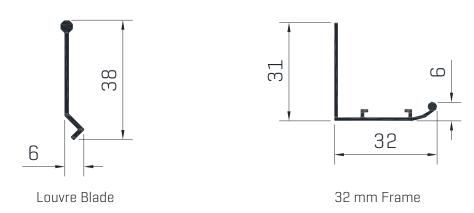
W (mm): Horizontal size for 1 module (specified in the offer)

n: Number of modules (indicated in the offer)

**Example:** What is the module size and mounting hole size of the 3600 mm x 3000 mm adjustable louvre?


W Total= 3600 mm
3600 mm = W x n + (n-1) x 64 mm
n=2 (will be indicated in the offer)
W = It is found as 1768 mm.

H Total= 3000 mm  $3000 \text{ mm} = \text{H} \times \text{n} + (\text{n-1}) \times 64 \text{ mm}$  n=2 (will be indicated in the offer) H = It is found as 1468 mm.


1 Module Size = 1768 mm x 1468 mm ( W x H ) Hole size = 3615 mm x 3015 mm ( [W total + 15 mm] x [H total + 15 mm] )

#### SUPPORT COUNT PARAMETER

As the desired dimensions for a single module of the product increase, the product is produced with additional support and adjustment lever to increase strength.



### FRAME AND BLADE TYPE



### **PRODUCT SELECTION**

**Example:** In case the flow rate of the air to be exhausted is 800 m<sup>3</sup>/h, the pressure drop created by the adjustable louvre is required to be less than 30 Pa and the sound power level to be less than 36 dB[A]. Make the selection of the adjustable louvre.

**Solution:** From the exhaust air data table (Table 4), effective areas at values less than 30 Pa of pressure drop and 36 dB (A) of sound power level at 800 m<sup>3</sup>/h air flow are examined.

For example, in an effective area of  $0.074 \text{ m}^2$ , the effective velocity is 3 m/s, the pressure loss is 25 Pa and the sound power level is 30 dB(A).

The suitable louvre size can be selected from the effective area table (Table 2) as  $500 \text{ mm} \times 300 \text{ mm}$  corresponding to  $0.074 \text{ m}^2$ .

# **PRODUCT ORDER CODES**

You can place your orders according to the following coding format.

| Α | Raw Material Type        |                                    |  |  |  |  |  |  |  |
|---|--------------------------|------------------------------------|--|--|--|--|--|--|--|
|   | ALM                      | Aluminum                           |  |  |  |  |  |  |  |
|   | EAL                      | Anodized Aluminum                  |  |  |  |  |  |  |  |
| В | Frame Type               |                                    |  |  |  |  |  |  |  |
|   | 06                       | 32 mm                              |  |  |  |  |  |  |  |
| С | Mounting Type            |                                    |  |  |  |  |  |  |  |
|   | VD                       | Screwed System                     |  |  |  |  |  |  |  |
|   | MD                       | Without Mounting Hole              |  |  |  |  |  |  |  |
| D | Accessory                |                                    |  |  |  |  |  |  |  |
|   | 22                       | 2x2 Wire                           |  |  |  |  |  |  |  |
|   | 00                       | Without Accesories                 |  |  |  |  |  |  |  |
| E | Horizontal Side (W) [mm] |                                    |  |  |  |  |  |  |  |
|   | 0000                     | You Can Look at the Standard Sizes |  |  |  |  |  |  |  |
| F | Vertical Size (H) [mm]   |                                    |  |  |  |  |  |  |  |
|   | 0000                     | You Can Look at the Standard Sizes |  |  |  |  |  |  |  |
| G | Paint                    |                                    |  |  |  |  |  |  |  |
|   | 00                       | Unpainted                          |  |  |  |  |  |  |  |
|   | S1                       | Standard Painted - RAL 9010        |  |  |  |  |  |  |  |
|   | S2                       | Standard Painted - RAL 9016        |  |  |  |  |  |  |  |
|   | XX                       | Special Painted                    |  |  |  |  |  |  |  |

**Sample Coding;** DPA.ALM.06.VD.22.0750.0550.S1

| NOTES |                           |
|-------|---------------------------|
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
| į ĶĮ  | IMLENDIRME   HVAC SYSTEMS |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |
|       |                           |







### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477, Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1, Ağaoğlu My Office, Kat: 4/18, Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56













# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in Istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











- OAK Square Ceiling Diffuser is used in supply and return.
- lt is preferred for its architectural design and functional features.
- lt provides air throw in 4 directions or in the desired directions if specified in the order with low pressure drop.
- Installation and cleaning is done easily thanks to the plug-in system.
- € It is used between 100 and 5000m3/h air flow rates depending on the product dimensions.
- lt has a decorative structure compatible with ready-made aluminum suspended ceiling systems and metal ceiling systems.
- lt can be produced as assembled with optional "Hepa Filter Box" provided that the dimensions are specified.
- € It complies with TSE ISO EN 14644, DIN 1946/4, DIN 24194 and DIN 25414 hygiene standards.

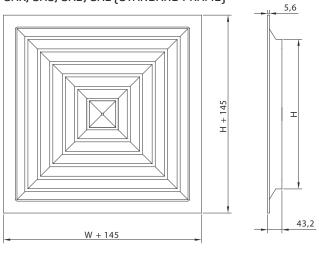
### **MATERIAL**

• Production with aluminum or galvanized option.

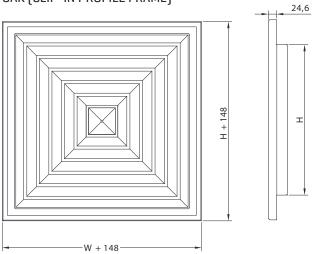
### **SURFACE COATING**

- Electrostatic powder paint RAL 9010 or RAL 9016 as standard.
- © Optional
  - Different RAL color codes
  - Unpainted production

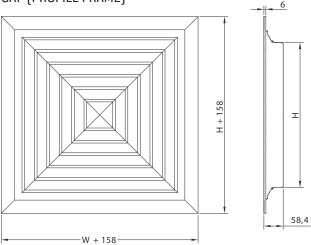
### **INSTALLATION OPTIONS**


- Screwed
- Tile
- Clip-in
- Latched
- © Corner Mounted
- Without Installation Holes

### **ACCESSORIES**


- © Optional
  - ZKD Opposite Blade Air Adjustment Damper
  - Fiber Filter
  - Reduction

# **STANDARD SIZES**


# OAK, OAG, OAB, OAL (STANDARD FRAME)



# OAK (CLIP-IN PROFILE FRAME)



# OAP (PROFILE FRAME)



**Table 1.** Standard Sizes

| <b>Product Series</b>               | Standard Si       | zes (W x H) [mm]   | Installation Type      |  |  |  |  |  |  |
|-------------------------------------|-------------------|--------------------|------------------------|--|--|--|--|--|--|
|                                     | 150               | × 150              |                        |  |  |  |  |  |  |
| OAK, OAG, OAB, OAL                  | 225 :             | x 225              | Screwed, Latched       |  |  |  |  |  |  |
| (Standard Frame)                    | 300               |                    |                        |  |  |  |  |  |  |
|                                     | 450 :             | × 450              | Screwed, Latched, Tile |  |  |  |  |  |  |
| OAK, OAB<br>(Clip-in Profile Frame) | 452)              | x 452              | Latched Installation   |  |  |  |  |  |  |
|                                     | 201)              |                    |                        |  |  |  |  |  |  |
|                                     | 353               |                    |                        |  |  |  |  |  |  |
| ПАР                                 | 431 :             |                    |                        |  |  |  |  |  |  |
|                                     | 471               | Corner Mounted     |                        |  |  |  |  |  |  |
| (For HEPA Filter Boxes)             | 506               |                    |                        |  |  |  |  |  |  |
| (Profile Frame)                     | 658               | 658 x 658          |                        |  |  |  |  |  |  |
|                                     | 201               | 201 x 506          |                        |  |  |  |  |  |  |
|                                     | 353               | 353 x 506          |                        |  |  |  |  |  |  |
|                                     | Non-Standa        | rd Dimensions [mm] |                        |  |  |  |  |  |  |
| Product Series                      | Width (W)         | Height (H)         | Installation Type      |  |  |  |  |  |  |
| OAP                                 | Minimum: 150 mm   | Minimum: 150 mm    |                        |  |  |  |  |  |  |
| (Profile Frame)                     | Maximum : 1050 mm | Screwed, Latched   |                        |  |  |  |  |  |  |

# **MATERIAL OPTIONS**

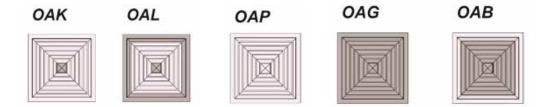
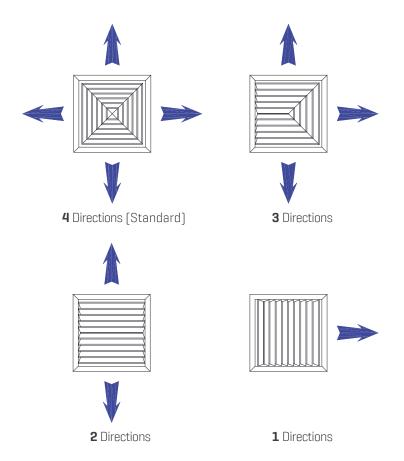




Table 2. Material Options

| Product Code | Outer Frame | Inner Frame | Centre     | Sizing      |
|--------------|-------------|-------------|------------|-------------|
| OAK          | Aluminum    | Aluminum    | Galvanized | Square      |
| OAB          | Aluminum    | Galvanized  | Galvanized | Square      |
| OAG          | Galvanized  | Galvanized  | Galvanized | Square      |
| OAL          | Galvanized  | Aluminum    | Galvanized | Square      |
| OAP          | Aluminum    | Aluminum    | Aluminum   | Rectangular |

**Note:** The product is painted with RAL 9010 or RAL 9016 electrostatic powder paint as standard. If specified in the order, it can be painted with special RAL codes or selected unpainted.

# **AIR DISTRIBUTION DIRECTIONS**



### **PERFORMANCE DATA**

### **STANDARD SIZES**

Table 3. Standard Sizes Performance Data

| Product Sizes          | Outer Sizes               | Efektive                  |                           |     |     |     | Effecti | ve Velocit | y [m/s] |      |      |
|------------------------|---------------------------|---------------------------|---------------------------|-----|-----|-----|---------|------------|---------|------|------|
| [mm x mm]              | [mm x mm]                 | Area [m²]                 |                           | 2   | 2.5 | 3   | 3.5     | 4          | 4.5     | 5    | 5.5  |
|                        |                           |                           | Air Flow Rate [m³/h]      | 63  | 79  | 95  | 110     | 126        | 142     | 158  | 173  |
| 150 v 150              | 300 ^ 300                 | n nna                     | Throw Distance [m]        | 0.6 | 0.8 | 0.9 | 1.1     | 1.2        | 1.4     | 1.5  | 1.7  |
| 130 X 130              | 300 X 300                 | 0.003                     | Pressure Drop [Pa]        | 2   | 3   | 4   | 6       | 8          | 10      | 12   | 15   |
|                        |                           |                           | Sound Power Level [dB(A)] | <15 | <15 | <15 | <15     | <15        | <15     | 18   | 20   |
|                        |                           |                           | Air Flow Rate [m³/h]      | 142 | 177 | 213 | 248     | 284        | 319     | 355  | 390  |
| 225 x 225 375 x 375 0. | ດ ກວ                      | Throw Distance [m]        | 1.0                       | 1.2 | 1.5 | 1.7 | 2.0     | 2.2        | 2.5     | 2.7  |      |
|                        | 3/3 × 3/3                 | U.UL                      | Pressure Drop [Pa]        | 2   | 4   | 5   | 7       | 9          | 12      | 15   | 18   |
|                        |                           | Sound Power Level [dB(A)] | <15                       | <15 | <15 | <15 | 16      | 20         | 23      | 26   |      |
|                        |                           |                           | Air Flow Rate [m³/h]      | 252 | 315 | 378 | 441     | 504        | 567     | 630  | 693  |
| 300 ^ 300              | #50 v #50                 | 0.035                     | Throw Distance [m]        | 1.4 | 1.7 | 2.1 | 2.4     | 2.8        | 3.1     | 3.5  | 3.8  |
| 300 x 300              | 130 x 130                 | 0.033                     | Pressure Drop [Pa]        | 3   | 4   | 6   | 8       | 10         | 13      | 16   | 20   |
|                        | 150 x 150 300 x 300 0.009 |                           | Sound Power Level [dB(A)] | <15 | <15 | <15 | 16      | 20         | 23      | 27   | 30   |
|                        |                           |                           | Air Flow Rate [m³/h]      | 394 | 492 | 591 | 689     | 788        | 886     | 985  | 1083 |
| 375 v 375              | 525 v 525                 | 0.055                     | Throw Distance [m]        | 1.8 | 2.2 | 2.7 | 3.1     | 3.6        | 4.0     | 4.5  | 4.9  |
| 3/3/3/3                | JES X JES                 | 0.000                     | Pressure Drop [Pa]        | 3   | 4   | 6   | 9       | 11         | 14      | 18   | 21   |
|                        |                           |                           | Sound Power Level [dB(A)] | <15 | <15 | <15 | 19      | 23         | 26      | 30   | 32   |
|                        |                           |                           | Air Flow Rate [m³/h]      | 567 | 709 | 851 | 993     | 1135       | 1276    | 1418 | 1560 |
| 450 x 450              | euu x euu                 | 0.079                     | Throw Distance [m]        | 2.2 | 2.7 | 3.3 | 3.8     | 4.4        | 5.0     | 5.5  | 6.1  |
| 430 2 430   0          | 000 x 000                 | 0.073                     | Pressure Drop [Pa]        | 3   | 5   | 7   | 9       | 12         | 15      | 19   | 23   |
|                        |                           |                           | Sound Power Level [dB(A)] | <15 | <15 | 16  | 21      | 25         | 29      | 32   | 35   |

- $\bullet$  The data were obtained when the temperature difference between the air distribution equipment and the room air was  $\Delta$  T = 8 K.
- The throw distance is the distance between the point where the velocity of the supply air is at 0.25 m/s and the air distribution equipment.

### **VARIABLE SIZES**

Effective Area Table

**Table 4.** Effective Area Table

| Effective A | roo [m²]    |       |       |       |       | H (Heigh | t)[mm] |       |       |       |       |
|-------------|-------------|-------|-------|-------|-------|----------|--------|-------|-------|-------|-------|
| Ellective A | i ea [iii-] | 150   | 200   | 300   | 400   | 500      | 600    | 750   | 850   | 950   | 1050  |
|             | 150         | 0.009 | 0.012 | 0.018 | 0.023 | 0.029    | 0.035  | 0.044 | 0.050 | 0.055 | 0.061 |
|             | 200         | 0.012 | 0.016 | 0.023 | 0.031 | 0.039    | 0.047  | 0.058 | 0.066 | 0.074 | 0.082 |
|             | 300         | 0.018 | 0.023 | 0.035 | 0.047 | 0.058    | 0.070  | 0.088 | 0.099 | 0.111 | 0.123 |
| W           | 400         | 0.023 | 0.031 | 0.047 | 0.062 | 0.078    | 0.093  | 0.117 | 0.132 | 0.148 | 0.163 |
| (Width)     | 500         | 0.029 | 0.039 | 0.058 | 0.078 | 0.097    | 0.117  | 0.146 | 0.165 | 0.185 | 0.204 |
|             | 600         | 0.035 | 0.047 | 0.070 | 0.093 | 0.117    | 0.140  | 0.175 | 0.198 | 0.222 | 0.245 |
| [mm]        | 750         | 0.044 | 0.058 | 0.088 | 0.117 | 0.146    | 0.175  | 0.219 | 0.248 | 0.277 | 0.306 |
|             | 850         | 0.050 | 0.066 | 0.099 | 0.132 | 0.165    | 0.198  | 0.248 | 0.281 | 0.314 | 0.347 |
|             | 950         | 0.055 | 0.074 | 0.111 | 0.148 | 0.185    | 0.222  | 0.277 | 0.314 | 0.351 | 0.388 |
|             | 1050        | 0.061 | 0.082 | 0.123 | 0.163 | 0.204    | 0.245  | 0.306 | 0.347 | 0.388 | 0.429 |

# **Performance Data**

Table 5. Variable Sizes Performance Data

| Elevy D-+-For-2# 3 |                                       |          |          |          |          |          |       | ective V |        |        | F.C.   |       |       |                                                  |                                                  |          |
|--------------------|---------------------------------------|----------|----------|----------|----------|----------|-------|----------|--------|--------|--------|-------|-------|--------------------------------------------------|--------------------------------------------------|----------|
| Flow Rate[m³/h]    | F# .1 A                               | 0.5      | 1.0      | 1.5      | 2.0      | 2.5      | 3.0   | 3.5      | 4.0    | 4.5    | 5.0    | 6.0   | 7.0   | 8.0                                              | 9.0                                              | 10.0     |
|                    | Effective Area [m²]                   | 0.0278   | 0.0139   | 0.009    | 0.007    | 0.006    | 0.005 | 0.004    | 0.004  | 0.003  | 0.003  | 0.002 | 0.002 | 0.002                                            | 0.002                                            | 0.001    |
| 50                 | Pressure Drop [Pa]                    | <1       | <1       | 1        | 2        | 3        | 4     | 5        | 7      | 8      | 10     | 14    | 18    | 23                                               | 29                                               | 35       |
| -                  | Throw Distance [m]                    | 0        | 0        | 1        | 1        | 1        | 1     | 1        | 1      | 1      | 1      | 1     | 1     | 1                                                | 1                                                | 1        |
|                    | Sound Power Level [dB(A)]             | <15      | <15      | <15      | <15      | <15      | <15   | <15      | <15    | <15    | <15    | <15   | 18    | 22                                               | 24                                               | 27       |
|                    | Effective Area [m²]                   | 0.0556   | 0.0278   | 0.019    | 0.014    | 0.011    | 0.009 | 0.008    | 0.007  | 0.006  | 0.006  | 0.005 | 0.004 | 0.004                                            | 0.003                                            | 0.003    |
|                    | Pressure Drop[Pa]                     | <1       | <1       | 1        | 2        | 3        | 5     | 6        | 8      | 9      | 11     | 16    | 21    | 27                                               | 33                                               | 40       |
| 100                | Throw Distance [m]                    | 0        | 1        | 1        | 1        | 1        | 1     | 1        | 1      | 1      | 1      | 1     | 1     | 1                                                | 2                                                | 2        |
|                    |                                       | -        | _        |          | -        | -        | -     | -        | -      | _      | -      | _     | -     | _                                                | _                                                | _        |
|                    | Sound Power Level [dB(A)]             | <15      | <15      | <15      | <15      | <15      | <15   | <15      | <15    | <15    | <15    | 19    | 23    | 26                                               | 29                                               | 32       |
|                    | Effective Area [m²]                   | 0.111    | 0.056    | 0.037    | 0.028    | 0.022    | 0.019 | 0.016    | 0.014  | 0.012  | 0.011  | 0.009 | 0.008 | 0.007                                            | 0.006                                            | 0.008    |
| 200                | Pressure Drop [Pa]                    | <1       | <1       | 1        | 2        | 4        | 5     | 7        | 9      | 11     | 13     | 18    | 24    | 31                                               | 38                                               | 46       |
| 200                | Throw Distance [m]                    | 1        | 1        | 1        | 1        | 1        | 1     | 2        | 2      | 2      | 2      | 2     | 2     | 2                                                | 2                                                | 2        |
|                    | Sound Power Level [dB(A)]             | <15      | <15      | <15      | <15      | <15      | <15   | <15      | <15    | 17     | 19     | 24    | 27    | 31                                               | 33                                               | 36       |
|                    | Effective Area [m²]                   | 0.167    | 0.083    | 0.056    | 0.042    | 0.033    | 0.028 | 0.024    | 0.021  | 0.019  | 0.017  | 0.014 | 0.012 | 0.010                                            | 0.009                                            | 0.008    |
|                    | Pressure Drop [Pa]                    | <1       | <1       | 2        | 3        | 4        | 6     | 7        | 9      | 12     | 14     | 20    | 26    | 33                                               | 41                                               | 50       |
| 300                | Throw Distance [m]                    | 1        | 1        | 1        | 2        | 2        | 2     | 2        | 2      | 2      | 2      | 2     | 3     | 3                                                | 3                                                | 3        |
|                    | Sound Power Level [dB(A)]             |          |          |          |          |          |       | -        | -      |        |        | -     | -     | _                                                |                                                  | _        |
|                    | - 17                                  | <15      | <15      | <15      | <15      | <15      | <15   | <15      | 16     | 19     | 22     | 26    | 30    | 33                                               | 36                                               | 39       |
|                    | Effective Area [m²]                   | 0.222    | 0.111    | 0.074    | 0.056    | 0.044    | 0.037 | 0.032    | 0.028  | 0.025  | 0.022  | 0.019 | 0.016 | 0.014                                            | 0.012                                            | 0.013    |
| 400                | Pressure Drop [Pa]                    | <1       | <1       | 2        | 3        | 4        | 6     | 8        | 10     | 12     | 15     | 21    | 28    | 35                                               | 44                                               | 53       |
| 700                | Throw Distance [m]                    | 1        | 1        | 2        | 2        | 2        | 2     | 2        | 2      | 3      | 3      | 3     | 3     | 3                                                | 3                                                | 4        |
|                    | Sound Power Level [dB(A)]             | <15      | <15      | <15      | <15      | <15      | <15   | <15      | 18     | 21     | 24     | 28    | 32    | 35                                               | 38                                               | 40       |
|                    | Effective Area [m²]                   | 0.278    | 0.139    | 0.093    | 0.069    | 0.056    | 0.046 | 0.040    | 0.035  | 0.031  | 0.028  | 0.023 | 0.020 | 0.017                                            | 0.015                                            | 0.014    |
|                    | Pressure Drop [Pa]                    | <1       | <1       | 2        | 3        | 4        | 6     | 8        | 10     | 13     | 16     | 22    | 29    | 37                                               | 46                                               | 55       |
| 500                |                                       |          | 2        |          | 2        | 2        | _     | _        | _      |        | _      | -     | _     | 4                                                | 46                                               | _        |
|                    | Throw Distance [m]                    | 1        |          | 2        |          |          | 2     | 3        | 3      | 3      | 3      | 3     | 4     |                                                  |                                                  | 4        |
|                    | Sound Power Level [dB(A)]             | <15      | <15      | <15      | <15      | <15      | <15   | 16       | 20     | 23     | 25     | 30    | 33    | 37                                               | 39                                               | 42       |
|                    | Effective Area [m²]                   | 0.333    | 0.167    | 0.111    | 0.083    | 0.067    | 0.056 | 0.048    | 0.042  | 0.037  | 0.0333 | 0.028 | 0.024 | 0.021                                            | 0.019                                            | 0.017    |
| 600                | Pressure Drop [Pa]                    | <1       | <1       | 2        | 3        | 5        | 6     | 8        | 11     | 13     | 16     | 22    | 30    | 38                                               | 47                                               | 57       |
| 000                | Throw Distance [m]                    | 1        | 2        | 2        | 2        | 3        | 3     | 3        | 3      | 3      | 3.3    | 4     | 4     | 4                                                | 4                                                | 5        |
|                    | Sound Power Level [dB(A)]             | <15      | <15      | <15      | <15      | <15      | <15   | 18       | 21     | 24     | 26     | 31    | 34    | 38                                               | 41                                               | 43       |
|                    | Effective Area [m²]                   | 0.389    | 0.194    | 0.130    | 0.097    | 0.078    | 0.065 | 0.056    | 0.049  | 0.043  | 0.0389 | 0.032 | 0.028 | 0.024                                            | 0.022                                            | 0.019    |
|                    | Pressure Drop [Pa]                    | <1       | <1       | 2        | 3        | 5        | 7     | 9        | 11     | 14     | 17     | 23    | 31    | 39                                               | 49                                               | 59       |
| 700                |                                       |          | -        |          | _        | _        | _     | _        | -      |        | -      | _     | _     |                                                  |                                                  | _        |
|                    | Throw Distance [m]                    | 1        | 2        | 2        | 2        | 3        | 3     | 3        | 3      | 4      | 3.7    | 4     | 4     | 5                                                | 5                                                | 5        |
|                    | Sound Power Level [dB(A)]             | <15      | <15      | <15      | <15      | <15      | <15   | 19       | 22     | 25     | 27     | 32    | 35    | 39                                               | 42                                               | 44       |
|                    | Effective Area [m²]                   |          | 0.222    | 0.148    | 0.111    | 0.089    | 0.074 | 0.064    | 0.056  | 0.049  | 0.0444 | 0.037 | 0.032 | 0.028                                            | 0.025                                            | 0.022    |
| 800                | Pressure Drop [Pa]                    |          | <1       | 2        | 3        | 5        | 7     | 9        | 11     | 14     | 17     | 24    | 32    | 40                                               | 50                                               | 61       |
| 800                | Throw Distance [m]                    |          | 2        | 2        | 3        | 3        | 3     | 3        | 4      | 4      | 4.0    | 4     | 5     | 5                                                | 5                                                | 5        |
|                    | Sound Power Level [dB[A]]             |          | <15      | <15      | <15      | <15      | 16    | 20       | 23     | 26     | 28     | 33    | 36    | 40                                               | 42                                               | 45       |
|                    | Effective Area [m²]                   |          | 0.250    | 0.167    | 0.125    | 0.100    | 0.083 | 0.071    | 0.063  | 0.056  | 0.0500 | 0.042 | 0.036 | 0.031                                            | 0.028                                            | 0.025    |
|                    | Pressure Drop [Pa]                    |          | <1       | 2        | 3        | 5        | 7     | 9        | 12     | 14     | 17     | 24    | 32    | 41                                               | 51                                               | 62       |
| 900                |                                       |          | -        |          | _        | _        | _     | _        | -      |        | -      | -     | _     |                                                  | _                                                | _        |
|                    | Throw Distance [m]                    |          | 2        | 3        | 3        | 3        | 3     | 4        | 4      | 4      | 4.2    | 5     | 5     | 5                                                | 6                                                | 6        |
|                    | Sound Power Level [dB(A)]             |          | <15      | <15      | <15      | <15      | 17    | 20       | 24     | 26     | 29     | 33    | 37    | 40                                               | 43                                               | 46       |
|                    | Effective Area [m²]                   |          | 0.278    | 0.185    | 0.139    | 0.111    | 0.093 | 0.079    | 0.069  | 0.062  | 0.0556 | 0.046 | 0.040 | 0.035                                            | 0.031                                            | 0.028    |
| 1000               | Pressure Drop [Pa]                    |          | <1       | 2        | 3        | 5        | 7     | 9        | 12     | 15     | 18     | 25    | 33    | 42                                               | 52                                               | 63       |
| 1000               | Throw Distance [m]                    |          | 2        | 3        | 3        | 3        | 4     | 4        | 4      | 4      | 4.5    | 5     | 5     | 6                                                | 6                                                | 6        |
|                    | Sound Power Level [dB(A)]             |          | <15      | <15      | <15      | <15      | 17    | 21       | 24     | 27     | 30     | 34    | 38    | 41                                               | 44                                               | 46       |
|                    | Effective Area [m²]                   |          | 0.347    | 0.232    | 0.174    | 0.139    | 0.116 | 0.099    | 0.087  | 0.077  | 0.0694 | 0.058 | 0.050 | 0.043                                            | 0.039                                            | 0.035    |
|                    | Pressure Drop [Pa]                    |          | <1       | 2        | 4        | 5        | 7     | 10       | 12     | 15     | 19     | 26    | 34    | 44                                               | 54                                               | 66       |
| 1250               |                                       |          | -        |          | _        | _        | _     | _        | -      | _      | _      | _     | _     |                                                  | _                                                |          |
|                    | Throw Distance [m]                    |          | 3        | 3        | 3        | 4        | 4     | 4        | 5      | 5      | 5.1    | 6     | 6     | 6                                                | 7                                                | 7        |
|                    | Sound Power Level [dB(A)]             |          | <15      | <15      | <15      | <15      | 19    | 22       | 26     | 28     | 31     | 35    | 39    | 42                                               | 45                                               | 48       |
|                    | Effective Area [m²]                   |          | 0.417    | 0.278    | 0.208    | 0.167    | 0.139 | 0.119    | 0.104  | 0.0926 | 0.0833 | 0.069 | 0.060 | 0.052                                            | 0.046                                            | 0.042    |
| 1500               | Pressure Drop[Pa]                     |          | <1       | 2        | 4        | 5        | 8     | 10       | 13     | 16     | 19     | 27    | 36    | 45                                               | 56                                               | 68       |
| 1900               | Throw Distance [m]                    |          | 3        | 3        | 4        | 4        | 5     | 5        | 5      | 5.4    | 5.7    | 6     | 7     | 7                                                | 7                                                | 8        |
|                    | Sound Power Level [dB(A)]             |          | <15      | <15      | <15      | 15       | 20    | 24       | 27     | 30     | 32     | 37    | 40    | 44                                               | 46                                               | 49       |
|                    | Effective Area [m²]                   |          |          | 0.324    | 0.243    | 0.194    | 0.162 | 0.139    | 0.122  | 0.1080 | 0.0972 | 0.081 | 0.069 | 0.061                                            | 0.054                                            | 0.049    |
|                    | Pressure Drop [Pa]                    |          |          | 2        | 4        | 6        | 8     | 10       | 13     | 16     | 20     | 28    | 37    | 47                                               | 58                                               | 70       |
| 1750               | Throw Distance [m]                    |          |          | 4        | 4        | 5        | 5     | 5        | 6      | 6      | 6      | 7     | 7     | 8                                                | 8                                                | 9        |
|                    |                                       | $\vdash$ | $\vdash$ |          | <15      |          |       |          | _      | _      |        | -     | 41    |                                                  | 47                                               | _        |
|                    | Sound Power Level [dB(A)]             |          |          | <15      | _        | 16       | 21    | 25       | 28     | 31     | 33     | 38    | -     | 45                                               |                                                  | 50       |
|                    | Effective Area [m²]                   |          |          | 0.370    | 0.278    | 0.222    | 0.185 | 0.159    | 0.139  | 0.1235 | 0.1111 | 0.093 | 0.079 | 0.069                                            | 0.062                                            | 0.056    |
| 2000               | Pressure Drop [Pa]                    |          |          | 2        | 4        | 6        | 8     | 11       | 14     | 17     | 20     | 28    | 38    | 48                                               | 60                                               | 72       |
|                    | Throw Distance [m]                    |          |          | 4        | 5        | 5        | 5     | 6        | 6      | 6      | 7      | 7     | 8     | 8                                                | 9                                                | 9        |
|                    | Sound Power Level [dB(A)]             |          |          | <15      | <15      | 17       | 22    | 25       | 29     | 32     | 34     | 38    | 42    | 45                                               | 48                                               | 51       |
|                    | Effective Area [m²]                   |          |          |          | 0.347    | 0.278    | 0.232 | 0.198    | 0.174  | 0.1543 | 0.1389 | 0.116 | 0.099 | 0.087                                            | 0.077                                            | 0.069    |
|                    | Pressure Drop [Pa]                    |          |          |          | 4        | 6        | 8     | 11       | 14     | 18     | 21     | 30    | 39    | 50                                               | 62                                               | 76       |
| 2500               | Throw Distance [m]                    |          |          |          | 5        | 6        | 6     | 7        | 7      | 7      | 8      | 8     | 9     | 9                                                | 10                                               | 10       |
|                    | Sound Power Level [dB[A]]             |          |          |          | <15      | 19       | 23    | 27       | 30     | 33     | 36     | 40    | 44    | 47                                               | 50                                               | 52       |
|                    |                                       |          |          |          | _        |          |       |          |        |        | -      | _     | -     |                                                  | _                                                | _        |
|                    | Effective Area [m²]                   |          |          |          | 0.417    | 0.333    | 0.278 | 0.238    | 0.2083 | 0.1852 | 0.1667 | 0.139 | 0.119 | 0.104                                            | 0.093                                            | 0.083    |
| 3000               | Pressure Drop [Pa]                    |          |          | <u> </u> | 4        | 6        | 9     | 12       | 15     | 18     | 22     | 31    | 41    | 52                                               | 65                                               | 78       |
|                    | Throw Distance [m]                    |          |          |          | 6        | 6        | 7     | 7        | 8      | 8      | 9      | 9     | 10    | 11                                               | 11                                               | 12       |
|                    | Sound Power Level [dB(A)]             |          |          |          | <15      | 20       | 24    | 28       | 31     | 34     | 37     | 41    | 45    | 48                                               | 51                                               | 53       |
|                    | Effective Area [m²]                   |          |          |          |          |          | 0.370 | 0.318    | 0.278  | 0.2469 | 0.2222 | 0.185 | 0.159 |                                                  |                                                  |          |
|                    | Pressure Drop [Pa]                    |          |          |          |          |          | 9     | 12       | 16     | 19     | 23     | 33    | 43    |                                                  |                                                  |          |
| 4000               | Throw Distance [m]                    |          | <b>—</b> |          | <b>—</b> | <b>—</b> | 8     | 9        | 9      | 10     | 10     | 11    | 12    | <del>                                     </del> | <del>                                     </del> | $\vdash$ |
|                    |                                       |          |          | <b>—</b> | _        | _        | _     |          | -      | _      | -      | -     |       | <del></del>                                      | $\vdash$                                         | $\vdash$ |
|                    | Sound Power Level [dB(A)]             |          |          |          |          |          | 26    | 30       | 33     | 36     | 39     | 43    | 47    |                                                  |                                                  | Ь—       |
|                    | Effective Area [m²]                   |          |          |          |          |          |       | 0.397    | 0.3472 | 0.3086 | 0.2778 |       |       |                                                  |                                                  |          |
|                    |                                       |          | ı —      | ı        |          |          |       | 13       | 16     | 20     | 24     | ı     |       | ı                                                | I                                                |          |
| FOOC               | Pressure Drop [Pa]                    |          |          |          |          |          |       | 10       |        |        |        |       |       |                                                  |                                                  |          |
| 5000               | Pressure Drop [Pa] Throw Distance [m] |          |          |          |          |          |       | 10       | 10     | 11     | 12     |       |       |                                                  |                                                  |          |

**Note:** The data were obtained when the temperature difference between the air distribution equipment and the room air was  $\Delta$  T = 8 K.

# THROW DISTANCE CORRECTION TABLE

**Table 6.** Throw Distance Correction Table

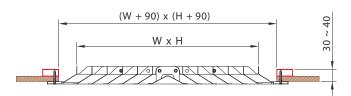
| Heating Mode (ΔT)         | 4    | 6    | 8    | 10   | 12   |  |
|---------------------------|------|------|------|------|------|--|
| Throw Distance Multiplier | 1.07 | 1.02 | 1    | 0.90 | 0.83 |  |
| Cooling Mode (AT)         | 4    | 6    | 8    | 10   | 12   |  |
| Throw Distance Multiplier | 1.31 | 1.36 | 1.42 | 1.48 | 1.54 |  |

# **DAMPER CORRECTION TABLE**

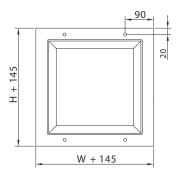
**Table 7.** Damper Correction Table

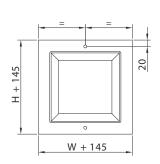
| Damper Position | Pressure Drop Multiplier | Sound Generation [dB(A)] |
|-----------------|--------------------------|--------------------------|
| Open            | 1.1                      | +1                       |
| %25 Closed      | 1.14                     | +4                       |
| %50 Closed      | 2.48                     | +14                      |
| %75 Closed      | 5.11                     | +29                      |

# FILTER PRESSURE DROP TABLE


**Table 8.** Filter Pressure Drop Table

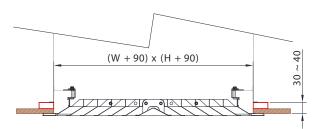
|                     | Air Velocity [m/s] |     |     |     |     |     |     |     |     |     |     |     |     |     |      |
|---------------------|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Pressure Drop [Pa]  | 0,5                | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 | 3,5 | 4,0 | 4,5 | 5,0 | 6,0 | 7,0 | 8,0 | 9,0 | 10,0 |
| Polyurethane Filter | 1                  | 3   | 5   | 8   | 11  | 15  | 19  | 24  | 29  | 35  | 48  | 63  | 81  | 100 | 121  |
| Fiber Filter        | 15                 | 28  | 40  | 51  | 62  | 73  | 84  | 94  | 105 | 115 | 135 | 155 | 174 | 193 | 212  |


# **INSTALLATION TABLE**

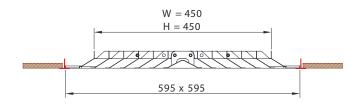

# **OAK-OAB-OAG-OAL INSTALLATIONS**

#### Screwed

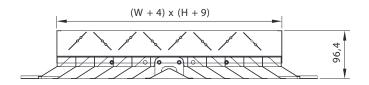



The number of screw holes used is given in the table below.



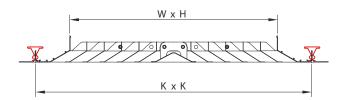



|                                                                    | W(Width)[mm] | Number of Top Profile Holes | Number of Bottom Profile Holes |
|--------------------------------------------------------------------|--------------|-----------------------------|--------------------------------|
|                                                                    | W < 150      | 1                           | 1                              |
|                                                                    | W ≥ 150      | 2                           | 2                              |
| Mounting Screw DIN 7504 P 3 9x38 Drill hit phillins countersunk sc |              |                             | nhillins countersunk screw     |


### Latched

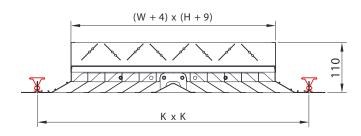


Tile



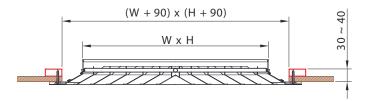

# With Damper



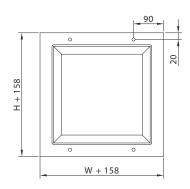

# **OAK-OAB**

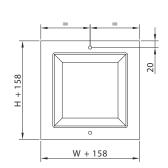
# Clip-In




| Clip-In Sizes (K x K) [mm] | W[mm] | H[mm] |
|----------------------------|-------|-------|
| 300 x 300                  | 152   | 152   |
| 600 x 600                  | 452   | 452   |

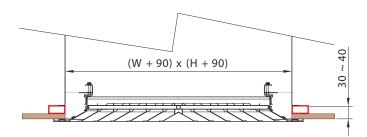
# With Damper



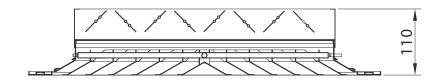


# **OAP**

# Screwed

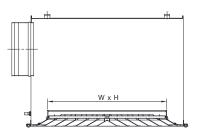


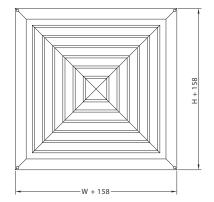

The number of screw holes used is given in the table below.






| W (Width) [mm] |                    | Number of Top Profile Holes | Number of Bottom Profile Holes |  |
|----------------|--------------------|-----------------------------|--------------------------------|--|
|                | W < 150            | 1                           | 1                              |  |
|                | W ≥ 150            | 2                           | 2                              |  |
|                | Mounting Screw: DI | N 7504 P 3 9x38 Drill hit   | nhilling countersunk screw     |  |


### Latched




# With Damper



# Corner Mounting (with Hepa Filter Box)





#### PRODUCT SELECTION

**Example:** The air flow rate distributed in the space is determined as 5000m3/h. 5 square anemostats will be used for supply. The height of the ceil is 5 meters. The temperature difference in heating mode is 10K. Make the product selection.

**Solution:** The air flow rate for a grille, 5000/5 = 1000m3/h

The grille should supply the air up to 1.7m above the ground. Accordingly, an anemostat with a throw distance of 5-1.7 = 3.3m and an air flow rate of 1000m3/h with a low pressure drop will be selected.

For quick selection, the dimensions corresponding to the appropriate flow and throw distance values are selected from the "Standard Dimensions Performance Data" table.

Accordingly, a square anemostat with the size of 450x450 is selected. Effective area is 0.079m2, effective speed is 3m/h, pressure loss is 8.64Pa, throw distance is 3.9m and sound power level is 32.4dB[A].

#### **Throw Distance Correction Table**

In the previous example, the throw distance for the 8K heating mode was found to be 4m. For heating mode 10K, refer to the throw distance correction table. The multiplier value is 0.9.

Corrected throw distance =  $3.9 \text{m} \times 0.9 = 3.51 \text{ m}$ 

#### Filter Selection

Filter Pressure Drop table should be used for pressure drop calculations that should be applied when choosing a polyurethane or fiber filter.

For example, a flow rate of 1000 m3/h and a throat size of 450x450mm will result in a pressure loss of 8.64Pa. Throat speed is taken as a basis for filter selection. So the throat velocity is:

$$\text{Velocity}\left(\frac{m}{s}\right) = \frac{1000 \ m^3 / \text{h}}{450 \ mm \ \times \ 450 \ mm} \times \left(\frac{1 \ h}{3600 \ s}\right) \times \left(\frac{1 \ mm}{0.001 \ m}\right) \times \left(\frac{1 \ mm}{0.001 \ m}\right) = 1,37 \ m/s$$

Accordingly, in the filter pressure loss table, it is read that a pressure loss of +4 Pa for the polyurethane filter and +37Pa for the fiber filter will occur at a speed of 1.37m/s. Total pressure loss;

With polyurethane filter: 8,64+4 = 12,64 Pa With Fiber Filter: 8,64 + 37 = 45,64 Pa

#### Opposite Blade Damper Condition

Pressure drop and sound power level change in the product with a damper. Damper correction table should be used.

For example, in the product with the damper in the 50% closed position, the pressure multiplier is 2.48 corresponding to the table and the sound generation that needs to be added is +14dB[A].

Total pressure drop:  $8,64 \times 2.48 = 21,4 \text{ Pa}$ Total Sound Generation: 32,4+14 = 46,4 dB[A]

# PRODUCT ORDER CODE

You can place your orders according to the coding format below.

| Α | Product Type                |                                            |  |  |  |
|---|-----------------------------|--------------------------------------------|--|--|--|
|   | OAK                         |                                            |  |  |  |
|   | OAB                         |                                            |  |  |  |
|   | OAG                         | <b>Table 1.</b> Standard Sizes             |  |  |  |
|   | OAL                         | Table 2. Material Options Table            |  |  |  |
|   | OAP                         |                                            |  |  |  |
|   | 06                          |                                            |  |  |  |
| В | Air Distribution Directions |                                            |  |  |  |
|   | 50                          | 4 Directions                               |  |  |  |
|   | 51                          | 3 Directions                               |  |  |  |
|   | 52                          | 2 Directions                               |  |  |  |
|   | 53                          | 1 Directions                               |  |  |  |
| C | Damper Option               |                                            |  |  |  |
|   | ZD                          | Opposite Blade Damper                      |  |  |  |
|   | DZ                          | Without Damper                             |  |  |  |
| D | Installation Type           |                                            |  |  |  |
|   | VD                          | Screwed                                    |  |  |  |
|   | KR                          | Tile                                       |  |  |  |
|   | KL                          | Clip-In                                    |  |  |  |
|   | MN                          | Latched                                    |  |  |  |
|   | KM                          | Corner Installation (With Hepa Filter Box) |  |  |  |
|   | MD                          | Without Installation Hole                  |  |  |  |
| E | Accessories [mm]            |                                            |  |  |  |
|   | 00                          | Without Accessories                        |  |  |  |
|   | BD                          | Duct Reducer                               |  |  |  |
|   | EF                          | Fiber Filter                               |  |  |  |
| F | Dimensions [mm]             |                                            |  |  |  |
|   | 0000.0000                   | <b>Table 1.</b> Standard Dimesions         |  |  |  |
| G | Paint                       |                                            |  |  |  |
|   | 00                          | Unpainted                                  |  |  |  |
|   | S1                          | Standard Painted - RAL 9010                |  |  |  |
|   | S2                          | Standard Painted - RAL 9016                |  |  |  |
|   | XX                          | Special Painted                            |  |  |  |

**Sample Codding:** OAK.ALM.50.DZ.VD.00.0450.0450.XX

| NOTES                        |
|------------------------------|
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
| iklimlendirme i hvac systems |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |







#### Headquarter

İTOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TÜRKİYE Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44



Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, İstanbul/TÜRKİYE Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56









# **VGF**PRISMATIC FIRE AND SMOKE DAMPER





# Venues Breathe with Dogu HVAC Systems

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution&Management&Movement Systems(HVAC Components) and constantly enhancing to provide an integrated solutions for well-being. DOGU HVAC's core business products which are subsumed under 3 major groups as HVAC Units, HVAC Components and Kitchen Ventilation all are manufactured in compliance with EU Standards. Particularly HVAC Units are entitled under the "FOURSEASONS" brand name for both domestic and foreign markets. DOGU HVAC's headquarter, based in Izmir/Turkey, operates in a large sized 25.000 sqm plant that enables us to manufacture 130 various types of products. Additionally DOGU HVAC has a powerful sales network with 3 sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 40 countries.

Thanks to our "Customer Satisfaction", "Zero-defect policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D department developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene (in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standards), CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.














#### **VGF - PRISMATICFIRE AND SMOKE DAMPER**

- lt prevents the spreading to nearfields during fire.
- € Be ingtested and proven by TÜRKAK, it fulfills the duration, isolation and insulation standards against fire and smoke.
- ♠ According to EN-13501 -3, it has the EI-120(S) duration class.
- ♠ Produced up to 200 x 200 mm and 1300 x 800 mm
- According to several process needs, the frame is painted either with electrostratic powder paint or produced with AISI 304 stainless steal.
- € The mechanism of the blades works with a 24V AC/DC 230V AC servo motor.

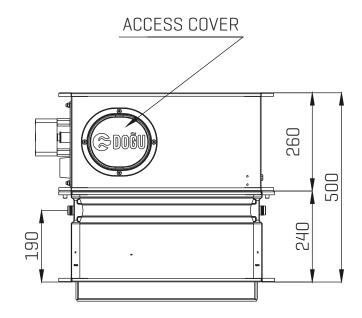
### **WORKING PRINCIPALS**

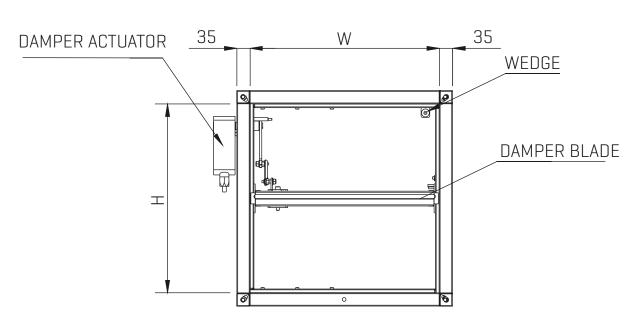
- The VGF Prismatic Fire and Smoke Damper is used to preventany fire, smoke and heat from enteringin to other ducts of the air system. It can be installed to wards the supply air direction or the opposite direction. The VGF is tested and proven by TÜRKAK. It fulfills the duration, isolation and insulation standards against fire and smoke. According to EN-13501-3, it has the EI-120(S) duration class.
- Actuator needs 60 seconds in order to change its on-off position. If electricity is cut off, the blades will close due to the string mechanism of actuator.
- ♥ VGF Prismatic Fire and Smoke Damper will automatically close when the electro-thermal sensor recognizes a degree of 72°C in- or outside the ducts.

# **SELECTION**

# 1. Effective Area

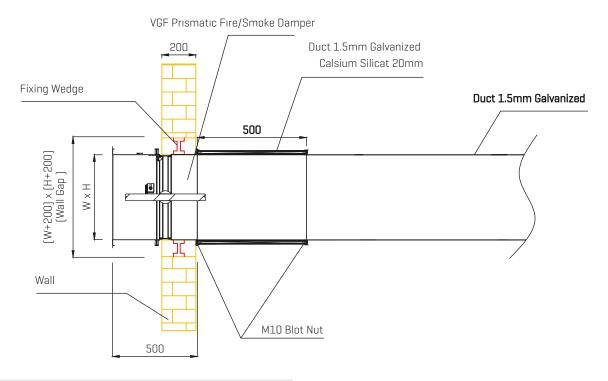
| W/H<br>(m²) | 200   | 250   | 300   | 350   | 400   | 450   | 500   | 600   | 700   | 800   |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 200         | 0,028 | 0,037 | 0,046 | 0,055 | 0,064 | 0,073 | 0,082 | -     | -     | -     |
| 250         | 0,035 | 0,046 | 0,058 | 0,069 | 0,080 | 0,091 | 0,102 | -     | -     | -     |
| 300         | 0,042 | 0,056 | 0,069 | 0,083 | 0,096 | 0,109 | 0,123 | 0,150 | 0,176 | 0,203 |
| 350         | 0,049 | 0,065 | 0,081 | 0,096 | 0,112 | 0,128 | 0,143 | 0,175 | 0,206 | 0,237 |
| 400         | 0,057 | 0,075 | 0,092 | 0,110 | 0,128 | 0,146 | 0,164 | 0,200 | 0,236 | 0,272 |
| 450         | 0,064 | 0,084 | 0,104 | 0,124 | 0,144 | 0,165 | 0,185 | 0,225 | 0,265 | 0,306 |
| 500         | 0,071 | 0,093 | 0,116 | 0,138 | 0,160 | 0,183 | 0,205 | 0,250 | 0,295 | 0,340 |
| 600         | 0,085 | 0,112 | 0,139 | 0,166 | 0,193 | 0,220 | 0,246 | 0,300 | 0,354 | 0,408 |
| 700         | 0,099 | 0,131 | 0,162 | 0,193 | 0,225 | 0,256 | 0,288 | 0,351 | 0,413 | 0,476 |
| 800         | 0,113 | 0,149 | 0,185 | 0,221 | 0,257 | 0,293 | 0,329 | 0,401 | 0,473 | 0,544 |
| 900         | 0,128 | 0,168 | 0,209 | 0,249 | 0,289 | 0,330 | 0,370 | 0,451 | 0,532 | 0,613 |
| 1000        | 0,142 | 0,187 | 0,232 | 0,277 | 0,322 | 0,366 | 0,411 | 0,501 | 0,591 | 0,681 |
| 1100        | 0,156 | 0,206 | 0,255 | 0,304 | 0,354 | 0,403 | 0,453 | 0,551 | 0,650 | 0,749 |
| 1200        | 0,170 | 0,224 | 0,278 | 0,332 | 0,386 | 0,440 | 0,494 | 0,602 | 0,709 | 0,817 |
| 1300        | 0,185 | 0,243 | 0,301 | 0,360 | 0,418 | 0,477 | 0,535 | 0,652 | 0,769 | 0,885 |


# 2. Damper Weight


| W/H<br>(m²) | 200  | 250  | 300  | 350  | 400  | 450  | 500  | 600  | 700  | 800  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| 200         | 10,3 | 11,2 | 12,2 | 13,1 | 14,1 | 15,1 | 16,0 | -    | -    | -    |
| 250         | 11,2 | 12,3 | 13,4 | 14,4 | 15,5 | 16,6 | 17,6 | -    | -    | -    |
| 300         | 12,2 | 13,4 | 14,5 | 15,7 | 16,9 | 18,1 | 19,2 | 21,6 | 23,9 | 26,3 |
| 350         | 13,1 | 14,4 | 15,7 | 17,0 | 18,1 | 19,6 | 20,8 | 23,4 | 25,9 | 28,5 |
| 400         | 14,1 | 15,5 | 16,9 | 18,3 | 19,6 | 21,1 | 22,5 | 25,3 | 28,1 | 30,9 |
| 450         | 15,1 | 16,6 | 18,1 | 19,6 | 21,1 | 22,6 | 24,1 | 27,1 | 30,1 | 33,1 |
| 500         | 16,0 | 17,6 | 19,2 | 20,8 | 22,5 | 24,1 | 25,7 | 29,0 | 32,2 | 35,5 |
| 600         | 17,9 | 19,8 | 21,6 | 23,4 | 25,3 | 27,1 | 28,9 | 32,6 | 36,2 | 39,9 |
| 700         | 19,8 | 21,9 | 23,9 | 26,0 | 28,1 | 30,1 | 32,2 | 36,4 | 40,5 | 44,7 |
| 800         | 21,8 | 24,0 | 26,3 | 28,6 | 30,8 | 33,1 | 35,4 | 39,9 | 44,5 | 49,0 |
| 900         | 23,7 | 26,2 | 28,6 | 31,1 | 33,6 | 36,0 | 38,5 | 43,5 | 48,4 | 53,4 |
| 1000        | 25,6 | 28,3 | 31,0 | 33,7 | 36,4 | 39,1 | 41,8 | 47,2 | 52,6 | 58,0 |
| 1100        | 27,5 | 30,4 | 33,3 | 36,3 | 39,2 | 42,1 | 45,1 | 51,0 | 56,9 | 62,8 |
| 1200        | 29,4 | 32,6 | 35,7 | 38,8 | 42,0 | 45,1 | 48,2 | 54,5 | 60,7 | 67,0 |
| 1300        | 31,4 | 34,7 | 38,1 | 41,4 | 44,7 | 48,1 | 51,4 | 58,0 | 64,7 | 71,3 |

# 3. Sound Power Level and Pressure Loss

|                  | V(m/a) | h h  |      |      |      |      |      |      |      |      |      |
|------------------|--------|------|------|------|------|------|------|------|------|------|------|
|                  | V(m/s) | 200  | 250  | 300  | 350  | 400  | 450  | 500  | 600  | 700  | 800  |
|                  | 3 m/s  | 13,4 | 7,5  | 5,0  | 4,5  | 3,5  | 3,0  | 2,5  | 2,2  | 2,0  | 1,5  |
|                  | 4 m/s  | 23,8 | 13,8 | 9,0  | 7,5  | 6,0  | 5,0  | 4,5  | 3,5  | 3,0  | 2,5  |
|                  | 5 m/s  | 36,2 | 21,0 | 14,0 | 12,0 | 9,0  | 8,0  | 7,0  | 5,5  | 5,0  | 4,0  |
| Basınç Düşüm     | 6 m/s  | >50  | 30,0 | 20,0 | 17,0 | 13,0 | 11,0 | 10,0 | 8,0  | 7,0  | 6,0  |
| Değeri           | 7 m/s  | >50  | 41,0 | 28,0 | 24,0 | 18,0 | 16,0 | 14,0 | 11,5 | 10,0 | 8,0  |
| (Pa)             | 8 m/s  | >50  | >50  | 36,0 | 30,0 | 23,0 | 20,0 | 17,0 | 14,0 | 12,5 | 11,0 |
|                  | 9 m/s  | >50  | >50  | 46,0 | 39,0 | 30,0 | 27,0 | 23,0 | 19,0 | 16,0 | 14,0 |
|                  | 10 m/s | >50  | >50  | >50  | 48,0 | 37,0 | 31,0 | 28,0 | 23,0 | 20,0 | 17,0 |
|                  | 3 m/s  | 34   | <30  | <30  | <30  | <30  | <30  | <30  | <30  | <30  | <30  |
|                  | 4 m/s  | 41   | 36   | 33   | 31   | 30   | <30  | <30  | <30  | <30  | <30  |
| 0.5514.5.014.4.1 | 5 m/s  | 47   | 42   | 39   | 38   | 36   | 35   | 35   | 35   | 35   | 35   |
| Gürültü Şiddeti  | 6 m/s  | >50  | 47   | 44   | 43   | 42   | 42   | 41   | 41   | 41   | 41   |
| (dB)             | 7 m/s  | >50  | >50  | 48   | 47   | 46   | 46   | 46   | 46   | 46   | 64   |
|                  | 8 m/s  | >50  | >50  | >50  | >50  | >50  | 50   | 50   | 50   | 50   | 50   |
|                  | 9 m/s  | >50  | >50  | >50  | >50  | >50  | >50  | >50  | >50  | >50  | >50  |
|                  | 10 m/s | >50  | >50  | >50  | >50  | >50  | >50  | >50  | >50  | >50  | >50  |


# **DIMENSIONS**





| w | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1300 |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| Н | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 600 | 700 | 800 |     |      |      |      |      |

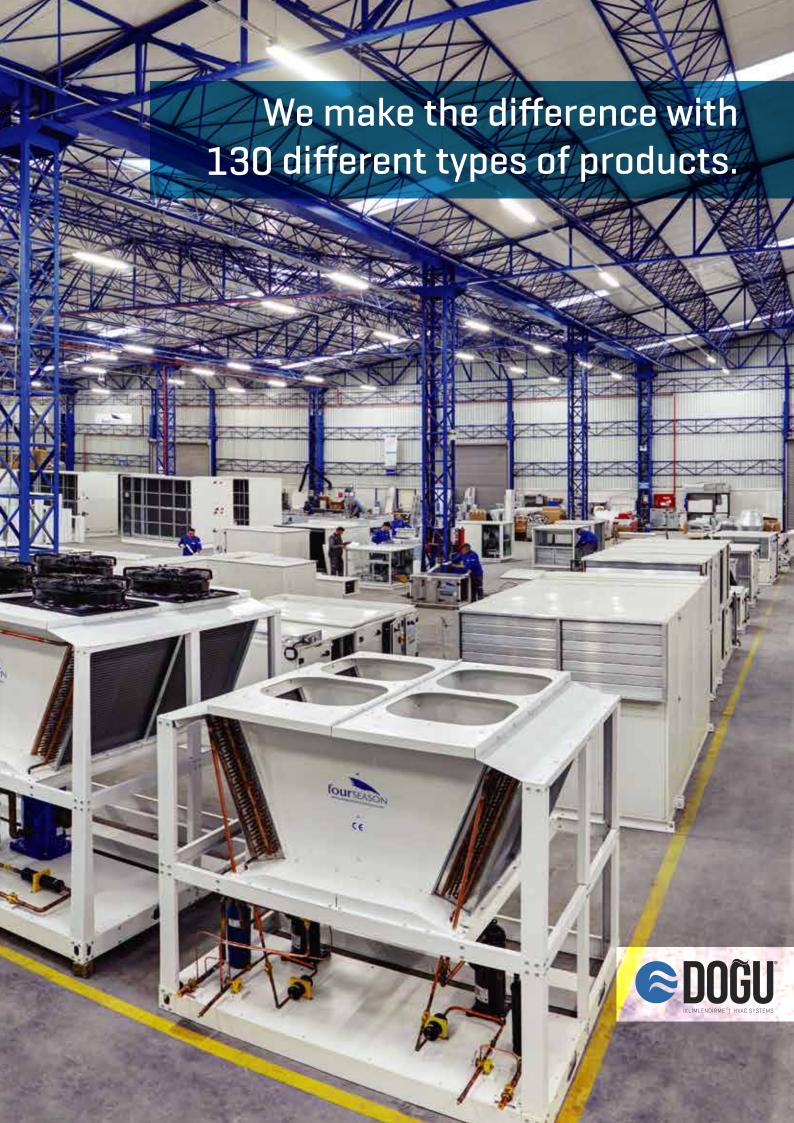
#### **MOUNTING SHAPE**



#### **MATERIAL AND SURFACE COATING**

| Parça Adı      | Malzeme Cinsi                             |  |
|----------------|-------------------------------------------|--|
| Frame          | 1,20 mm Galvanized Sheet Steel            |  |
| Damper Blade   | Ca-Si ( CalsiumSilicat )                  |  |
| Frame Gasket   | Intumescent Gasket ( Swelling with Heat ) |  |
| Blade Gasket   | Fire Proff Gasket                         |  |
| Blade Bearings | Brass Rod - 30mm                          |  |
| Blade Seal     | Stainless Sheet Steel                     |  |
| Blade Joint    | Galvanized                                |  |
| Blade Shaft    | Steel Automat Material                    |  |

The frame of VGF - Prismatic Fire and Smoke Damper is manufactured from galvanized sheet steel without any welding process. Therefore, it has a high corrosion resistance. The material of the blades is Ca-Si (CalsiumSilicat). Silicone based fire resistant gasket is mounted at the end of the blades. Additionally, intumescent gaskets are placed inside the frame. The blade shaft is manufactured from automat material and then galvanized and gets high corrosion resistance. Bearings are made of brass. Since these two materials are compatible, they do not require lubrication for many years and maintain their first day performance. The blade joints are galvanized. The union of joint mechanism parts is made with 304 grade stainless steel rods.


| NOTES |                              |  |
|-------|------------------------------|--|
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       | İKLİMLENDİRME I HVAC SYSTEMS |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |

| NOTES |                      |               |         |
|-------|----------------------|---------------|---------|
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               | (R)     |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               | ·       |
|       | <u>iklimlendirme</u> | I HWAR QVQTEM |         |
|       |                      |               | <u></u> |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |
|       |                      |               |         |

| NOTES |                              |           |
|-------|------------------------------|-----------|
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              | <u> </u>  |
|       |                              | <u>n)</u> |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       | IKLIMLENDIRME I HVAC SYSTEMS |           |
|       | 1                            |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |
|       |                              |           |

| NOTES                        |
|------------------------------|
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
| iklimlendirme i hvac systems |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### Istanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56











DML, DMA Linear Grille





# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











- © DML, DMA Linear Grilles with horizontal and linear, aerodynamic blades are used for supply and return air.
- lt is the most preferred product in the supply and return air due to its stylish design and decorative appearance that will adapt to the architecture in places such as fan-coil, convector, radiator.
- lt is suitable for ceiling and wall applications in ventilation and air conditioning systems.
- Suitable for wall to wall applications. It can be produced modularly.

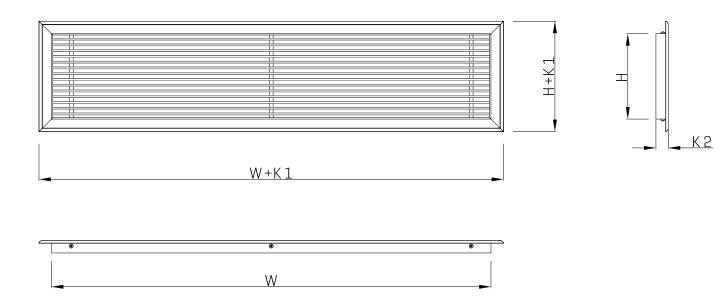


#### **MATERIAL**

- Aluminum 6063 extrusion profile production
- © Optional AISI 304 quality stainless production

#### **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard
- © Optional
  - -Made of stainless steel
  - -Different RAL color codes
  - -Matt aluminum eloxal finish for a matte and metallic look
  - -Unpainted manufacturing


# **INSTALLATION OPTIONS**

- Screw System
- Suspended Ceiling
- Clip-In Ceiling
- With Latch
- Long Clip
- Short Clip

#### **ACCESSORIES**

- © Optional
  - -ZKD Opposite Blade Air Adjustment Damper (Production from aluminum 6063 extrusion profile)
  - -Aluminum Wire
  - -10x10 Galvanized Wire
  - -Fiber Filter
  - -Polyurethane Filter
  - -Neck Reducer
  - -Subframe
  - -Subframe + Fiber Filter

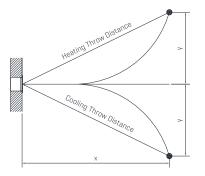
# **STANDARD DIMENSIONS**



|                 | K1 (mm) | K2 (mm) |
|-----------------|---------|---------|
| 22 mm Frame     | 42      | 31.8    |
| 31 mm Frame     | 53.4    | 30      |
| Clip-In Frame   | 59.2    | 30      |
| Stainless Frame | 58.4    | 30      |

**Table 1.** Standard Sizes

| Standard<br>Dimensions |      |             |          |          |          |          |          |          | Н Не     | eight (r | mm)      |          |          |          |          |          |          |          |
|------------------------|------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                        |      | 75          | 100      | 150      | 200      | 250      | 300      | 350      | 400      | 450      | 500      | 550      | 600      | 750      | 1000     | 1500     | 2000     | 2300     |
|                        | 150  | <b>&gt;</b> | <b>✓</b> | <b>✓</b> | <b>\</b> | <b>~</b> | <b>V</b> | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>~</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                        | 200  | <b>&gt;</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                        | 250  | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                        | 300  | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                        | 350  | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>V</b> | <b>V</b> | <b>✓</b> | <b>V</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                        | 400  | <b>\</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                        | 450  | <b>V</b>    | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> |
| W Width [mm]           | 500  | <b>✓</b>    | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>✓</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> |
| th (                   | 550  | <b>V</b>    | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> |
| Nid<br>Wid             | 600  | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
| >                      | 700  | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |          |          |
|                        | 800  | <b>\</b>    | <b>✓</b> | <b>~</b> | <b>\</b> | <b>~</b> | <b>✓</b> | <b>\</b> | <b>~</b> | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>V</b> | <b>✓</b> | <b>✓</b> |          |          |          |
|                        | 900  | <b>\</b>    | <b>V</b> | <b>✓</b> | <b>~</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> |          |          |          |
|                        | 1000 | <b>\</b>    | <b>V</b> | <b>✓</b> | <b>~</b> | <b>~</b> | <b>✓</b> | <b>\</b> | <b>\</b> | <b>✓</b> | <b>V</b> | <b>\</b> | <b>V</b> | <b>✓</b> | <b>✓</b> |          |          |          |
|                        | 1200 | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>V</b> | <b>✓</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>✓</b> | <b>V</b> | <b>V</b> | <b>V</b> |          |          |          |          |          |
|                        | 1400 | <b>\</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |          |          |          |          |
|                        | 1600 | <b>✓</b>    | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>✓</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> |          |          |          |          |          |
|                        | 1800 | <b>\</b>    | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>~</b> | <b>~</b> | <b>~</b> | <b>~</b> | <b>V</b> |          |          |          |          |          |
|                        | 2000 | <b>\</b>    | <b>✓</b> | <b>✓</b> | <b>V</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |          |          |          |          |
|                        | 2150 | <b>\</b>    | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |          |          |          |          |          |
|                        | 2300 | <b>V</b>    | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> |          |          |          |          |          |


# **PERFORMANCE DATA**

**Table 2.** Effective Area

| Effe         | ective |       |       |       |       |       |       |       | НН    | eight (n | nm)   |       |       |       |       |       |       |       |
|--------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| Area         | [m²]   | 75    | 100   | 150   | 200   | 250   | 300   | 350   | 400   | 450      | 500   | 550   | 600   | 750   | 1000  | 1500  | 2000  | 2500  |
|              | 150    | 0.009 | 0.012 | 0.017 | 0.023 | 0.029 | 0.035 | 0.041 | 0.047 | 0.052    | 0.058 | 0.064 | 0.070 | 0.087 | 0.116 | 0.174 | 0.232 | 0.290 |
|              | 200    | 0.012 | 0.016 | 0.023 | 0.031 | 0.039 | 0.047 | 0.054 | 0.062 | 0.070    | 0.077 | 0.085 | 0.093 | 0.116 | 0.155 | 0.232 | 0.310 | 0.387 |
|              | 250    | 0.015 | 0.019 | 0.029 | 0.039 | 0.048 | 0.058 | 0.068 | 0.077 | 0.087    | 0.097 | 0.107 | 0.116 | 0.145 | 0.194 | 0.290 | 0.387 | 0.484 |
|              | 300    | 0.017 | 0.023 | 0.035 | 0.047 | 0.058 | 0.070 | 0.081 | 0.093 | 0.105    | 0.116 | 0.128 | 0.139 | 0.174 | 0.232 | 0.349 | 0.465 | 0.581 |
|              | 350    | 0.020 | 0.027 | 0.041 | 0.054 | 0.068 | 0.081 | 0.095 | 0.108 | 0.122    | 0.136 | 0.149 | 0.163 | 0.203 | 0.271 | 0.407 | 0.542 | 0.678 |
|              | 400    | 0.023 | 0.031 | 0.047 | 0.062 | 0.077 | 0.093 | 0.108 | 0.124 | 0.139    | 0.155 | 0.170 | 0.186 | 0.232 | 0.310 | 0.465 | 0.620 | 0.774 |
|              | 450    | 0.026 | 0.035 | 0.052 | 0.070 | 0.087 | 0.105 | 0.122 | 0.139 | 0.157    | 0.174 | 0.192 | 0.209 | 0.261 | 0.349 | 0.523 | 0.697 | 0.871 |
| W Width [mm] | 500    | 0.029 | 0.039 | 0.058 | 0.077 | 0.097 | 0.116 | 0.136 | 0.155 | 0.174    | 0.194 | 0.213 | 0.232 | 0.290 | 0.387 | 0.581 | 0.774 | 0.968 |
| <u>ٿ</u>     | 550    | 0.032 | 0.043 | 0.064 | 0.085 | 0.107 | 0.128 | 0.149 | 0.170 | 0.192    | 0.213 | 0.234 | 0.256 | 0.319 | 0.426 | 0.639 | 0.852 | 1.065 |
| 渡            | 600    | 0.035 | 0.047 | 0.070 | 0.093 | 0.116 | 0.139 | 0.163 | 0.186 | 0.209    | 0.232 | 0.256 | 0.279 | 0.349 | 0.465 | 0.697 | 0.929 | 1.162 |
| <b>&gt;</b>  | 700    | 0.041 | 0.054 | 0.081 | 0.108 | 0.136 | 0.163 | 0.190 | 0.217 | 0.244    | 0.271 | 0.298 | 0.325 | 0.407 | 0.542 |       |       |       |
| >            | 800    | 0.047 | 0.062 | 0.093 | 0.124 | 0.155 | 0.186 | 0.217 | 0.248 | 0.279    | 0.310 | 0.341 | 0.372 | 0.465 | 0.620 |       |       |       |
|              | 900    | 0.052 | 0.070 | 0.105 | 0.139 | 0.174 | 0.209 | 0.244 | 0.279 | 0.314    | 0.349 | 0.383 | 0.418 | 0.523 | 0.697 |       |       |       |
|              | 1000   | 0.058 | 0.077 | 0.116 | 0.155 | 0.194 | 0.232 | 0.271 | 0.310 | 0.349    | 0.387 | 0.426 | 0.465 | 0.581 | 0.774 |       |       |       |
|              | 1200   | 0.070 | 0.093 | 0.139 | 0.186 | 0.232 | 0.279 | 0.325 | 0.372 | 0.418    | 0.465 | 0.511 | 0.558 |       |       |       |       |       |
|              | 1400   | 0.081 | 0.108 | 0.163 | 0.217 | 0.271 | 0.325 | 0.379 | 0.434 | 0.488    | 0.542 | 0.596 | 0.650 |       |       |       |       |       |
|              | 1600   | 0.093 | 0.124 | 0.186 | 0.248 | 0.310 | 0.372 | 0.434 | 0.496 | 0.558    | 0.620 | 0.681 | 0.743 |       |       |       |       |       |
|              | 1800   | 0.105 | 0.139 | 0.209 | 0.279 | 0.349 | 0.418 | 0.488 | 0.558 | 0.627    | 0.697 | 0.767 | 0.836 |       |       |       |       |       |
|              | 2000   | 0.116 | 0.155 | 0.232 | 0.310 | 0.387 | 0.465 | 0.542 | 0.620 | 0.697    | 0.774 | 0.852 | 0.929 |       |       |       |       |       |
|              | 2250   | 0.131 | 0.174 | 0.261 | 0.349 | 0.436 | 0.523 | 0.610 | 0.697 | 0.784    | 0.871 | 0.958 | 1.045 |       |       |       |       |       |
|              | 2500   | 0.145 | 0.194 | 0.290 | 0.387 | 0.484 | 0.581 | 0.678 | 0.774 | 0.871    | 0.968 | 1.065 | 1.162 |       |       |       |       |       |

Table 3. Supply Data

| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect |                  |                           |        |        |       |       |       | Effective | e Velocity | (m/s)  |       |        |       |             |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|--------|--------|-------|-------|-------|-----------|------------|--------|-------|--------|-------|-------------|----------|
| Pressure Drop [Pa]   1   2   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow Rate (m³ / h) |                           | 0.5    | 1.0    | 1.5   | 2.0   | 2.5   | 3.0       | 3.5        | 4.0    | 4.5   | 5.0    | 6.0   | 7.0         | 8.0      |
| Source   President                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           | 0.0278 | 0.0139 | 0.009 |       |       |           |            |        |       |        |       |             |          |
| Secure Provest Fuel   GRIAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50               |                           | 1      |        |       |       |       |           |            |        |       |        |       |             |          |
| Effective Area [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       | _     | _     | _         |            |        | _     | _      | _     | _           | -        |
| Pressure Dop [Pa]   1   2   2   4   7   11   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 6 ( 72                    |        |        |       | 0.014 | 0.011 | n nna     |            |        |       |        |       |             |          |
| Three Distance [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              |                           |        |        |       |       |       |           |            |        |       |        |       |             |          |
| ### Effective Area [mi]**    111   115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100              |                           | 1      | 2      | 2     |       |       |           |            |        |       |        |       |             |          |
| Pressure Drop [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       |       |       |           | 0.010      | 0.04.0 | 0.010 | 0.044  | 0.000 |             |          |
| Sourh Power Lovel (gl(A))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                           | -      |        |       | 0.028 |       |           |            |        |       |        |       |             | -        |
| Sound Power Level (GRA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200              |                           |        |        |       | 7     |       |           |            |        |       |        |       | _           | $\vdash$ |
| Effective Area [mr]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                           |        |        |       |       |       |           |            |        |       |        |       |             | 1        |
| Section   Threw Distance [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                           |        |        |       | 0.042 |       |           |            |        |       |        |       | 0.012       | 0.01     |
| Heretine Marie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300              |                           |        |        |       |       |       |           |            |        |       |        |       | 78          | 108      |
| Effective Area [mr]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300              |                           |        |        |       |       |       |           |            |        |       |        |       | 6<br>42     | 6        |
| Pressure Drop [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 5 ( 72                    |        |        |       |       |       |           |            |        |       |        |       | 0.016       | 0.00     |
| Throw Distance [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       | 7     |       |           |            |        |       |        |       | 78          | 10       |
| Effective Arac [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400              |                           |        |        |       | 3     |       |           |            |        |       |        |       | 6           | 6        |
| Pressure Drop [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Sound Power Level [dB(A)] |        |        |       |       |       |           |            |        |       |        |       | 43          | 47       |
| Sound Power Level (IGMA)   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                           | 0.278  |        |       |       |       |           |            |        |       |        |       | 0.020       | 0.01     |
| Sound Power Level (BB(A)    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500              |                           | 1      |        |       |       |       |           |            |        |       |        |       | 78<br>6     | 10       |
| Freezive Area [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000              |                           |        |        |       |       |       |           |            |        |       |        |       | 44          | 48       |
| Pressure Drop [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 0.024       | 0.02     |
| Third Vision   (1864)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | coc              |                           | 1      | 2      | 4     | 7     | 11    | 15        | 20         | 26     | 33    | 41     | 58    | 78          | 10       |
| Fifestive Area [mr]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 600              | Throw Distance [m]        |        |        |       |       |       |           |            |        |       |        |       | 6           | 7        |
| Pressure Drop [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 45          | 0.02     |
| Throw Distance [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           | 0.389  |        |       | 7     |       |           |            |        |       |        |       | 0.028<br>78 | 10       |
| Sound Power Level (IdS(A)   1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 700              |                           | 2      |        |       | 3     |       |           |            |        |       |        |       | 6           | 7        |
| Pressure Drop [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 46          | 49       |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Effective Area [m²]       | 0.444  | 0.222  |       |       |       |           |            |        |       |        |       | 0.032       | 0.0      |
| Sound Power Level [dB[A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 900              |                           | -      |        |       | -     |       |           |            |        |       |        |       | 78          | 10       |
| Fiffective Area [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000              |                           |        |        |       |       |       |           |            |        |       |        |       | 6<br>46     | 50       |
| Pressure Drop [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 0.036       | 0.03     |
| Throw Distance [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       | 7     |       |           |            |        |       |        |       | 78          | 10       |
| Effective Area [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 900              |                           |        |        |       | 3     |       |           |            |        |       |        |       | 7           | 7        |
| Pressure Drop [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Sound Power Level [dB(A)] |        |        |       |       |       |           |            |        |       |        |       | 47          | 50       |
| Throw Distance [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       | 0.139 |       |           |            |        |       |        |       | 0.040       | 0.03     |
| Sound Power Level (IB(A)    <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000             |                           |        |        |       | /     |       |           |            |        |       |        |       | 78          | 10       |
| Effective Area [m²]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000             |                           |        |        |       |       |       |           |            |        |       |        |       | 7<br>47     | 51       |
| Pressure Drop [Ps]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 0.050       | 0.04     |
| Sound Power Level (dB(A))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                           |        |        | 4     |       |       |           |            |        |       |        |       | 78          | 10       |
| Effective Area [m²]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1250             |                           |        |        |       |       |       |           |            |        |       |        |       | 7           | 7        |
| Pressure Drop [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 48          | 58       |
| Throw Distance [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 0.060       | 0.0      |
| Sound Power Level [dB[A]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1500             |                           |        |        |       |       |       |           |            |        |       |        |       | 78<br>7     | 10       |
| Pressure Drop[Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 49          | 52       |
| Throw Distance [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Effective Area [m²]       |        | 0.486  | 0.324 | 0.243 | 0.194 |           |            |        |       | 0.0972 |       | 0.069       | 0.0      |
| Sound Power Level [dB(A)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1750             |                           |        |        |       | 7     |       |           |            |        |       |        |       | 78          | 10       |
| Effective Area [m²]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/50             |                           |        |        |       |       |       |           |            |        |       |        |       | 7           | 8        |
| Pressure Drop[Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 50          | 0.0      |
| Throw Distance     2   3   3   4   4   5   5   5   6   6   7   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                           |        |        |       | 7     |       |           |            |        |       |        |       | 0.079<br>78 | 10       |
| Sound Power Level [dB[A]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000             |                           |        |        | 3     | 4     | -     |           |            |        |       |        |       | 7           | 8        |
| Pressure Drop[Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | Sound Power Level [dB(A)] |        |        |       | 18    | 24    |           |            |        |       |        |       | 50          | 54       |
| Throw Distance [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       |       |       | 0.232     |            |        |       |        |       | 0.099       | 0.0      |
| Sound Power Level [dB(A)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2500             |                           |        |        |       |       |       |           |            |        |       |        |       | 78          | 10       |
| ### Action   Best                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 8           | 5:       |
| Pressure Drop [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 6 (72                     |        |        |       |       |       |           |            |        |       |        |       | 0.119       | 0.1      |
| Throw Distance [m]   3   3   4   5   5   5   6   6   6   6   7   7   8   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 78          | 10       |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3000             | Throw Distance [m]        |        |        | 3     | 4     | 5     |           |            |        |       |        |       | 8           | 8        |
| Pressure Drop[Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | L ( )2                    |        |        |       |       |       |           |            |        |       |        |       | 52          | 5        |
| Throw Distance [m]   3   4   4   5   5   6   6   6   7   7   7   7   7   7   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 0.159       | 0.1      |
| Sound Power Level [dB[A]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4000             |                           |        |        |       |       |       |           |            |        |       |        |       | 78          | 10       |
| First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   Firs |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 8<br>53     | 5        |
| Pressure Drop [Pa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 0.198       | 0.17     |
| Throw Distance [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E000             | Pressure Drop [Pa]        |        |        | 4     | 7     | 11    |           |            |        |       |        |       | 78          | 10       |
| 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5000             |                           |        |        |       |       |       | 5         | 6          | 6      | 7     |        | 8     | 8           | É        |
| 7500 Pressure Drop[Pa] 7 1.1 1.5 2.0 2.6 3.3 4.1 5.8 7. 7. 1.0 1.5 5.5 6 6 7 7 7 7 8 9.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                           |        |        | <15   |       |       |           |            |        |       |        |       | 54          | 5        |
| Throw Distance [m]   5   5   6   6   7   7   7   8   9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                           |        |        |       | 1.042 |       |           |            |        |       |        |       | 0.298       | 0.2      |
| Sound Power Level [dB[A]]   24   30   34   38   42   45   47   52   5   5   5   5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7500             |                           |        |        |       | -/-   |       |           |            |        |       |        |       | 78<br>a     | 10       |
| Effective Area [m²] 1.111 0.926 0.794 0.6944 0.6173 0.5556 0.463 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 9<br>56     | 5        |
| Procesus Prop [Po]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 0.397       | 0.3      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10000            | Pressure Drop [Pa]        |        |        |       |       | 11    | 15        | 20         | 26     | 33    | 41     | 58    | 78          | 10       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                           |        |        |       |       |       |           |            |        |       |        |       | 9           | 10       |



**Note**: The data are obtained when the temperature difference between the air distribution equipment and the ambient air is T=8.

Throw Distance is the distance between the point where the air leaving the dispenser equipment reaches a speed of 0.25 m/s, and the air distribution equipment.

Table 4. Extract Data

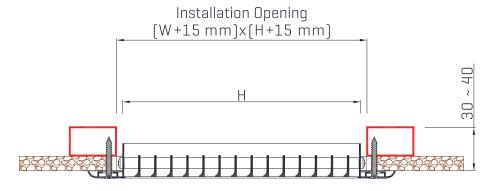
|                  |                                              |        |        |       |       |       |        | Effective | Velocity | / (m/s) |        |       |        |        |      |
|------------------|----------------------------------------------|--------|--------|-------|-------|-------|--------|-----------|----------|---------|--------|-------|--------|--------|------|
| Flow Rate (m³/h) |                                              | 0.5    | 1.0    | 1.5   | 2.0   | 2.5   | 3.0    | 3.5       | 4.0      | 4.5     | 5.0    | 6.0   | 7.0    | 8.0    | 9.0  |
|                  | Effective Area [m²]                          | 0.0278 | 0.0139 |       |       |       |        |           |          |         |        |       |        |        |      |
| 50               | Pressure Drop [Pa]                           | 0      | 1      |       |       |       |        |           |          |         |        |       |        |        |      |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    |       |       |       |        |           |          |         |        |       |        |        |      |
|                  | Effective Area [m²]                          | 0.0556 | 0.0278 | 0.019 | 0.014 | 0.011 |        |           |          |         |        |       |        |        |      |
| 100              | Pressure Drop [Pa]                           | 0      | 1      | 3     | 5     | 8     |        |           |          |         |        |       |        |        |      |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | <15   |        |           |          |         |        |       |        |        |      |
|                  | Effective Area [m²]                          | 0.111  | 0.056  | 0.037 | 0.028 | 0.022 | 0.019  | 0.016     | 0.014    | 0.012   | 0.011  |       |        |        |      |
| 200              | Pressure Drop [Pa]                           | 0      | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     |       |        |        |      |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | <15   | 15     | 19        | 23       | 26      | 29     |       |        |        |      |
|                  | Effective Area [m²]                          | 0.167  | 0.083  | 0.056 | 0.042 | 0.033 | 0.028  | 0.024     | 0.021    | 0.019   | 0.017  | 0.014 | 0.012  | 0.010  |      |
| 300              | Pressure Drop [Pa]                           | 0      | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     |      |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | <15   | 17     | 21        | 25       | 28      | 31     | 36    | 40     | 43     |      |
|                  | Effective Area [m²]                          | 0.222  | 0.111  | 0.074 | 0.056 | 0.044 | 0.037  | 0.032     | 0.028    | 0.025   | 0.022  | 0.019 | 0.016  | 0.014  | 0.0  |
| 400              | Pressure Drop [Pa]                           | 0.222  | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
| 100              | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | <15   | 18     | 55        | 26       | 29      | 32     | 37    | 41     | 45     | 4    |
|                  | Effective Area [m²]                          | 0.278  | 0.139  | 0.093 | 0.069 | 0.056 | 0.046  | 0.040     | 0.035    | 0.031   | 0.028  | 0.023 | 0.020  | 0.017  | 0.0  |
| 500              | Pressure Drop [Pa]                           | 0.270  | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
| 000              | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | <15   | 19     | 23        | 27       | 30      | 33     | 38    | 42     | 46     | 49   |
|                  |                                              | 0.333  | 0.167  | 0.111 | 0.083 | 0.067 | 0.056  | 0.048     | 0.042    | 0.037   | 0.0333 | 0.028 | 0.024  | 0.021  | 0.0  |
| enn              | Effective Area [m²] Pressure Drop [Pa]       | 0.333  | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
| 600              | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | 15    | 20     | 24        | 28       | 31      | 34     | 39    | 43     | 47     | 5    |
|                  |                                              | 0.389  | 0.194  | 0.130 | 0.097 | 0.078 | 0.065  | 0.056     | 0.049    | 0.043   | 0.0389 | 0.032 | 0.028  | 0.024  | 0.0  |
| 700              | Effective Area [m²]                          | 0.389  | 0.194  | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
| 700              | Pressure Drop [Pa] Sound Power Level [dB(A)] | <15    | <15    | <15   | <15   | 16    | 21     | 25        | 28       | 32      | 35     | 39    | 44     | 47     | 5    |
|                  |                                              | _      |        |       |       |       |        |           |          |         |        |       |        |        |      |
| 800              | Effective Area [m²]                          | 0.444  | 0.222  | 0.148 | 0.111 | 0.089 | 0.074  | 0.063     | 0.056    | 0.049   | 0.0444 | 0.037 | 0.032  | 0.028  | 0.0  |
|                  | Pressure Drop [Pa]                           | 0      | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | 16    | 21     | 25        | 29       | 32      | 35     | 40    | 44     | 48     | 5    |
| 900              | Effective Area [m²]                          | 0.500  | 0.250  | 0.167 | 0.125 | 0.100 | 0.083  | 0.071     | 0.063    | 0.056   | 0.0500 | 0.042 | 0.036  | 0.031  | 0.0  |
|                  | Pressure Drop [Pa]                           | 0      | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | 17    | 22     | 26        | 30       | 33      | 36     | 40    | 45     | 48     | 5    |
| 1000             | Effective Area [m²]                          | 0.556  | 0.278  | 0.185 | 0.139 | 0.111 | 0.093  | 0.079     | 0.069    | 0.062   | 0.0556 | 0.046 | 0.040  | 0.035  | 0.0  |
|                  | Pressure Drop [Pa]                           | 0      | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 13   |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | 17    | 22     | 26        | 30       | 33      | 36     | 41    | 45     | 49     | 5    |
|                  | Effective Area [m²]                          | 0.694  | 0.347  | 0.231 | 0.174 | 0.139 | 0.116  | 0.099     | 0.087    | 0.077   | 0.0694 | 0.058 | 0.050  | 0.043  | 0.0  |
| 1250             | Pressure Drop [Pa]                           | 0      | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | 18    | 23     | 27        | 31       | 34      | 37     | 42    | 46     | 50     | 5    |
|                  | Effective Area [m²]                          | 0.833  | 0.417  | 0.278 | 0.208 | 0.167 | 0.139  | 0.119     | 0.104    | 0.0926  | 0.0833 | 0.069 | 0.060  | 0.052  | 0.0  |
| 1500             | Pressure Drop [Pa]                           | 0      | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | 19    | 24     | 28        | 32       | 35      | 38     | 43    | 47     | 50     | 5    |
|                  | Effective Area [m²]                          | 0.972  | 0.486  | 0.324 | 0.243 | 0.194 | 0.162  | 0.139     | 0.122    | 0.1080  | 0.0972 | 0.081 | 0.069  | 0.061  | 0.0  |
| 1750             | Pressure Drop [Pa]                           | 0      | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | 20    | 25     | 29        | 32       | 36      | 38     | 43    | 48     | 51     | 5    |
|                  | Effective Area [m²]                          | 1.111  | 0.556  | 0.370 | 0.278 | 0.222 | 0.185  | 0.159     | 0.139    | 0.1235  | 0.1111 | 0.093 | 0.079  | 0.069  | 0.0  |
| 2000             | Pressure Drop [Pa]                           | 0      | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
|                  | Sound Power Level [dB(A)]                    | <15    | <15    | <15   | <15   | 20    | 25     | 29        | 33       | 36      | 39     | 44    | 48     | 52     | 5    |
|                  | Effective Area [m²]                          |        | 0.694  | 0.463 | 0.347 | 0.278 | 0.231  | 0.198     | 0.174    | 0.1543  | 0.1389 | 0.116 | 0.099  | 0.087  | 0.0  |
| 2500             | Pressure Drop [Pa]                           |        | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
|                  | Sound Power Level [dB(A)]                    |        | <15    | <15   | 15    | 21    | 26     | 30        | 34       | 37      | 40     | 45    | 49     | 53     | 51   |
|                  | Effective Area [m²]                          |        | 0.833  | 0.556 | 0.417 | 0.333 | 0.278  | 0.238     | 0.2083   | 0.1852  | 0.1667 | 0.139 | 0.119  | 0.104  | 0.09 |
| 3000             | Pressure Drop [Pa]                           |        | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
|                  | Sound Power Level [dB(A)]                    |        | <15    | <15   | 16    | 22    | 27     | 31        | 35       | 38      | 41     | 46    | 50     | 53     | 5    |
|                  | Effective Area [m²]                          |        | 1.111  | 0.741 | 0.556 | 0.444 | 0.370  | 0.3175    | 0.2778   | 0.2469  | 0.2222 | 0.185 | 0.159  | 0.1389 | 0.18 |
| 4000             | Pressure Drop [Pa]                           |        | 1      | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
|                  | Sound Power Level [dB(A)]                    |        | <15    | <15   | 17    | 23    | 28     | 32        | 36       | 39      | 42     | 47    | 51     | 55     | 5    |
|                  | Effective Area [m²]                          |        |        | 0.926 | 0.694 | 0.556 | 0.4630 | 0.3968    | 0.3472   | 0.3086  | 0.2778 | 0.231 | 0.1984 | 0.1736 | 0.1  |
| 5000             | Pressure Drop [Pa]                           |        |        | 3     | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 13   |
|                  | Sound Power Level [dB(A)]                    |        |        | <15   | 18    | 24    | 29     | 33        | 37       | 40      | 43     | 48    | 52     | 56     | 5    |
|                  | Effective Area [m²]                          |        |        |       | 1.042 | 0.833 | 0.694  | 0.5952    | 0.5208   | 0.4630  | 0.4167 | 0.347 | 0.298  | 0.2604 | 0.23 |
| 7500             | Pressure Drop [Pa]                           |        |        |       | 5     | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
|                  | Sound Power Level [dB(A)]                    |        |        |       | 20    | 26    | 31     | 35        | 39       | 42      | 45     | 50    | 54     | 57     | 6    |
|                  | Effective Area [m²]                          |        |        |       |       | 1.111 | 0.9259 | 0.7937    | 0.6944   | 0.6173  | 0.5556 | 0.463 | 0.3968 | 0.3472 | 0.30 |
|                  | Pressure Drop [Pa]                           |        |        |       |       | 8     | 11     | 15        | 20       | 26      | 32     | 47    | 65     | 86     | 11   |
|                  |                                              |        | i      |       |       | . ~   |        |           |          |         | . ~~   |       |        |        | 1 44 |

Table 5. Throw Distance Correction

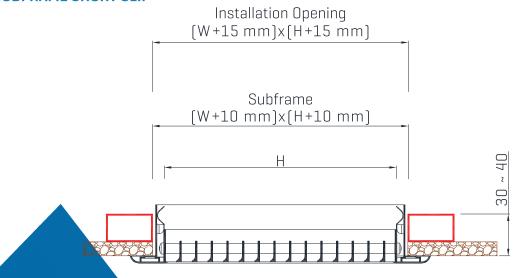
| Heating Mode (△T)     | 4    | 6    | 8    | 10   | 12   |
|-----------------------|------|------|------|------|------|
| Throw Distance Factor | 1.07 | 1.02 | 1    | 0.90 | 0.83 |
| Cooling Mode (△T)     | 4    | 6    | 8    | 10   | 12   |
| Throw Distance Factor | 1.31 | 1.36 | 1.42 | 1.48 | 1.54 |

Table 6. Damper Pressure Correction

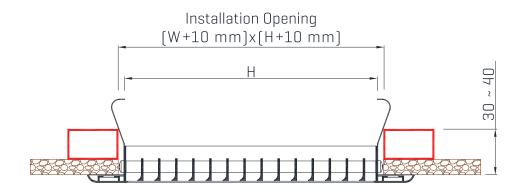
| Damper Location | Pressure Drop Factor | Sound Production (dB(A)) |
|-----------------|----------------------|--------------------------|
| Opened          | 1.1                  | +1                       |
| 25% Closed      | 1.14                 | +4                       |
| 50% Closed      | 2.48                 | +14                      |
| 75% Closed      | 5.11                 | +29                      |


Table 7. Filter Pressure Drop

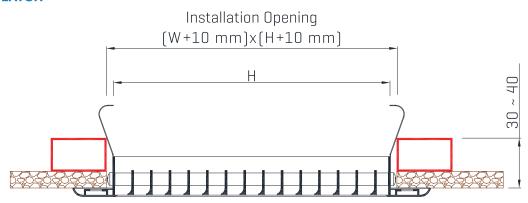
|           |                     |     |     |     |     |     |     | Air S | Speed [r | n/s] |     |     |     |     |     |      |
|-----------|---------------------|-----|-----|-----|-----|-----|-----|-------|----------|------|-----|-----|-----|-----|-----|------|
|           |                     | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5   | 4.0      | 4.5  | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 |
| Pressure  | Polyurethane Filter | 1   | 3   | 5   | 8   | 11  | 15  | 19    | 24       | 29   | 35  | 48  | 63  | 81  | 100 | 121  |
| Drop [Pa] | Fiber Filter        | 15  | 28  | 40  | 51  | 62  | 73  | 84    | 94       | 105  | 115 | 135 | 155 | 174 | 193 | 212  |


**Polyurethane Filter**: 6 mm thick 20PPL polyester based polyurethane filter **Fiber Filter**: EN 16890 ISO COARSE 80% class 10 mm thickness fiber filter

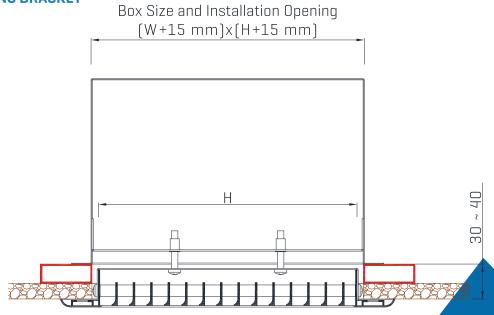
#### **INSTALLATION OPTIONS**


#### 1. SCREW SYSTEM

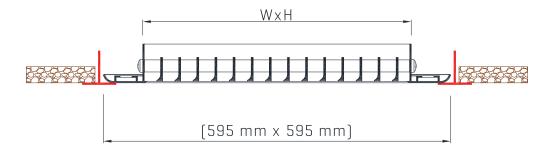



#### 2. SUBFRAME SHORT CLIP




#### 3. LONG CLIPS



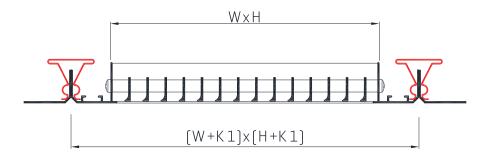

#### 4. WITH LATCH



#### **5. MOUNTING BRACKET**



#### **6. SUSPENDED CEILING**

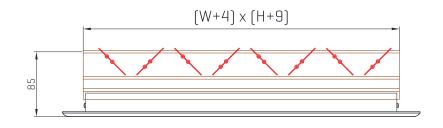



#### Note:

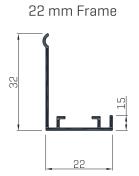
W and H sizes that can be selected according to the frame sizes specified in the product selection are shown in the table.

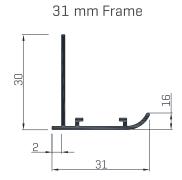
|                 | W (mm) | H (mm) |
|-----------------|--------|--------|
| 22 mm Frame     | 553    | 553    |
| 32 mm Frame     | 541    | 541    |
| Stainless Frame | 536    | 536    |

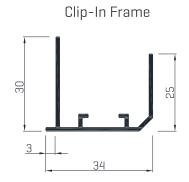
#### 7. CLIP-IN CEILING

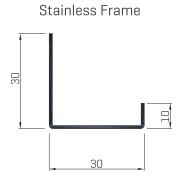



#### Note:


Stainless frame option is not applied in the mounting form of the clip.

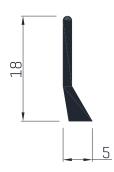

| Clip-In Frame<br>K1 = 59.2 mm | W (mm) | H (mm) |
|-------------------------------|--------|--------|
| 600x600                       | 541    | 541    |
| 300x300                       | 241    | 241    |


### 8. WITH DAMPER




#### **FRAME TYPES**



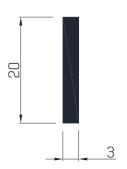






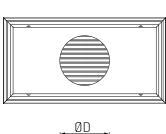

#### **BLADE TYPES**

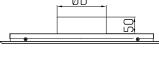
DMA Blade

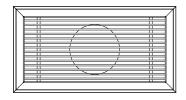


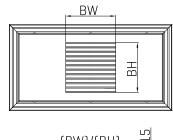


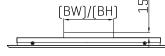

4.4

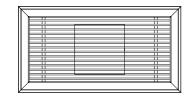

**DML** Blade


20X3 Flat Stainless





DMA.ALM: 15° angled aluminum blade DML.ALM: Standard flat aluminum blade DML.PAS: 20x3 stainless flat blade


#### **NECK REDUCING**














Neck reducer can be made in desired sizes.

ØD (mm): Neck reducer diameter.

BW (mm): Neck reducer width.

BH (mm): Neck reducer height.

Neck reducer constraints:

BH+20<=H

BW+20<=W

ØD+20<=W and H

#### **SIZE PARAMETERS**

#### **MAXIMUM MODULE SIZE**



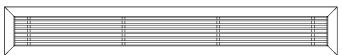
If the width of the linear grille to be ordered is over 2300 mm, the grill length is extended by means of connecting pieces.

Total Number of Pieces=Round up (Order Size/2300)

Length of One Piece=Order Size/Number of Pieces



#### **SUPPORT NUMBER PARAMETER**


If  $150 < W \le 600$ , 2 Support



If 600 < W ≤ 1200, 3 Support



If  $1200 < W \le 1500$ , 4 Support



If 1500 < W ≤ 2000, 5 Support



If 2000 < W ≤ 2300, 6 Support



#### **PRODUCT SELECTION**

**Example:** The air flow distributed in the space has been determined as 5000 m<sup>3</sup>/h. 10 linear grilles will be used for air supply. Temperature difference in heating mode is 8K. Select the product.

**Solution:** Supply flow rate for a grille,  $5000/10 = 500 \text{ m}^3/\text{h}$ 

From the supply data table (Table 3), the effective areas corresponding to the appropriate pressure loss and flow rate values are selected.

For example, in an effective area of  $0.04 \text{ m}^2$ , the effective velocity is 3.5 m/s, pressure loss 20 Pa, throw distance 4 m and sound power 27 dB[A].

The appropriate grille size can be selected from the effective area table as  $350 \text{ mm} \times 150 \text{ mm}$  corresponding to the value of  $0.04 \text{ m}^2$ 

#### **Throw Distance Correction Table**

In the previous example, the radius heating mode was found to be 4 m for 8K. For heating mode 10K, Throw Distance Correction Table [Table 5] is referenced. The multiplier value is 0.9.

Corrected throw distance=4 m x 0.9=3.6 m

#### Filter Status

Filter Pressure Drop Table (Table 7) should be used for pressure loss calculations to be applied in the selection of Polyurethane or Fiber filters.

For example, when selecting 500 m<sup>3</sup>/h flow rate and throat size 350 mm x 150 mm, pressure drop is 20 Pa. Throat velocity is taken as basis for filter calculation. Accordingly, the throat speed is:

Velocity 
$$\left(\frac{m}{s}\right) = \frac{500 \text{ m}^3/\text{h}}{350 \text{ mm} \times 150 \text{ mm}} \times \left(\frac{1 \text{ h}}{3600 \text{ s}}\right) \times \left(\frac{1 \text{ mm}}{0.001 \text{ m}}\right) \times \left(\frac{1 \text{ mm}}{0.001 \text{ m}}\right) = 2.65 \text{ m/s}$$

Accordingly, it is read in the filter pressure loss table (Table 7) that a pressure drop of 2.65 m/s will be +12 for the polyurethane filter and +65 Pa for the fiber filter. Total pressure loss,

With Polyurethane Filter: 20+12=32 Pa

With Fiber Filter: 20+65=85 Pa

#### Opposite Blade Damper Condition

The pressure loss and sound power level changes in the damper product. Damper Correction Table (Table 6) should be used. For example, the pressure multiplier for the damper product in the 50% closed position of the damper is 2.48 corresponding to the table and the sound generation to be added is +14 dB[A].

Total Static Pressure Loss: 20x2.48=49.6 Pa Total Sound Production: 27+14=41 dB[A]

#### **PRODUCT ORDER CODES**

You can place your orders according to the following coding format.

<A>.<B>.<C>.<D>.<E>.<F>.<G>.<H>.<I>

| Product Type                  |                                                        |
|-------------------------------|--------------------------------------------------------|
| DML                           | Standard Flat Blade                                    |
| DMA                           | 15° Angle Blade                                        |
| Raw Material Type             |                                                        |
| ALM                           | Aluminum                                               |
| Case Type                     |                                                        |
| 05                            | 22 mm                                                  |
| 03                            | 32 mm                                                  |
| 09                            | Clip-In Ceiling                                        |
| Damper                        |                                                        |
| ZD                            | Opposite Blade Damper                                  |
| DZ                            | Without Damper                                         |
| Installation Type             |                                                        |
| VD                            | Screw System                                           |
| KR                            | Suspended Ceiling                                      |
| KL                            | Clip-In Ceiling                                        |
| KP                            | Mounting Bracket                                       |
| MD                            | Without Mounting Hole                                  |
| MN                            | With Latch                                             |
| UK                            | Long Clips                                             |
| КО                            | Subframe Short Clips                                   |
| KK                            | Short Clips                                            |
| Accessories                   |                                                        |
| AT                            | Aluminum Wire                                          |
| 10                            | 10x10 Galvanized Wire                                  |
| EF                            | Fiber Filter                                           |
| PF                            | Polyurethane Filter                                    |
| 00                            | Without Accessories                                    |
| BD                            | Neck Reducer                                           |
| Horizontal Dimension (W) (mm) |                                                        |
| 0000                          | You can view it from standard dimensions.              |
| Vertical Dimension (H) (mm)   |                                                        |
| 0000                          | You can view it from standard dimensions.              |
| Color                         |                                                        |
| 00                            | Without Color                                          |
| 1 .                           |                                                        |
| S1                            | Standard Color - RAL 9010                              |
| \$1<br>\$2                    | Standard Color - RAL 9010<br>Standard Color - RAL 9016 |
|                               | DMA   Raw Material Type                                |

**Sample Coding;** DNL.ALM.04.DZ.KP.10.00450.0250.SS

# STAINLESS PRODUCT ORDER CODE

DML.PAS.32. < A > . < B > . < C > . < D > . < E> . 00

| Α | Damper                        |                                           |
|---|-------------------------------|-------------------------------------------|
|   | ZD                            | Opposite Blade Damper                     |
|   | DZ                            | Without Damper                            |
| В | Installation Type             |                                           |
|   | VD                            | Screw System                              |
|   | KR                            | Suspended Ceiling                         |
|   | KP                            | Mounting Bracket                          |
|   | MD                            | Without Mounting Hole                     |
|   | MN                            | With Latch                                |
|   | UK                            | Long Clips                                |
|   | KK                            | Short Clips                               |
|   | КО                            | Subframe with Short Clips                 |
| C | Accessories                   |                                           |
|   | AT                            | Aluminum Wire                             |
|   | 10                            | 10x10 Galvanized Wire                     |
|   | EF                            | Fiber Filter                              |
|   | PF                            | Polyurethane Filter                       |
|   | 00                            | Without Accessories                       |
|   | BD                            | Neck Reducer                              |
| D | Horizontal Dimension (W) (mm) |                                           |
|   | 0000                          | You can view it from standard dimensions. |
| E | Vertical Dimension (H) (mm)   |                                           |
|   | 0000                          | You can view it from standard dimensions. |

**Sample Coding;** DML.PAS.32.DZ.VD.00.1000.0600.00

| NOTES |                 |            |     |
|-------|-----------------|------------|-----|
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            | B   |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       | ivi ivi ENDIDAG |            |     |
|       | KLIMLENUIRME    | HVAC SYSTE | M.S |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |
|       |                 |            |     |

| NOTES |                              |  |
|-------|------------------------------|--|
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       | İKLİMLENDİRME   HVAC SYSTEMS |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |





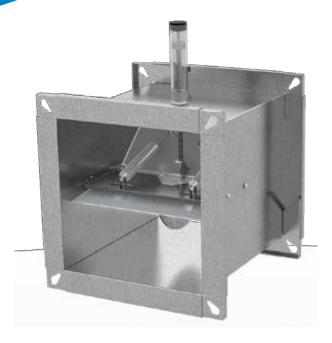


#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY


Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56











# ACV Rectangular Constant Air Volume Device



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.







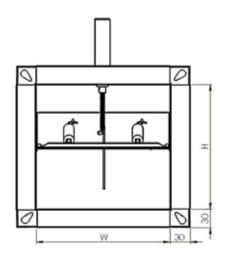


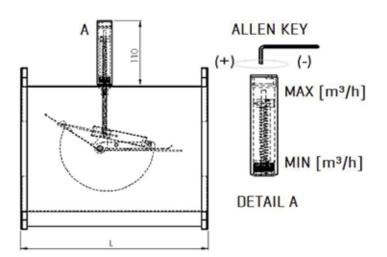


- ACV Rectangular Constant Air Volume Device is used in Rectangular ducts for air flow control in projects with special requirements such as operating rooms, clean rooms, special processes and similar comfort and hygiene.
- Air flow control is used in ventilation applications and in fixing air flow rate in every room.
- The desired air flow rate can be easily calibrated on the device with the help of an allen key.
- Susset to adjust the pressure in the air duct between 20 Pa and 1000 Pa.
- All CAV devices produced are calibrated in the HVAC calibration laboratory according to the flow rates specified in the order. In this laboratory, calibration is completed by testing one-to-one field conditions with 7 measuring stations, each with different diameter and nominal flow.
- ACV does not require any power input as it is a completely mechanical system. Constant air flow rate is based on compensating the pressure changes in the system. Depending on the pressure in the duct, when the air flowrate decreases, the torque acting on the wing of the ACV decreases and the wing opens. With the opening of the wing, the air flow through the duct increases and returns to the calibration value.
  - Conversely, when the air flowrate increases, the torque acting on the blade increases and the wing closes. With the closing of the wing, the air flowrate through the duct decreases and returns to the calibration value. The mechanism, which is precisely designed with a calibration spring according to the position of the wing, ensures successful operation of the ACV with a 10% deviation rate at the calibrated flowrate.
- ACV has a specially designed air viscous piston to minimize the blade oscillations caused by increased turbulence at high pressures.

#### **MATERIAL**

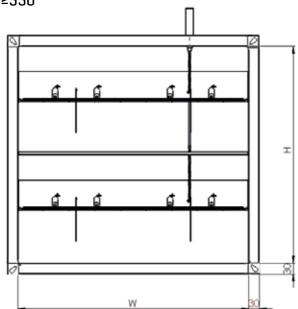
- The casing is manufactured from galvanized steel sheet as standard. AISI 304 quality stainless case option is available.
- Blades and air-viscous piston made of aluminium.
- Plastic tube for airflow calibration.
- Stainless steel calibration spring.
- Standard duct sealing.
- Blade shaft is AISI 304 stainless, shaft bush is PTFE plastic.

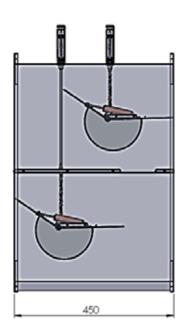

#### **ACCESSORY**


**Acoustic Insulation:** In order to fulfill the acoustic comfort conditions in the selected product, it is insulated with an optional 19 mm thick foamed rubber. Rubber is surrounded by galvanized sheet metal.

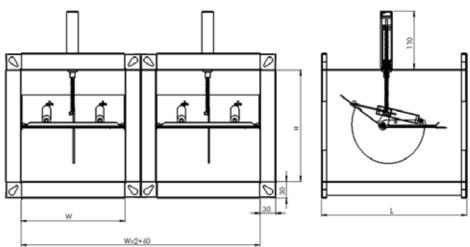


# **STANDARD DIMENSIONS**


# W<700 and H<550







| Order<br>Dimenson (mm) | W(mm) | H(mm) | L(mm) | Vmin<br>(m³/h) | Vmax<br>(m³/h) |
|------------------------|-------|-------|-------|----------------|----------------|
| AC V-100x100           | 100   | 100   | 200   | 110            | 360            |
| AC V-150x100           | 150   | 100   | 200   | 160            | 540            |
| AC V-200x100           | 200   | 100   | 200   | 210            | 720            |
| AC V-150x150           | 150   | 150   | 200   | 240            | 810            |
| AC V-200x150           | 200   | 150   | 200   | 320            | 1080           |
| AC V-300x150           | 300   | 150   | 200   | 480            | 1620           |
| AC V-200x200           | 200   | 200   | 250   | 430            | 1440           |
| AC V-300x200           | 300   | 200   | 250   | 650            | 2160           |
| AC V-400x200           | 400   | 200   | 250   | 860            | 2880           |
| AC V-300x300           | 300   | 300   | 350   | 970            | 3240           |
| AC V-450x300           | 450   | 300   | 350   | 1460           | 4860           |
| AC V-600x300           | 600   | 300   | 350   | 1950           | 6480           |
| AC V-600x450           | 600   | 450   | 500   | 2920           | 9720           |

# W<700 and H≥550





#### W≥700 and H<550



# **PERFORMANCE DATA**

#### **VELOCITY & MINIMUM PRESSURE DROP DATA**

| Air Veloc ity<br>[m/s] | Pressure<br>Drop [Pa] |
|------------------------|-----------------------|
| 3                      | 70                    |
| 4                      | 75                    |
| 5                      | 80                    |
| 6                      | 100                   |
| 7                      | 120                   |
| 8                      | 140                   |
| 9                      | 175                   |
| 10                     | 210                   |

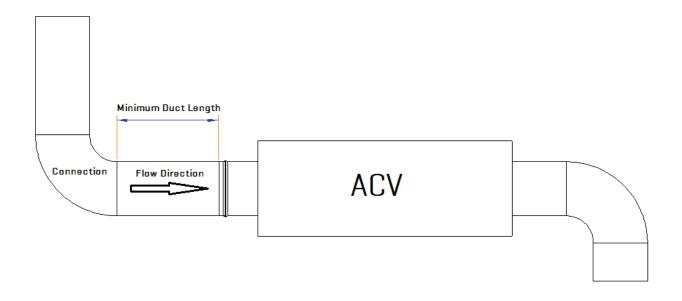
In the table on the right, data of the minimum pressure drop to be made by ACV according to the air velocity in the duct is given.

**Example:** For minimum pressure drop for 200x200 ACV 600 m³/h flow rate:

Duct cross section =  $0.04 \text{ m}^2$ 

Duct speed = 4.16 m/s

Minimum pressure loss at the desired flow = 7


# **NOISE DATA**

| Dimension | Air      | Flow   | Sour | nd Pressure Level (dE | Noise Gene ration From C asing (dB(A) |                    |                 |
|-----------|----------|--------|------|-----------------------|---------------------------------------|--------------------|-----------------|
| [mm]      | Velocity | Rate   |      |                       |                                       | <u> </u>           |                 |
| ()        | (m/s)    | (m³/h) | 100  | 200                   | 500                                   | Without Insulation | With Insulation |
|           | 3        | 220    | 36   | 43                    | 48                                    | 29                 | 21              |
| 200x100   | 6        | 440    | 42   | 49                    | 54                                    | 36                 | 29              |
|           | 9        | 650    | 43   | 50                    | 55                                    | 40                 | 31              |
|           | 3        | 275    | 40   | 46                    | 51                                    | 40                 | 37              |
| 250x100   | 6        | 550    | 43   | 50                    | 55                                    | 32                 | 24              |
|           | 9        | 810    | 44   | 51                    | 56                                    | 39                 | 30              |
|           | 3        | 250    | 36   | 43                    | 48                                    | 29                 | 21              |
| 150x150   | 6        | 490    | 42   | 49                    | 54                                    | 36                 | 27              |
|           | 9        | 730    | 43   | 50                    | 55                                    | 40                 | 33              |
|           | 3        | 490    | 41   | 48                    | 53                                    | 44                 | 37              |
| 300x150   | 6        | 980    | 43   | 50                    | 55                                    | 32                 | 25              |
|           | 9        | 1460   | 44   | 51                    | 56                                    | 39                 | 32              |
|           | 3        | 440    | 41   | 48                    | 53                                    | 44                 | 37              |
| 200x200   | 6        | 870    | 43   | 50                    | 55                                    | 32                 | 24              |
|           | 9        | 1300   | 44   | 51                    | 56                                    | 39                 | 30              |
|           | 3        | 650    | 42   | 49                    | 54                                    | 37                 | 30              |
| 300x200   | 6        | 1300   | 44   | 51                    | 56                                    | 41                 | 32              |
|           | 9        | 1950   | 45   | 52                    | 57                                    | 44                 | 37              |
|           | 3        | 870    | 39   | 46                    | 51                                    | 28                 | 20              |
| 400x200   | 6        | 1730   | 41   | 48                    | 53                                    | 33                 | 26              |
|           | 9        | 2600   | 42   | 49                    | 54                                    | 36                 | 28              |
|           | 3        | 980    | 41   | 48                    | 53                                    | 36                 | 28              |
| 300x300   | 6        | 1950   | 41   | 48                    | 53                                    | 41                 | 32              |
|           | 9        | 2920   | 42   | 49                    | 54                                    | 43                 | 36              |
|           | 3        | 1460   | 41   | 48                    | 53                                    | 36                 | 29              |
| 450x300   | 6        | 2920   | 41   | 48                    | 53                                    | 41                 | 33              |
|           | 9        | 4380   | 42   | 49                    | 54                                    | 43                 | 35              |
|           | 3        | 1950   | 38   | 45                    | 50                                    | 38                 | 29              |
| 600x300   | 6        | 3890   | 38   | 45                    | 50                                    | 41                 | 34              |
|           | 9        | 5840   | 39   | 46                    | 51                                    | 45                 | 38              |
|           | 3        | 2920   | 39   | 46                    | 51                                    | 40                 | 32              |
| 600x450   | 6        | 5840   | 42   | 49                    | 54                                    | 42                 | 34              |
|           | 9        | 8750   | 42   | 49                    | 54                                    | 46                 | 37              |

**Note:** The data were calculated and obtained according to the VDI 2081 standard.

# **INSTALLATION**

Considering the air flow direction arrow on the ACV, it is mounted to the rectangular duct. For duct connections such as elbows, branches and reductions must comply with EN 1505 design.



| Connection                                               | Minimum Duct Lenght |
|----------------------------------------------------------|---------------------|
| Bend                                                     | 1 x D               |
| Other Duct Equipmen (Tshaped Connection, reduction etc.) | 2 x D               |
| Fire Damper                                              | 2 x D               |
| Silencer                                                 | 2 x D               |

**Note:** D = Biggest ACV order dimension length (Width(mm) or H(Height(mm)))

#### ACV.< A >.KG.< B >.< C >.< D >

| Α | Material        |                          |
|---|-----------------|--------------------------|
|   | GAL             | Galvanized               |
|   | PAS             | AISI 304 Stainless Steel |
| В | Insulation      |                          |
|   | 00              | Without Insulation       |
|   | 04              | Acoustic Insulation      |
| С | Width (W) (mm)  |                          |
|   | 0000            | Standard Dimensions      |
| D | Height (W) (mm) |                          |
|   | 0000            | Standart Dimensions      |

**Example;** ACV.GAL.KG.00.0200.0200

| NOTES |                              |
|-------|------------------------------|
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       | İKLİMLENDİRME   HVAC SYSTEMS |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |

| NOTES |                              |     |
|-------|------------------------------|-----|
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              | (R) |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       | İKLİMLENDİRME I HVAC SYSTEMS |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |
|       |                              |     |







#### **Ankara Sales Office**

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A Blok Kat:11 Ofis:1104 06520 Söğütözü, Yenimahalle, Ankara/TURKEY Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

#### **Antalya Sales Office**

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel.: +90 242 505 87 77

#### **Adana Sales Office**

Mimar Selim Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301













# FOUR-HPGK Heat Pump Heat Recovery Unit



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.



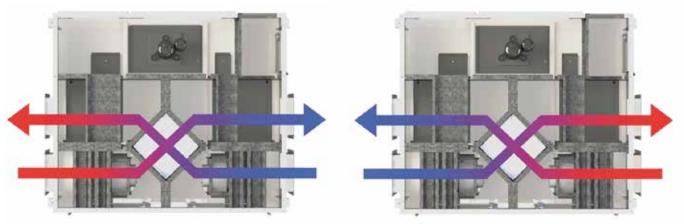











#### **GENERAL FEATURES**

Using this device at places where fresh air circulation is not done properly and where air conditioning is used constantly such as malls, restaurants, historic buildings will meet the requested need of fresh air circulation advancely. Being adjusted to the comfort zone, fresh air is supplied to the environment. By using this device, fresh air is being transferred to the room without any change on the indoor environment. To prevent the overuse of air conditions at new project type buildings, this device is mostly preferred.

The device is compact. There is no need for a condensing unit and it is easy mountable. It is easily functioning with the dashboard.

# **Working Principles**

Heat Pump Heat Recovery Units are used to meet the active need of fresh air of the environment. The device uses the fresh air and the exhaust air combination of the environment through the cross flow heat exchanger to create and supply the adjusted temperative air into inner environment. If the heat transfer is not enough, the heat pump is activated and meets the required aims of conditioning. The compact device can be easily placed at the ceiling.



Summer Type Air Flow Template

Winter Type Air Flow Template

#### **Cross Flow Heat Exchanger**

Cross flow heat exchangers do air transferring without mixing the supply and exhaust air over the aluminium plates of the exchanger. On the HPGK, through the optimization of heat exchanger, temperature and humidity efficiency is increased, pressure drop is decreased. A stainless steel drain pan is placed below the exchanger to catch any condensated water.

#### **Heat Pump**

The Heat pump is used for the transferring of the condensing water from one environment into another. It is pressed in the refrigerant compressor and it is expanded in the expansion valve. While these environment changings, the heat pump transfers the air through the coils into the environment. The HPGK heat pumps far more efficient than standard heat pumps due to the circulation system of the device. If the outer temperatures are on reasonable levels, the device goes with 'Freecooling' mode without any spend of extra energy

#### **Fans**

- Backward curved radial fan.
- © Optimal efficiency, low sound level.
- Economic AC fan selection
- € High efficiency EC fan selection
- € 10 years lifetime (40.000 hours)



- 1- Compressor
- 2- Electric Board
- 3- Evaporator
- 4- Fans
- 5- Heat recovery exchanger
- 6- Intervention lids
- 7- Filters
- 8- Condenser

#### 1. Evaporator and Condenser

Cross flow heat exchangers do air transferring without mixing the supply and exhaust air over the aluminium plates of the exchanger. On the HPGK, through the optimization of heat exchanger, temperature and humidity efficiency is increased, pressure drop is decreased. A stainless steel drain pan is placed below the exchanger to catch any condensated water.

# 2. Compressor

Adjusted to seasonal working principals. Including the high/low pressure drop feature, all of the features of the heat pump are protected and the lifetime is increased to the max.

#### 3. Electric Boards

The electric board is placed in a separate case so that it stays out of any harm including air flow.

# 4. Heat Recovery Exchanger

With its special construction, the heat exchanger prevents any type of air leak. According to its capacity, the device is designed to hold the balance between pressure drop and efficiency. Allexchangers are EUROVENT certificated. Recuperatorhas on each of its air ducts AISI304 stainless drainpans.

#### 5. Intervention Lids

To reach the fans easily, there are interventions lids with locks.

#### 6. Filters

Due to ISO ePM Coarse %55 the heat exchanger stays clean and provides efficient function including the increased conditioning quality.

#### 7. Fans

Fans are backward leaning bladed, efficient radial fans.

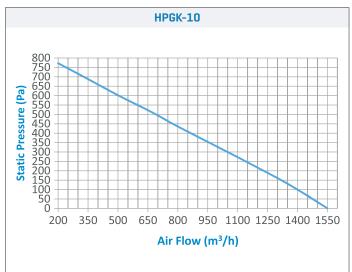


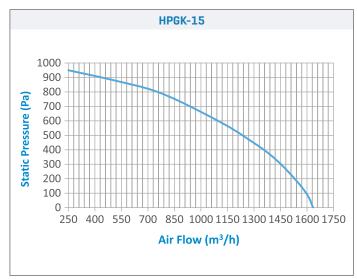
1. Evaporator and Condenser

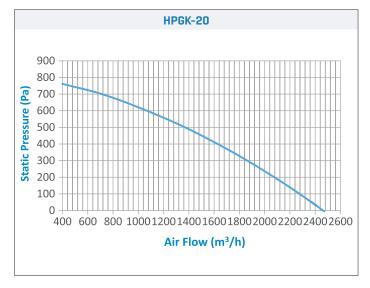


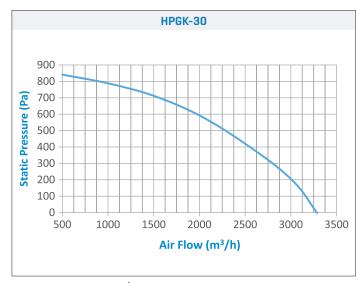
3. Electric Board

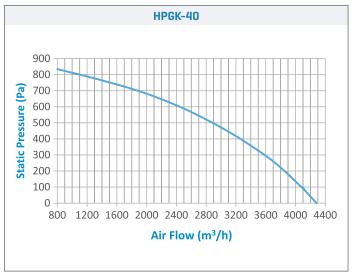



5. Intervention Lids

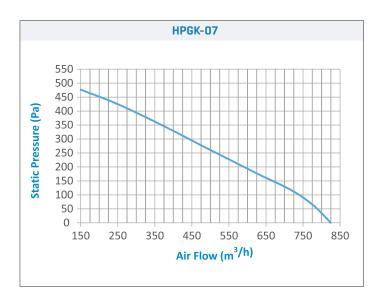


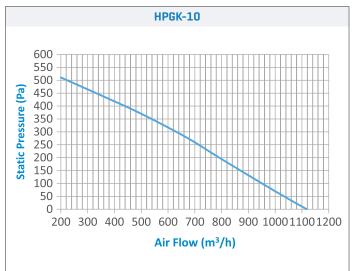


6. Filters and Fans


# Performance Statics (EC)

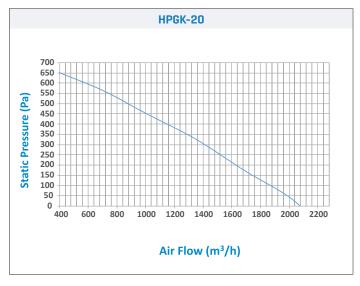


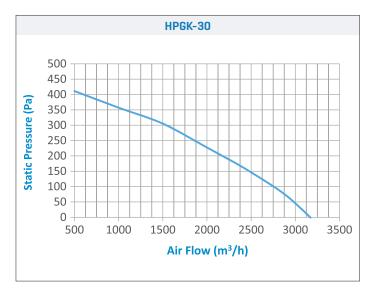


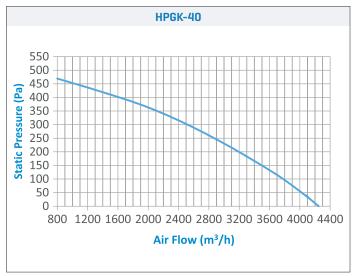







# **Performance Statics (AC)**














# **Technical Features Chart**

# **HPGK-EC Fans**

| DEVICES FEATURES                  |      | HPGK-07 | HPGK-10 | HPGK-15 | HPGK-20 | HPGK-30 | HPGK-40 |
|-----------------------------------|------|---------|---------|---------|---------|---------|---------|
| AR => Air                         | m³/h | 750     | 1000    | 1500    | 2000    | 3000    | 4000    |
| External Static Pressure (Supply) | Pa   | 126.6   | 327.04  | 240.43  | 236.39  | 205.16  | 135.69  |
| Supply Expansion                  | V-Hz | 230-50  | 230/50  | 230/50  | 230/50  | 380/50  | 380/50  |
| Total Fan Power                   | kW   | 0.34    | 0.77    | 0.94    | 1.00    | 1.58    | 2.28    |
| Motor Type                        |      | EC      | EC      | EC      | EC      | EC      | EC      |

# **HPGK-AC FANS**

| DEVICES FEATURES                  |      | HPGK-07 | HPGK-10 | HPGK-15 | HPGK-20 | HPGK-30 | HPGK-40 |
|-----------------------------------|------|---------|---------|---------|---------|---------|---------|
| AR => Air                         | m³/h | 750     | 1000    | 1500    | 2000    | 3000    | 4000    |
| External Static Pressure (Supply) | Pa   | 183.4   | 69.94   | 160.73  | 42.19   | 45.56   | 55.01   |
| Supply Expansion                  | V-Hz | 230-50  | 230/50  | 230/50  | 230/50  | 230/50  | 230/50  |
| Total Fan Power                   | kW   | 0.42    | 0.45    | 1.03    | 0.94    | 1.36    | 2.6     |
| Motor Type                        |      | AC      | AC      | AC      | AC      | AC      | AC      |

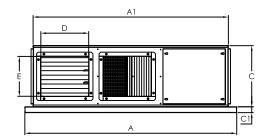
# Compressor

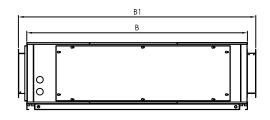
| DEVICES FEATURES |      | HPGK-07 | HPGK-10 | HPGK-15 | HPGK-20 | HPGK-30 | HPGK-40 |
|------------------|------|---------|---------|---------|---------|---------|---------|
| Power            | kW   | 1.192   | 1.379   | 1.71    | 2.3     | 2.8     | 3.52    |
| Supply Expansion | V-Hz | 230-50  | 230-50  | 230-50  | 380-50  | 380-50  | 380-50  |

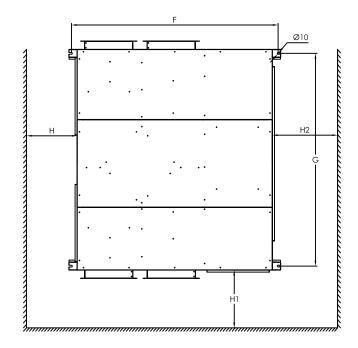
# **Cooling Features**

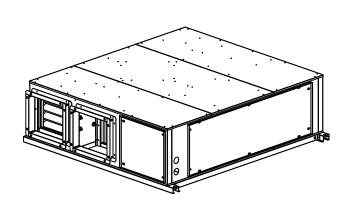
| GENERAL FEATURES           |    | HPGK-07 | HPGK-10 | HPGK-15 | HPGK-20 | HPGK-30 | HPGK-40 |
|----------------------------|----|---------|---------|---------|---------|---------|---------|
| Total Refrigerant Capacity | kW | 4.1     | 5.42    | 8.5     | 11.7    | 14.9    | 18.2    |
| Total Cooling COP          |    | 3.44    | 3.93    | 4.97    | 5.08    | 5.32    | 5.2     |

# **Heating Features**


| DEVICE FEATURES        |    | HPGK-07 | HPGK-10 | HPGK-15 | HPGK-20 | HPGK-30 | HPGK-40 |
|------------------------|----|---------|---------|---------|---------|---------|---------|
| Total Heating Capacity | kW | 5.535   | 6.041   | 10.742  | 15.729  | 19.42   | 25.83   |
| Total Heating COP      |    | 4.64    | 4.38    | 6.28    | 6.84    | 6.93    | 7.35    |


# **Electrical Heater(Optional)**


| DEVICE FEATURE |           | HPGK-07 | HPGK-10 | HPGK-15 | HPGK-20 | HPGK-30 | HPGK-40 |
|----------------|-----------|---------|---------|---------|---------|---------|---------|
| Capacity       | kW (max.) | 1.5     | 2       | 4       | 10      | 10      | 10      |

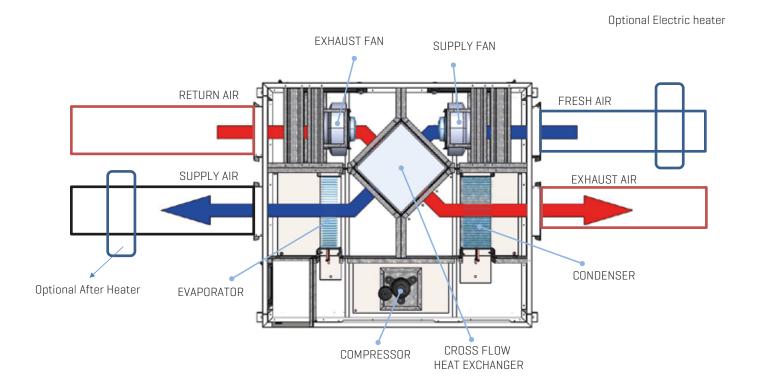

# **Filter**

| DEVICE FEATURE             | HPGK-07        | HPGK-10        | HPGK-15        | HPGK-20        | HPGK-30        | HPGK-40        |  |
|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| Splitter Type Filter Class | ISO ePM Coarse | ISO ePM Coarse | ISO ePM Coarse | ISO ePM Coarse | ISO ePM Coarse | ISO ePM Coarse |  |
|                            | %55            | %55            | %55            | %55            | %55            | %55            |  |










# **Device Dimensions**

|         | Α    | A1     | В      | B1     | С     | C1 | D   | E   | F    | G      | H (Min.) | H1 (Min.) | H2 (Min.) | WEIGHT(KG) |
|---------|------|--------|--------|--------|-------|----|-----|-----|------|--------|----------|-----------|-----------|------------|
| HPGK-07 | 1279 | 1174.5 | 1453.5 | 1557.8 | 383.5 | 37 | 280 | 210 | 1245 | 1403.5 | 500      | 500       | 500       | 150        |
| HPGK-10 | 1329 | 1224.5 | 1383.5 | 1487.8 | 383.5 | 37 | 300 | 210 | 1295 | 1333.5 | 500      | 500       | 500       | 175        |
| HPGK-15 | 1545 | 1444.5 | 1558.5 | 1662.8 | 434.5 | 37 | 400 | 310 | 1515 | 1508.5 | 600      | 500       | 600       | 200        |
| HPGK-20 | 1605 | 1504.5 | 1698.5 | 1802.8 | 499.5 | 37 | 410 | 410 | 1575 | 1648.5 | 600      | 500       | 600       | 250        |
| HPGK-30 | 1765 | 1664.5 | 1883.5 | 1987.8 | 601.5 | 37 | 510 | 510 | 1735 | 1833.5 | 700      | 500       | 600       | 300        |
| HPGK-40 | 2125 | 2024.5 | 1918.5 | 2024   | 666.5 | 37 | 600 | 510 | 2095 | 1868.5 | 700      | 500       | 600       | 375        |

"All dimensions are mm"

# **Heating Capacity Features**



# **Control Panel**

HPGK series device standards includes multifunctional control units and a room control panel. These are general features of the Control Panel;

| Features          | Working Principal                                                                                                                                                                                                                                            | Situation |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| On / Off          | Done over the room control panel                                                                                                                                                                                                                             | Standard  |
| Display           | Through the screen of the room control panel;<br>fan return speed, fail/alarm notification and temperature value<br>scan be displayed                                                                                                                        | Standard  |
|                   | The fans can be controlled separatelyand automatically switched on.                                                                                                                                                                                          | Standard  |
| Fan Control       | Otomatic modeon, the pressure sensor helps to adjust the requested values according the wish. On HPGK, if the contamination rises, the fans will increase their air flow to hold the efficiency according the desired conditioning                           | Optional  |
|                   | When confronting fan problems, the system will automatically shut down to hold protection mode.                                                                                                                                                              | Optional  |
|                   | Manual selection and cooling/heating selection is made over the room control panel. Being connected to the heating sensor otomatically, to reach the aimed comfort temperature, the heat pump system can be used in meeting the required cooling or heating. | Standard  |
| Heat-Pump Control | When cooling and heating is switched on, the gas pressure sensors manages to run the system safely and high efficient with the help of low/high pressure protection equipments.                                                                              | Standard  |
|                   | On any problematic occasion with the heat pump system, it will automatically go in the protection mode through its sensors.                                                                                                                                  | Standard  |
| Timer             | HPGK can adjust time and date configurations with the room control panel. With the timer mode ,off, special days (holidays), each day of the week can be selected for function.                                                                              | Standard  |
| BMS               | Power control unit and the central control system of the buildingare equipped to work together.                                                                                                                                                              | Standard  |
| Modbus            | HPGK devicescan be controlled through the Modbus protocol.                                                                                                                                                                                                   | Standard  |
| Filter Filthiness | Through the sensors inside the device, the dirtiness can be seen on the control panel. Alarm signs can be seen on the warning side.                                                                                                                          | Standard  |

| NOTES |                              |
|-------|------------------------------|
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       | IKLIMLENDIRME   HVAC SYSTEMS |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### Istanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56











# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45,000 sqm. in which 25,000 sqm. indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 3 sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











- © DMT Single Deflection Grille, has one row independently adjustable aerodynamic blades for the advanced air direction control.
- Suitable for supply or extract air.



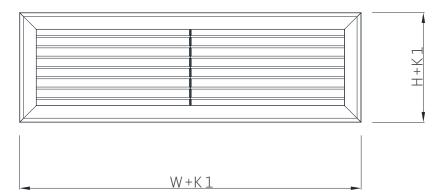
# MATERIAL

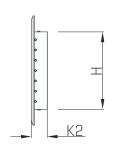
- € Aluminium 6063 extrusion profile production
- © Optional AISI 304 quality stainless steel production

# **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard
- © Optional
  - Different RAL color codes
  - Matt aluminium eloxal finish for a matte and metallic look
  - Unpainted manufacturing

# **INSTALLATION OPTIONS**


- Screw System
- Suspended Ceiling
- Clip-In Ceiling
- Without Mounting Hole
- Concealed
- € Long Spring Clip


# **ACCESSORIES**

- © Optional
  - ZKD Opposite Blade Air Adjustment Damper (Production from aluminum 6063 extrusion profile)

# **PRODUCT SELECTION**

# **STANDARD DIMENSIONS**







|                       | K1 (mm) | K2 (mm) |
|-----------------------|---------|---------|
| 22 mm Frame           | 42      | 31.8    |
| 32 mm Frame           | 62.6    | 31      |
| Clip-in Frame         | 59.2    | 30      |
| Stainless-Steel Frame | 57.8    | 30      |



Table 1. Standard Dimesions

| Standard<br>Dimensions |      | H (Height) (mm) |             |          |             |             |          |          |          |          |          |          |  |
|------------------------|------|-----------------|-------------|----------|-------------|-------------|----------|----------|----------|----------|----------|----------|--|
|                        |      | 50              | 100         | 200      | 300         | 400         | 500      | 600      | 700      | 800      | 900      | 1000     |  |
|                        | 100  | <b>✓</b>        | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>~</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |  |
|                        | 200  | <b>~</b>        | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |  |
|                        | 300  | <b>✓</b>        | <b>&gt;</b> | <b>~</b> | <b>&gt;</b> | <b>~</b>    | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>~</b> |  |
|                        | 400  | <b>✓</b>        | <b>&gt;</b> | <b>~</b> | <b>&gt;</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b> |  |
|                        | 500  | <b>✓</b>        | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |  |
|                        | 600  | <b>✓</b>        | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |  |
| Ξ                      | 700  | <b>✓</b>        | <b>~</b>    | <b>~</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |  |
| Ē                      | 800  | <b>✓</b>        | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |  |
| 臣                      | 900  | <b>✓</b>        | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |  |
| ۸id                    | 1000 | <b>✓</b>        | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |  |
| W [Width] [mm]         | 1100 | <b>✓</b>        | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |  |
|                        | 1200 | <b>✓</b>        | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> |          |          |          |          |  |
|                        | 1300 | <b>~</b>        | >           | <b>~</b> | >           | <b>&gt;</b> | <b>~</b> | <b>~</b> |          |          |          |          |  |
|                        | 1400 | <b>~</b>        | >           | <b>~</b> | >           | <b>&gt;</b> | <b>✓</b> | <b>~</b> |          |          |          |          |  |
|                        | 1500 | <b>✓</b>        | <b>&gt;</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b>    | <b>✓</b> | <b>~</b> |          |          |          |          |  |
|                        | 1600 | <b>✓</b>        | <b>&gt;</b> | <b>✓</b> | >           | <b>✓</b>    | <b>✓</b> | <b>✓</b> |          |          |          |          |  |
|                        | 1700 | <b>✓</b>        | <b>&gt;</b> | <b>~</b> | <b>&gt;</b> | <b>~</b>    | <b>✓</b> | <b>~</b> |          |          |          |          |  |
|                        | 1800 | <b>✓</b>        | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> |          |          |          |          |  |

**Note**: Maximum dimensions for stainless steel production are 1200 mm x 600 mm.

# **PERFORMANCE DATA**

Table 2. Effective Area

| Effe           | ctive |       | H (Height) (mm) |       |       |       |       |       |       |       |       |       |  |  |
|----------------|-------|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| Area           | [m²]  | 50    | 100             | 200   | 300   | 400   | 500   | 600   | 700   | 800   | 900   | 1000  |  |  |
|                | 100   | 0.003 | 0.007           | 0.013 | 0.020 | 0.027 | 0.033 | 0.040 | 0.047 | 0.053 | 0.060 | 0.067 |  |  |
|                | 200   | 0.007 | 0.013           | 0.027 | 0.040 | 0.053 | 0.067 | 0.080 | 0.093 | 0.106 | 0.120 | 0.133 |  |  |
|                | 300   | 0.010 | 0.020           | 0.040 | 0.060 | 0.080 | 0.100 | 0.120 | 0.140 | 0.160 | 0.180 | 0.200 |  |  |
|                | 400   | 0.013 | 0.027           | 0.053 | 0.080 | 0.106 | 0.133 | 0.160 | 0.186 | 0.213 | 0.240 | 0.266 |  |  |
|                | 500   | 0.017 | 0.033           | 0.067 | 0.100 | 0.133 | 0.166 | 0.200 | 0.233 | 0.266 | 0.299 | 0.333 |  |  |
|                | 600   | 0.020 | 0.040           | 0.080 | 0.120 | 0.160 | 0.200 | 0.240 | 0.280 | 0.319 | 0.359 | 0.399 |  |  |
|                | 700   | 0.023 | 0.047           | 0.093 | 0.140 | 0.186 | 0.233 | 0.280 | 0.326 | 0.373 | 0.419 | 0.466 |  |  |
| W [Width] [mm] | 800   | 0.027 | 0.053           | 0.106 | 0.160 | 0.213 | 0.266 | 0.319 | 0.373 | 0.426 | 0.479 | 0.532 |  |  |
|                | 900   | 0.030 | 0.060           | 0.120 | 0.180 | 0.240 | 0.299 | 0.359 | 0.419 | 0.479 | 0.539 | 0.599 |  |  |
| ቱ              | 1000  | 0.033 | 0.067           | 0.133 | 0.200 | 0.266 | 0.333 | 0.399 | 0.466 | 0.532 | 0.599 | 0.666 |  |  |
| Ξ              | 1100  | 0.037 | 0.073           | 0.146 | 0.220 | 0.293 | 0.366 | 0.439 | 0.512 | 0.586 | 0.659 | 0.732 |  |  |
| >              | 1200  | 0.040 | 0.080           | 0.160 | 0.240 | 0.319 | 0.399 | 0.479 |       |       |       |       |  |  |
|                | 1300  | 0.043 | 0.087           | 0.173 | 0.260 | 0.346 | 0.433 | 0.519 |       |       |       |       |  |  |
|                | 1400  | 0.047 | 0.093           | 0.186 | 0.280 | 0.373 | 0.466 | 0.559 |       |       |       |       |  |  |
|                | 1500  | 0.050 | 0.100           | 0.200 | 0.299 | 0.399 | 0.499 | 0.599 |       |       |       |       |  |  |
|                | 1600  | 0.053 | 0.106           | 0.213 | 0.319 | 0.426 | 0.532 | 0.639 |       |       |       |       |  |  |
|                | 1700  | 0.057 | 0.113           | 0.226 | 0.339 | 0.453 | 0.566 | 0.679 |       |       |       |       |  |  |
|                | 1800  | 0.060 | 0.120           | 0.240 | 0.359 | 0.479 | 0.599 | 0.719 |       |       |       |       |  |  |

\*DOĞU HVAC. Te specifications without notice. WWW.doguhvac.com

Table 3. Supply Data

|                  |                                                   |            |              |              |              |             |             | Effectiv    | e Speed     | (m/s)        |              |             |              |              |             |              |
|------------------|---------------------------------------------------|------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|--------------|--------------|-------------|--------------|--------------|-------------|--------------|
| Flow Rate (m³/h) |                                                   | 0.5        | 1.0          | 1.5          | 2.0          | 2.5         | 3.0         | 3.5         | 4.0         | 4.5          | 5.0          | 6.0         | 7.0          | 8.0          | 9.0         | 10.0         |
|                  | Effective Area [m²]                               | 0.0278     | 0.0139       | 0.009        | 0.007        | 0.006       | 0.005       | 0.0040      | 0.0035      |              | 0.0          | 0.0         | 7.0          | 0.0          | 0.0         |              |
| 50               | Pressure Drop [Pa]                                | 0.0270     | 1            | 2            | 4            | 6           | 8           | 11          | 15          |              |              |             |              |              |             |              |
| 30               | Throw Distance [m]                                | 1          | 2            | 2            | 3            | 3           | 3           | 4           | 4           |              |              |             |              |              |             |              |
|                  | Sound Pressure Level [dB(A)]                      | <15        | <15          | <15          | <15          | <15         | <15         | <15         | <15         | 0.000        | 0.000        | 0.005       | 0.00//0      | 0.0005       |             |              |
|                  | Effective Area [m²] Pressure Drop [Pa]            | 0.0556     | 0.0278       | 0.019        | 0.014        | 0.011       | 0.009       | 0.008       | 0.007       | 0.006        | 0.006<br>24  | 0.005<br>34 | 0.0040<br>47 | 0.0035<br>62 |             |              |
| 100              | Throw Distance [m]                                | 1          | 2            | 2            | 3            | 3           | 4           | 4           | 4           | 4            | 5            | 5           | 6            | 6            |             |              |
|                  | Sound Pressure Level [dB(A)]                      | <15        | <15          | <15          | <15          | <15         | <15         | <15         | 17          | 20           | 23           | 28          | 32           | 35           |             |              |
|                  | Effective Area [m²]                               | 0.111      | 0.056        | 0.037        | 0.028        | 0.022       | 0.019       | 0.016       | 0.014       | 0.012        | 0.011        | 0.009       | 0.008        | 0.007        | 0.0062      | 0.0056       |
| 200              | Pressure Drop [Pa]                                | 0          | 1            | 2            | 4            | 6           | 8           | 11          | 15          | 19           | 24           | 35          | 48           | 63           | 80          | 100          |
|                  | Throw Distance [m] Sound Pressure Level [dB(A)]   | 1<br><15   | 2<br><15     | 2<br><15     | 3<br><15     | 3<br><15    | <15         | 4<br>16     | 4<br>20     | 5<br>23      | 5            | 5<br>31     | 6<br>35      | 9<br>38      | 7 42        | 7 44         |
|                  | Effective Area [m²]                               | 0.167      | 0.083        | 0.056        | 0.042        | 0.033       | 0.028       | 0.024       | 0.021       | 0.019        | 26<br>0.017  | 0.014       | 0.012        | 0.010        | 0.009       | 0.008        |
|                  | Pressure Drop [Pa]                                | 0.107      | 1            | 2            | 4            | 6           | 8           | 11          | 15          | 19           | 24           | 35          | 48           | 63           | 81          | 100          |
| 300              | Throw Distance [m]                                | 1          | 2            | 3            | 3            | 3           | 4           | 4           | 4           | 5            | 5            | 5           | 6            | 6            | 7           | 7            |
|                  | Sound Pressure Level [dB(A)]                      | <15        | <15          | <15          | <15          | <15         | <15         | 18          | 21          | 25           | 28           | 32          | 37           | 40           | 43          | 46           |
|                  | Effective Area [m²] Pressure Drop [Pa]            | 0.222      | 0.111        | 0.074        | 0.056        | 0.044       | 0.037       | 0.032       | 0.028       | 0.025        | 0.022        | 0.019       | 0.016        | 0.014        | 0.012       | 0.011        |
| 400              | Throw Distance [m]                                | 1          | 2            | 3            | 3            | 6<br>3      | 8 4         | 11          | 15<br>4     | 19<br>5      | 24<br>5      | 35<br>5     | 48<br>6      | 63<br>6      | 81<br>7     | 100<br>7     |
|                  | Sound Pressure Level [dB(A)]                      | <15        | <15          | <15          | <15          | <15         | <15         | 19          | 23          | 26           | 29           | 34          | 38           | 41           | 45          | 47           |
|                  | Effective Area [m²]                               | 0.278      | 0.139        | 0.093        | 0.069        | 0.056       | 0.046       | 0.040       | 0.035       | 0.031        | 0.028        | 0.023       | 0.020        | 0.017        | 0.015       | 0.014        |
| EOO              | Pressure Drop [Pa]                                | 0          | 1            | 2            | 4            | 6           | 8           | 11          | 15          | 19           | 24           | 35          | 48           | 63           | 81          | 101          |
| 500              | Throw Distance [m]                                | 1          | 2            | 3            | 3            | 3           | 4           | 4           | 4           | 5            | 5            | 6           | 6            | 6            | 7           | 7            |
|                  | Sound Pressure Level [dB(A)]  Effective Area [m²] | <15        | <15          | <15          | <15          | <15         | 16          | 20          | 24          | 27           | 30           | 35          | 39           | 42           | 46          | 48           |
|                  | Pressure Drop [Pa]                                | 0.333<br>0 | 0.167<br>1   | 0.111        | 0.083<br>4   | 0.067<br>6  | 0.056<br>8  | 0.048<br>11 | 0.042<br>15 | 0.037        | 0.0333<br>24 | 0.028<br>35 | 0.024<br>48  | 0.021<br>63  | 0.019       | 0.017        |
| 600              | Throw Distance [m]                                | 1          | 2            | 3            | 3            | 3           | 4           | 4           | 4           | 5            | 5.0          | 6           | 6            | 7            | 7           | 7            |
|                  | Sound Pressure Level [dB(A)]                      | <15        | <15          | <15          | <15          | <15         | 17          | 21          | 25          | 28           | 31           | 36          | 40           | 43           | 46          | 49           |
|                  | Effective Area [m²]                               | 0.389      | 0.194        | 0.130        | 0.997        | 0.078       | 0.065       | 0.056       | 0.049       | 0.043        | 0.0389       | 0.032       | 0.028        | 0.024        | 0.022       | 0.019        |
| 700              | Pressure Drop [Pa]                                | 0          | 1            | 2            | 4            | 6           | 8           | 11          | 15          | 19           | 24           | 35          | 48           | 64           | 81          | 101          |
| 700              | Throw Distance [m] Sound Pressure Level [dB(A)]   | 1<br><15   | 2<br><15     | 3<br><15     | 3<br><15     | 3<br><15    | 4<br>18     | 4<br>22     | 4<br>25     | 5<br>28      | 5.0<br>31    | 6           | 6<br>40      | 7            | 7<br>47     | 7<br>50      |
|                  | Effective Area [m²]                               | 0.444      | 0.222        | 0.148        | 0.111        | 0.089       | 0.074       | 0.064       | 0.056       | 0.049        | 0.0444       | 36<br>0.037 | 0.032        | 0.028        | 0.025       | 0.022        |
|                  | Pressure Drop [Pa]                                | 0.777      | 1            | 2            | 4            | 6           | 8           | 11          | 15          | 19           | 24           | 35          | 48           | 64           | 81          | 101          |
| 800              | Throw Distance [m]                                | 1          | 2            | 3            | 3            | 3           | 4           | 4           | 4           | 5            | 5.0          | 6           | 6            | 7            | 7           | 7            |
|                  | Sound Pressure Level [dB(A)]                      | <15        | <15          | <15          | <15          | <15         | 18          | 22          | 26          | 29           | 32           | 37          | 41           | 45           | 48          | 51           |
|                  | Effective Area [m²]                               | 0.500      | 0.250        | 0.167        | 0.125        | 0.100       | 0.083       | 0.071       | 0.063       | 0.056        | 0.0500       | 0.042       | 0.036        | 0.031        | 0.028       | 0.025        |
| 900              | Pressure Drop [Pa]                                | 0          | 1            | 2            | 4            | 6           | 8           | 11          | 15          | 19           | 24           | 35          | 48           | 64           | 81          | 101          |
| 000              | Throw Distance [m] Sound Pressure Level [dB[A]]   | 1<br><15   | 2<br><15     | 3<br><15     | 3<br><15     | 3<br><15    | 4<br>19     | 4<br>23     | 5<br>26     | 5<br>30      | 5.1<br>32    | 6<br>37     | 6<br>41      | 7<br>45      | 7<br>48     | 7<br>51      |
|                  | Effective Area [m²]                               | 0.556      | 0.278        | 0.185        | 0.139        | 0.111       | 0.093       | 0.079       | 0.069       | 0.062        | 0.0556       | 0.046       | 0.040        | 0.035        | 0.031       | 0.028        |
|                  | Pressure Drop [Pa]                                | 0.000      | 1            | 2            | 4            | 6           | 8           | 11          | 15          | 19           | 24           | 35          | 48           | 64           | 81          | 101          |
| 1000             | Throw Distance [m]                                | 1          | 2            | 3            | 3            | 3           | 4           | 4           | 5           | 5            | 5.1          | 6           | 6            | 7            | 7           | 8            |
|                  | Sound Pressure Level [dB(A)]                      | <15        | <15          | <15          | <15          | <15         | 19          | 23          | 27          | 30           | 33           | 38          | 42           | 46           | 49          | 52           |
|                  | Effective Area [m²]                               | 0.694      | 0.347        | 0.232        | 0.174        | 0.139       | 0.116       | 0.099       | 0.087       | 0.077        | 0.0694       | 0.058       | 0.050        | 0.043        | 0.039       | 0.035        |
| 1250             | Pressure Drop [Pa]                                | 1          | 2            | 2            | 3            | 6 4         | 8 4         | 12          | 15<br>5     | 19<br>5      | 24<br>5.1    | 35<br>6     | 48<br>6      | 64           | 82<br>7     | 101          |
|                  | Throw Distance [m] Sound Pressure Level [dB(A)]   | <15        | <15          | <15          | <15          | 15          | 20          | 24          | 28          | 31           | 34           | 39          | 43           | 46           | 50          | 52           |
|                  | Effective Area [m²]                               | 10         | 0.417        | 0.278        | 0.208        | 0.167       | 0.139       | 0.119       | 0.104       | 0.0926       | 0.0833       | 0.069       | 0.060        | 0.052        | 0.046       | 0.042        |
|                  | Pressure Drop [Pa]                                |            | 1            | 2            | 4            | 6           | 8           | 12          | 15          | 19           | 24           | 35          | 48           | 64           | 82          | 102          |
| 1500             | Throw Distance [m]                                |            | 2            | 3            | 3            | 4           | 4           | 4           | 5           | 4.9          | 5.1          | 6           | 6            | 7            | 7           | 8            |
|                  | Sound Pressure Level [dB(A)]                      |            | <15          | <15          | <15          | 16          | 21          | 24          | 29          | 32           | 35           | 40          | 44           | 47           | 50          | 53           |
|                  | Effective Area [m²] Pressure Drop [Pa]            |            | 0.486        | 0.324        | 0.243        | 0.194       | 0.162       | 0.139       | 0.122       | 0.1080       | 0.0972       | 0.081       | 0.069<br>49  | 0.061        | 0.054       | 0.049        |
| 1750             | Throw Distance [m]                                |            | 2            | 3            | 3            | 4           | 4           | 4           | 5           | 5            | 5            | 6           | 6            | 7            | 7           | 8            |
|                  | Sound Pressure Level [dB(A)]                      |            | <15          | <15          | <15          | 17          | 22          | 26          | 29          | 33           | 35           | 40          | 44           | 48           | 51          | 54           |
|                  | Effective Area [m²]                               |            | 0.556        | 0.370        | 0.278        | 0.222       | 0.185       | 0.159       | 0.139       | 0.1235       | 0.1111       | 0.093       | 0.079        | 0.069        | 0.062       | 0.056        |
| 2000             | Pressure Drop [Pa]                                |            | 1            | 2            | 4            | 6           | 8           | 12          | 15          | 19           | 24           | 35          | 49           | 64           | 82          | 102          |
| 2000             | Throw Distance [m]                                |            | 2            | 3            | 3            | 17          | 4           | 4           | 5           | 5            | 5            | 6           | 6            | 7            | 7           | 8            |
|                  | Sound Pressure Level [dB(A)]  Effective Area [m²] |            | <15<br>0.694 | <15<br>0.463 | <15<br>0.347 | 17<br>0.278 | 22<br>0.232 | 26<br>0.198 | 30<br>0.174 | 33<br>0.1543 | 36<br>0.1389 | 41<br>0.116 | 45<br>0.099  | 49<br>0.087  | 52<br>0.077 | 55<br>0.069  |
|                  | Pressure Drop [Pa]                                |            | 1            | 2            | 4            | 6           | 8           | 12          | 15          | 19           | 24           | 35          | 49           | 64           | 82          | 102          |
| 2500             | Throw Distance [m]                                |            | 2            | 3            | 3            | 4           | 4           | 2           | 5           | 5            | 5            | 6           | 6            | 7            | 7           | 8            |
|                  | Sound Pressure Level [dB(A)]                      |            | <15          | <15          | <15          | 17          | 23          | 27          | 31          | 34           | 37           | 42          | 46           | 50           | 53          | 56           |
|                  | Effective Area [m²]                               |            |              | 0.556        | 0.417        | 0.333       | 0.278       | 0.238       | 0.2083      | 0.1852       | 0.1667       | 0.139       | 0.119        | 0.104        | 0.093       | 0.0833       |
| 3000             | Pressure Drop [Pa]                                |            |              | 2            | 4            | 6           | 8           | 12          | 15          | 20           | 24           | 35          | 49           | 64           | 82          | 102          |
| 2003             | Throw Distance [m] Sound Pressure Level [dB[A]]   | _          |              | 3<br><15     | 3            | 10          | 4<br>24     | 4<br>28     | 5<br>32     | 5<br>35      | 5            | 6<br>43     | 6<br>47      | 7            | 7<br>54     | 8            |
|                  | Effective Area [m²]                               |            |              | 0.741        | <15<br>0.556 | 18<br>0.444 | 0.370       | 0.3968      | 0.2778      | 0.2469       | 38<br>0.2222 | 0.185       | 0.159        | 50<br>0.139  | 0.1235      | 56<br>0.1111 |
|                  | Pressure Drop [Pa]                                |            |              | 2            | 4            | 6           | 8           | 12          | 15          | 20           | 24           | 36          | 49           | 65           | 82          | 102          |
| 4000             | Throw Distance [m]                                |            |              | 3            | 3            | 4           | 4           | 4           | 5           | 5            | 5            | 6           | 6            | 7            | 7           | 8            |
|                  | Sound Pressure Level [dB(A)]                      |            |              | <15          | <15          | 20          | 25          | 30          | 33          | 36           | 39           | 44          | 48           | 52           | 55          | 58           |
|                  | Effective Area [m²]                               |            |              |              | 0.694        | 0.556       | 0.4630      | 0.595       | 0.3472      | 0.3086       | 0.2778       | 0.232       | 0.198        | 0.1736       | 0.1543      | 0.1389       |
| 5000             | Pressure Drop [Pa] Throw Distance [m]             | -          |              |              | 4            | 6 "         | 8 //        | 12          | 15          | 20           | 24           | 36          | 49           | 65           | 83          | 103          |
|                  | Sound Pressure Level [dB(A)]                      |            |              |              | 3            | - 4         | 4           | 5           | 5           | 5            | 5<br>//n     | - 6         | 7 //0        | 7            | 8<br>56     | 8<br>59      |
|                  | Effective Area [m²]                               |            |              |              | <15          | 21          | 26<br>0.694 | 32<br>0.595 | 34<br>0.521 | 37<br>0.4630 | 40<br>0.4167 | 45<br>0.347 | 49<br>0.298  | 53<br>0.260  | 0.232       | 0.208        |
| 7500             | Pressure Drop [Pa]                                |            |              |              |              |             | 9           | 12          | 15          | 20           | 24           | 36          | 49           | 65           | 83          | 103          |
| 7500             | Throw Distance [m]                                |            |              |              |              |             | 4           | 5           | 5           | 5            | 5            | 6           | 7            | 7            | 8           | 8            |
|                  | Sound Pressure Level [dB(A)]                      |            |              |              |              |             | 28          | 32          | 36          | 39           | 42           | 47          | 51           | 54           | 58          | 60           |
|                  | Effective Area [m²]                               |            |              |              |              |             |             |             | 0.6944      | 0.6173       | 0.5556       | 0.463       | 0.397        | 0.347        | 0.309       | 0.2778       |
| 10000            | Pressure Drop [Pa]                                |            |              |              |              |             |             |             | 15          | 20           | 25           | 36          | 49           | 65           | 83          | 103          |
|                  | Throw Distance [m]                                | -          | _            |              | -            | -           | -           |             | 5           | 5            | - 6          | - 6         | 7            | 7            | 8           | 8            |
|                  | Sound Pressure Level [dB(A)]                      | <u> </u>   |              | L            |              | <u> </u>    |             |             | 37          | 40           | 43           | 48          | 52           | 56           | 59          | 62           |

Note: Data were obtained with the air distribution equipment when the ambient air temperature difference is T=8K.

Throw the is the distance between the point where the air leaving the dispenser equipment reaches a second

Table 4. Extract Data

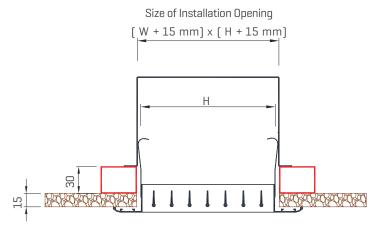
|                  |                                                 |        |          |              |          |            |        | Effectiv | e Speed      | [m/s]        |              |             |             |              |              |             |
|------------------|-------------------------------------------------|--------|----------|--------------|----------|------------|--------|----------|--------------|--------------|--------------|-------------|-------------|--------------|--------------|-------------|
| Flow Rate (m³/h) |                                                 | 0.5    | 1.0      | 1.5          | 2.0      | 2.5        | 3.0    | 3.5      | 4.0          | 4.5          | 5.0          | 6.0         | 7.0         | 8.0          | 9.0          | 10.0        |
|                  | Effective Area [m²]                             | 0.0278 | 0.0139   | 0.0093       | 0.0069   | 0.006      | 0.005  | 0.004    | 0.003        |              | 0.0          | 0.0         | 7.0         | 0.0          | 0.0          |             |
| 50               | Pressure Drop [Pa]                              | 0.0270 | 1        | 2            | 3        | 5          | 7      | 10       | 13           |              |              |             |             |              |              |             |
|                  | Sound Pressure Level [dB(A)]                    | <15    | <15      | <15          | <15      | <15        | <15    | <15      | <15          |              |              |             |             |              |              |             |
|                  | Effective Area [m²]                             | 0.0556 | 0.0278   | 0.019        | 0.014    | 0.011      | 0.009  | 0.008    | 0.007        | 0.006        | 0.006        | 0.005       | 0.004       | 0.0035       |              |             |
| 100              | Pressure Drop [Pa]                              | 0      | 1        | 2            | 3        | 5          | 7      | 10       | 13           | 17           | 21           | 30          | 42          | 56           |              |             |
|                  | Sound Pressure Level [dB(A)]                    | <15    | <15      | <15          | <15      | <15        | <15    | <15      | 15           | 18           | 21           | 26          | 30          | 34           |              |             |
|                  | Effective Area [m²]                             | 0.111  | 0.056    | 0.037        | 0.028    | 0.022      | 0.019  | 0.016    | 0.014        | 0.012        | 0.011        | 0.009       | 0.008       | 0.007        | 0.0062       | 0.0056      |
| 200              | Pressure Drop [Pa]                              | 0      | 1        | 2            | 3        | 5          | 7      | 10       | 13           | 17           | 21           | 31          | 43          | 57           | 73           | 91          |
|                  | Sound Pressure Level [dB(A)]                    | <15    | <15      | <15          | <15      | <15        | <15    | <15      | 18           | 22           | 25           | 29          | 34          | 37           | 41           | 43          |
|                  | Effective Area [m²]                             | 0.167  | 0.083    | 0.056        | 0.042    | 0.033      | 0.028  | 0.024    | 0.021        | 0.019        | 0.017        | 0.014       | 0.012       | 0.010        | 0.009        | 0.008       |
| 300              | Pressure Drop [Pa]                              | 0      | 1        | 2            | 3        | 5          | 7      | 10       | 14           | 17           | 22           | 32          | 44          | 58           | 74           | 93          |
|                  | Sound Pressure Level [dB(A)]                    | <15    | <15      | <15          | <15      | <15        | <15    | 17       | 20           | 24           | 26           | 31          | 36          | 39           | 42           | 45          |
|                  | Effective Area [m²]                             | 0.222  | 0.111    | 0.074        | 0.056    | 0.044      | 0.037  | 0.032    | 0.028        | 0.025        | 0.022        | 0.019       | 0.016       | 0.014        | 0.012        | 0.011       |
| 400              | Pressure Drop [Pa]                              | 0      | 1        | 2            | 3        | 5          | 7      | 10       | 14           | 18           | 22           | 32          | 44          | 59           | 75           | 94          |
|                  | Sound Pressure Level [dB(A)]                    | <15    | <15      | <15          | <15      | <15        | <15    | 18       | 22           | 25           | 28           | 33          | 37          | 41           | 44           | 47          |
|                  | Effective Area [m²]                             | 0.278  | 0.139    | 0.093        | 0.069    | 0.056      | 0.046  | 0.040    | 0.035        | 0.031        | 0.028        | 0.023       | 0.020       | 0.017        | 0.015        | 0.014       |
| 500              | Pressure Drop [Pa]                              | 0      | 1        | 2            | 3        | 5          | 8      | 10       | 14           | 18           | 22           | 32          | 45          | 59           | 76           | 95          |
|                  | Sound Pressure Level [dB(A)]                    | <15    | <15      | <15          | <15      | <15        | <15    | 19       | 23           | 26<br>0.037  | 29           | 34          | 38          | 42           | 45           | 48          |
| 600              | Effective Area [m²]                             | 0.333  | 0.167    | 0.111        | 0.083    | 0.067      | 0.056  | 0.048    | 0.042        | 18           | 0.0333       | 0.028       | 0.024       | 0.021        | 0.019        | 0.017       |
| 600              | Pressure Drop [Pa] Sound Pressure Level [dB[A]] | <15    | 1<br><15 | 2<br><15     | 3<br><15 | 5<br><15   | 8      | 11       | 14           | 27           | 30           | 35          | 45<br>39    | 60<br>43     | 76           | 95          |
|                  |                                                 | 0.389  | 0.194    |              |          |            | 16     | 20       | 24           | 0.043        | 0.0389       | 0.032       | 0.028       | 0.024        | 46           | 49          |
| 700              | Effective Area [m²] Pressure Drop [Pa]          | 0.389  | 0.194    | 0.130        | 0.997    | 0.078<br>5 | 0.065  | 0.056    | 0.049        | 18           | 22           | 33          | 45          | 60           | 0.022<br>77  | 0.019<br>96 |
| 700              | Sound Pressure Level [dB(A)]                    | <15    | <15      | <15          | <15      | <15        | 17     | 21       | 24           | 28           | 31           | 35          | 40          | 43           | 47           | 49          |
|                  | Effective Area [m²]                             | 0.444  | 0.222    | 0.148        | 0.111    | 0.089      | 0.074  | 0.063    |              | 0.049        | 0.0444       | 0.037       | 0.032       | 0.028        | 0.025        | 0.022       |
| 800              | Pressure Drop [Pa]                              | 0      | 1        | 2            | 3        | 5          | 8      | 11       | 0.056        | 18           | 22           | 33          | 46          | 60           | 77           | 97          |
| 000              | Sound Pressure Level [dB(A)]                    | <15    | <15      | <15          | <15      | <15        | 17     | 21       | 25           | 28           | 31           | 36          | 40          | 44           | 47           | 50          |
|                  | Effective Area [m²]                             | 0.500  | 0.250    | 0.167        | 0.125    | 0.100      | 0.083  | 0.071    | 0.063        | 0.056        | 0.0500       | 0.042       | 0.036       | 0.031        | 0.028        | 0.025       |
| 900              | Pressure Drop [Pa]                              | 0      | 1        | 2            | 3        | 5          | 8      | 11       | 14           | 18           | 23           | 33          | 46          | 61           | 78           | 97          |
|                  | Sound Pressure Level [dB(A)]                    | <15    | <15      | <15          | <15      | <15        | 18     | 22       | 26           | 29           | 32           | 37          | 41          | 45           | 48           | 51          |
|                  | Effective Area [m²]                             | 0.556  | 0.278    | 0.185        | 0.139    | 0.111      | 0.093  | 0.079    | 0.069        | 0.062        | 0.0556       | 0.046       | 0.040       | 0.035        | 0.031        | 0.028       |
| 1000             | Pressure Drop [Pa]                              | 0      | 1        | 2            | 3        | 5          | 8      | 11       | 14           | 18           | 23           | 33          | 46          | 61           | 78           | 97          |
|                  | Sound Pressure Level [dB(A)]                    | <15    | <15      | <15          | <15      | <15        | 18     | 23       | 26           | 29           | 32           | 37          | 41          | 45           | 48           | 51          |
|                  | Effective Area [m²]                             | 0.694  | 0.347    | 0.232        | 0.174    | 0.139      | 0.116  | 0.099    | 0.087        | 0.077        | 0.0694       | 0.058       | 0.050       | 0.043        | 0.039        | 0.035       |
| 1250             | Pressure Drop [Pa]                              | 0      | 1        | 2            | 3        | 5          | 8      | 11       | 14           | 18           | 23           | 34          | 46          | 61           | 79           | 98          |
|                  | Sound Pressure Level [dB(A)]                    | <15    | <15      | <15          | <15      | 15         | 19     | 24       | 27           | 30           | 33           | 38          | 42          | 46           | 49           | 52          |
|                  | Effective Area [m²]                             |        | 0.417    | 0.278        | 0.208    | 0.167      | 0.139  | 0.119    | 0.104        | 0.0926       | 0.0833       | 0.069       | 0.060       | 0.052        | 0.046        | 0.0417      |
| 1500             | Pressure Drop [Pa]                              |        | 1        | 2            | 3        | 5          | 8      | 11       | 14           | 19           | 23           | 34          | 47          | 62           | 79           | 99          |
|                  | Sound Pressure Level [dB(A)]                    |        | <15      | <15          | <15      | 15         | 20     | 25       | 28           | 31           | 34           | 39          | 43          | 47           | 50           | 53          |
|                  | Effective Area [m²]                             |        | 0.486    | 0.324        | 0.243    | 0.194      | 0.162  | 0.139    | 0.122        | 0.1080       | 0.0972       | 0.081       | 0.069       | 0.061        | 0.054        | 0.0486      |
| 1750             | Pressure Drop [Pa]                              |        | 1        | 2            | 3        | 5          | 8      | 11       | 15           | 19           | 23           | 34          | 47          | 62           | 80           | 100         |
|                  | Sound Pressure Level [dB(A)]                    |        | <15      | <15          | <15      | 16         | 21     | 25       | 29           | 32           | 35           | 40          | 44          | 48           | 51           | 54          |
|                  | Effective Area [m²]                             |        | 0.556    | 0.370        | 0.278    | 0.222      | 0.185  | 0.159    | 0.139        | 0.1235       | 0.1111       | 0.093       | 0.079       | 0.069        | 0.062        | 0.0556      |
| 2000             | Pressure Drop [Pa]                              |        | 1        | 2            | 3        | 5          | 8      | 11       | 15           | 19           | 23           | 34          | 47          | 63           | 80           | 100         |
|                  | Sound Pressure Level [dB(A)]                    |        | <15      | <15          | <15      | 17         | 22     | 26       | 30           | 33           | 36           | 41          | 45          | 48           | 52           | 54          |
| 2500             | Effective Area [m²]                             |        | 0.694    | 0.463        | 0.347    | 0.278      | 0.231  | 0.198    | 0.174        | 0.1543       | 0.1389       | 0.116       | 0.099       | 0.087        | 0.077        | 0.0694      |
| 2500             | Pressure Drop [Pa] Sound Pressure Level [dB(A)] |        | 1 -15    | 2            | 3        | 6          | 8      | 11       | 15           | 19<br>34     | 24<br>37     | 35<br>42    | 48          | 63           | 81           | 101         |
|                  |                                                 |        | <15      | <15<br>0.556 | <15      | 18         | 23     | 27       | 31           | 0.1852       | 0.1667       | 0.139       | 46<br>0.119 | 0.104        | 53           | 55          |
| 3000             | Effective Area [m²] Pressure Drop [Pa]          |        |          | 0.556        | 0.417    | 0.333      | 0.278  | 0.238    | 0.2083       | 19           | 24           | 35          | 48          | 64           | 0.0926       | 0.0833      |
| 3000             | Sound Pressure Level [dB(A)]                    |        |          | <15          | <15      | 19         | 24     | 28       | 15<br>31     | 35           | 38           | 42          | 47          | 50           | 53           | 56          |
|                  | Effective Area [m²]                             |        |          | 0.741        | 0.556    | 0.444      | 0.370  | 0.3175   | 0.2778       | 0.2469       | 0.2222       | 0.185       | 0.159       | 0.1389       | 0.1235       | 0.1111      |
| 4000             | Pressure Drop [Pa]                              |        |          | 2            | 4        | 6          | 8      | 11       | 15           | 19           | 24           | 35          | 49          | 64           | 83           | 103         |
| .000             | Sound Pressure Level [dB(A)]                    |        |          | <15          | <15      | 20         | 25     | 29       | 33           | 36           | 39           | 44          | 48          | 52           | 55           | 58          |
|                  | Effective Area [m²]                             |        |          | 10           | 0.694    | 0.556      | 0.4630 | 0.3968   | 0.3472       | 0.3086       | 0.2778       | 0.231       | 0.1984      | 0.1736       | 0.1543       | 0.1389      |
| 5000             | Pressure Drop [Pa]                              |        |          |              | 4        | 6          | 8      | 11       | 15           | 19           | 24           | 36          | 49          | 65           | 83           | 104         |
|                  | Sound Pressure Level [dB(A)]                    |        |          |              | <15      | 21         | 26     | 30       | 34           | 37           | 40           | 45          | 49          | 53           | 56           | 59          |
|                  | Effective Area [m²]                             |        |          |              |          |            | 0.694  | 0.5952   | 0.5208       | 0.4630       | 0.4167       | 0.347       | 0.2976      | 0.2604       | 0.2315       | 0.2083      |
| 7500             | Pressure Drop [Pa]                              |        |          |              |          |            | 8      | 12       | 15           | 20           | 25           | 36          | 50          | 66           | 85           | 106         |
|                  | Sound Pressure Level [dB(A)]                    |        |          |              |          |            | 28     | 32       | 36           | 39           | 42           | 47          | 51          | 55           | 58           | 61          |
|                  |                                                 |        |          |              |          |            |        |          |              |              |              |             |             |              |              |             |
|                  |                                                 |        |          |              |          |            |        |          | 0.6944       | 0.6173       | 0.5556       | 0.463       | 0.3968      | 0.3472       | 0.3086       | 0.2778      |
| 10000            | Effective Area [m²] Pressure Drop [Pa]          |        |          |              |          |            |        |          | 0.6944<br>16 | 0.6173<br>20 | 0.5556<br>25 | 0.463<br>37 | 0.3968      | 0.3472<br>67 | 0.3086<br>86 | 0.2778      |

Note: Data were obtained with the air distribution equipment when the ambient air temperature difference is T=8K

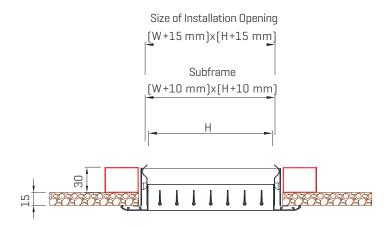
Table 5. Throw Distance Correction

| Heating Mode (△T)          | 4    | 6    | 8    | 10   | 12   |
|----------------------------|------|------|------|------|------|
| Throw Distance Coefficient | 1.07 | 1.02 | 1    | 0.90 | 0.83 |
| Cooling Mode (△T)          | 4    | 6    | 8    | 10   | 12   |
| Throw Distance Coefficient | 1.31 | 1.36 | 1.42 | 1.48 | 1.54 |

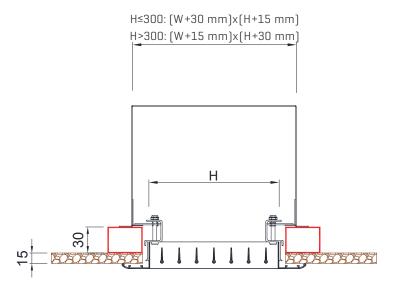
**Table 6.** Damper Pressure Correction


| Damper Position | Pressure Correction Factor | Noise Generation (dB(A)) |  |  |  |
|-----------------|----------------------------|--------------------------|--|--|--|
| Open            | 1.1                        | +1                       |  |  |  |
| 25% Closed      | 1.14                       | +4                       |  |  |  |
| 50% Closed      | 2.48                       | +14                      |  |  |  |
| 75% Closed      | 5.11                       | +29                      |  |  |  |

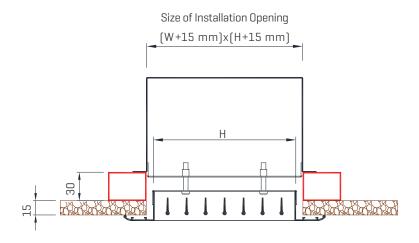
### **INSTALLATION**


### 1. SCREW SYSTEM

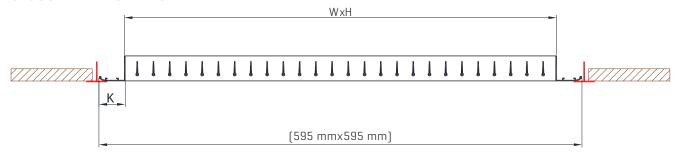
Size of Installation Opening [ W + 15 mm] x [ H + 15 mm]


### 2. LONG SPRING CLIP




### 3. SHORT SPRING CLIP WITH SUBFRAME

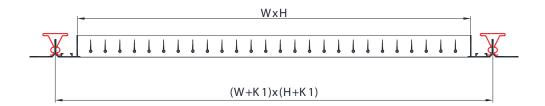



### **4. CONCEALED**



### **5. MOUNTING BRACKED**



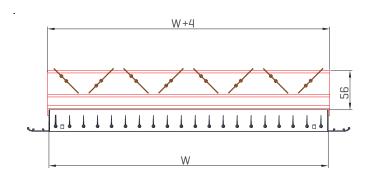

### **6. SUSPENDED CEILING**

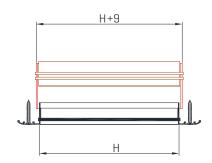


W and H dimensions that can be selected according to the frame sizes specified in the product selection, are shown in the adjacent table.

|                      | W (mm) | H (mm) |
|----------------------|--------|--------|
| 22 mm Frame          | 553    | 553    |
| 32 mm Frame          | 532    | 532    |
| Stainles-Steel Frame | 537    | 537    |

### 7. CLIP-IN CEILING





| Clip-In Frame<br>K1 = 59 mm | W (mm) | H (mm) |
|-----------------------------|--------|--------|
| 600x600                     | 541    | 541    |
| 300x300                     | 241    | 241    |

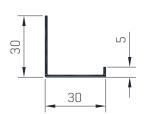
#### Note:

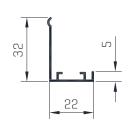
When the raw material of the product is selected as stainless steel, Clip-In assembly can not be done.

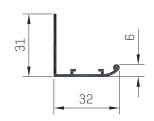
### 8. WITH DAMPER

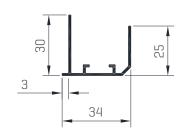





#### **FRAME TYPES**


Stainless Steel Frame


22 mm Frame


32 mm Frame

Clip-In Frame





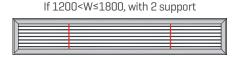




#### **SIZE PARAMETERS**

#### **MAXIMUM MODULE SIZE**

The standard dimensions of one module can be selected between 100 mmx50mm and 1800 mmx1000 mm. For the stainless-steel production, maximum module dimension is 1200 mmx600 mm. If the order dimension exceeds the module length, grilles will be produced by modular.


#### SUPPORT NUMBER PARAMETERS

The number of support used increases as the width of the grill increases. The maximum number of supports in a single piece products is 2 pieces.









#### PRODUCT SELECTION

**Example:** Occupied zone air flowrate has determined 2500 m<sup>3</sup>/h. 5 pieces of Double Deflection Grille would be used for supply air. Heating temperature difference is 8K.

**Solution:** For one grille, flowrate is  $2500/5 = 500 \text{ m}^3/\text{h}$ 

From the section "Performance Data" (Table 3) the effective areas are corresponding the pressure drop, throw distance, noise generation and flowrate values. Convenient values will be picked.

For example, effective area 0.031 m<sup>2</sup>, effective speed 4.5 m/s, pressure drop 19 Pa, throw distance 5 m and noise generation 27 dB[A].

Suitable grille dimension can be selected 500 mm x 100 mm with the 0.031 m² from "Effective Area" table (Table 2).

#### **Throw Distance Correction Table**

For example, the heating temperature difference is 10 K, the heating temperature at 8 K has found 8 m in the Performance Data table.

Throw distance correction table (Table 5), heating mode at 10 K throw correction factor is 0.9. So the new value of the throw distance is, Throw distance =  $5 \text{ m} \times 0.9 = 4.5 \text{ m}$ 

#### **Damper Condition**

To determine pressure drop and noise generation with damper, the additional values needed from the "Damper Correction Table" (Table 6).

For example, damper level 50% closed, pressure correction factor would be multiplied to the performance table pressure value.

Likewise, noise generation value will be added to the performance table noise generation value.

For 50% closed damper condition,

Pressure correction factor is 2.48

Noise generation factor is +14 dB[A]

Total static pressure drop: 19x2.48=47.12 Pa

Total noise generation: 27+14=41 dB(A)

### **PRODUCT ORDER CODES**

You can place your orders for aluminum or stainless products according to the coding style by looking at the seperate tables given below.

### **ALUMINUM PRODUCT ORDER CODE**

DMT.ALM. < B > . < C > . < D > . < E > . < F >

| 03 22 mm Frame                                 |  |
|------------------------------------------------|--|
|                                                |  |
| 06 32 mm Frame                                 |  |
| 09 Clip-In Frame                               |  |
| B Damper                                       |  |
| ZD Opposite Blade Damper                       |  |
| DZ Without Damper                              |  |
| C Installation Type                            |  |
| VD Screw System                                |  |
| KR Suspended Ceiling                           |  |
| KL Clip-in Ceiling                             |  |
| KP Mounting Bracket                            |  |
| MD Without Mounting Hole                       |  |
| MN Concealed                                   |  |
| UK Long Spring Clip                            |  |
| KK Bling Casing Short Spring Clip              |  |
| D Horizontal Dimension (W) [mm]                |  |
| 0000 You can view it from standard dimensions. |  |
| E Vertical Dimension (H) [mm]                  |  |
| 0000 You can view it from standard dimensions. |  |
| F Paint                                        |  |
| 00 Unpainted                                   |  |
| S1 Standard Painted - RAL 9010                 |  |
| S2 Standard Painted - RAL 9016                 |  |
| XX Special Painted                             |  |

Sample Coding; DMT.ALM.01.DZ.VD.0100.0600.S1

### STAINLESS-STEEL PRODUCT ORDER CODE

DMT.PAS.32. < A > . < B > . < C > . < D > . 00

| Α | Damper                        |                                           |
|---|-------------------------------|-------------------------------------------|
|   | ZD                            | Opposite Blade Damper                     |
|   | DZ                            | Without Damper                            |
| В | Installation Type             |                                           |
|   | VD                            | Screw System                              |
|   | KR                            | Suspended Ceiling                         |
|   | KP                            | Mounting Bracket                          |
|   | MD                            | Without Mounting Hole                     |
|   | MN                            | Concealed                                 |
|   | UK                            | Long Spring Clip                          |
|   | KK                            | Bling Cased Short Spring Clip             |
| С | Horizontal Dimension (W) [mm] |                                           |
|   | 0000                          | You can view it from standard dimensions. |
| D | Vertical Dimension (H) [mm]   |                                           |
|   | 0000                          | You can view it from standard dimensions. |

 $\textbf{Sample Coding;} \ \mathsf{DMT.PAS.32.DZ.VD.0100.0600.00}$ 

| NOTES |             |              |  |
|-------|-------------|--------------|--|
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       | <del></del> |              |  |
|       |             |              |  |
|       | <u> </u>    | HVAC SYSTEMS |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |
|       |             |              |  |

| NOTES |               |              |         |
|-------|---------------|--------------|---------|
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       | İKLİMLENDİRME | HVAC SYSTEMS | <u></u> |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56

















**FOUR-RTER**Rotary Heat Recovery Unit



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in Istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











### **FOUR-RTER**

- E Left and right switchable service direction for all modals.
- € High efficient EC fans with low sound level.
- € High efficiency heat recovery
- Hygienic condensate drip tray.
- Full integrated plug & play control system.
- Duble skin, 50 mm insullation.



### **Heat Exchanger**

- € High efficiency sorption rotary heat exchanger.
- Special application for the anti-freeze protection.

#### **Fans**

- New generation EC fans.
- Low power consumption.
- Low sound level.

### **Options**

- Electrical Heater
- © DX/Heating/Cooling Coil
- Attenuator

# **General Features**

RTER-1 switchable duct connection(top or side) and interchangeable service doors with new fan positioning acc.to new regulation for Rotary wheeled units(to prevent the leakage of exhaust air to suplly air).

RTER-2 only side outlet (not switchable) and interchangeable service doors.

RTER-3 switchable duct connection(top or side) and interchangeable service doors (with smaller dimensions)

#### **Filters**

- € Large filtering area for energy efficiency and long service period.
- € High efficiency ISO ePM1 55% and ePM10 75% filters on supply, ePM10 75% filter on extract air side.

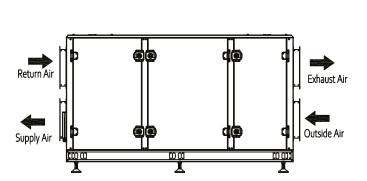
#### RTER-1

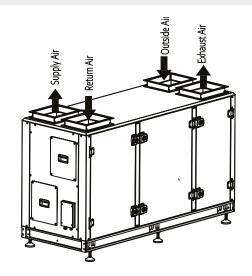






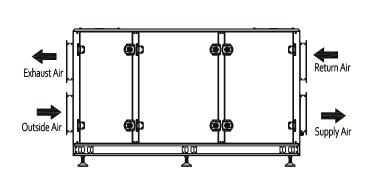
RTER-3

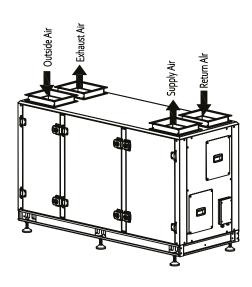




- 1. Supply filter
- 2. Exhaust filter
- 3. Supply Fan
- 4. Exhaust Fan
- 5. Rotary Heat Exchanger
- 6. Control panel

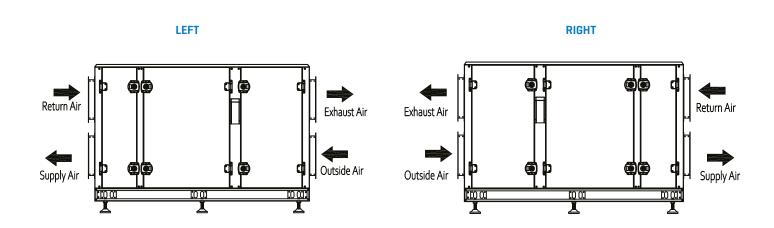
|          | Powe       | er (W)      | Voltage (V) | / Current (A) | RPM (      | 1/min)      |
|----------|------------|-------------|-------------|---------------|------------|-------------|
|          | Supply Fan | Extract Fan | Supply Fan  | Extract Fan   | Supply Fan | Extract Fan |
| RTER 010 | 170        | 170         | 230/1,4     | 230/1,4       | 2510       | 2510        |
| RTER 018 | 500        | 500         | 230/2,2     | 230/2,2       | 3740       | 3740        |
| RTER 025 | 660        | 660         | 230/2,9     | 230/2,9       | 2900       | 2900        |
| RTER 035 | 750        | 750         | 230/3,3     | 230/3,3       | 2100       | 2100        |
| RTER 050 | 1320       | 1320        | 380/2,1     | 380/2,1       | 2060       | 2060        |
| RTER 070 | 1850       | 1850        | 380/2,9     | 380/2,9       | 2180       | 2180        |
| RTER 090 | 2730       | 2730        | 380/4,2     | 380/4,2       | 2730       | 2730        |
| RTER 110 | 3510       | 3510        | 380/5,4     | 380/5,4       | 1910       | 1910        |
| RTER 140 | 4700       | 4700        | 380/7,3     | 380/7,3       | 1750       | 1750        |
| RTER 200 | 6750       | 6750        | 380/10,3    | 380/10,3      | 1500       | 1500        |

|                            | RTER<br>010 | RTER<br>018 | RTER<br>025 | RTER<br>035 | RTER<br>050 | RTER<br>070 | RTER<br>090 | RTER<br>110 | RTER<br>140 | RTER<br>200 |
|----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| MAXIMUM<br>AIR FLOW (m³/h) | 1075        | 1800        | 2500        | 3500        | 5000        | 7000        | 9000        | 11000       | 14000       | 20000       |
| P (EXTERNAL)<br>(Pa)       | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| NOMINAL<br>AIR FLOW (m3/h) | 920         | 1500        | 2300        | 2800        | 4400        | 5800        | 8900        | 11000       | 13500       | 18500       |
| P (EXTERNAL)<br>(Pa)       | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         |


### RTER-1

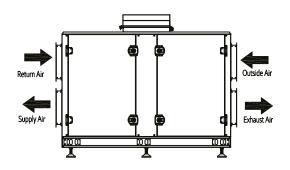


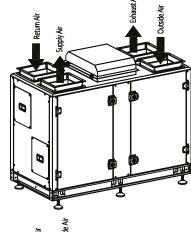




**RIGHT** 

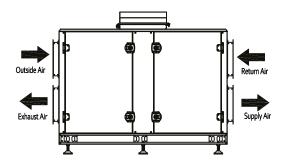
LEFT

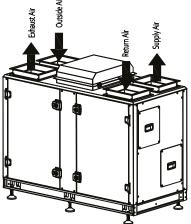






RTER-2

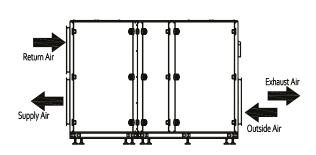


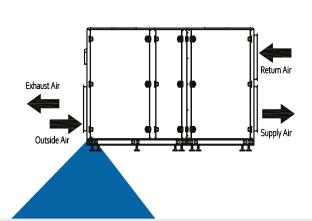

### RTER-3 (1000/1800/2500/3500/5000/7000)

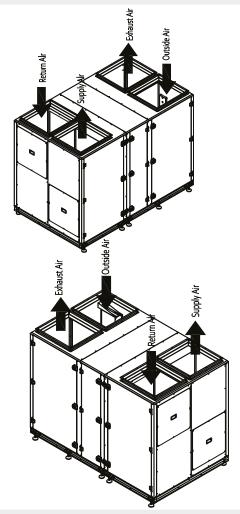

LEFT

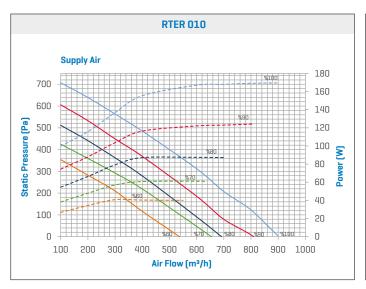




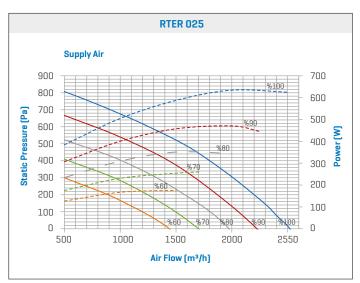

RIGHT

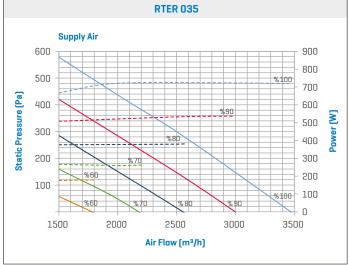


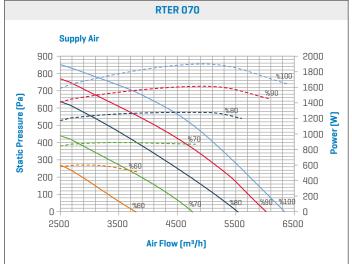


# RTER-3 (9000/11000/14000/20000)


LEFT

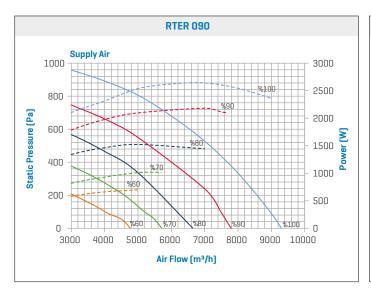


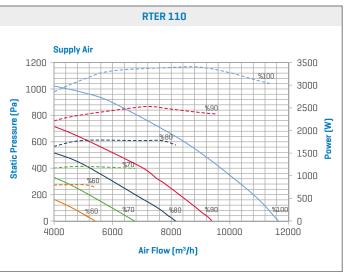



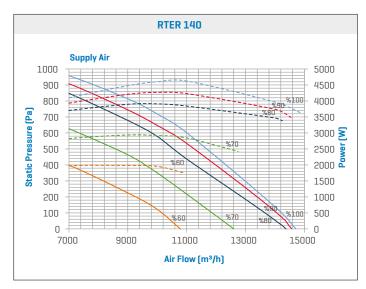


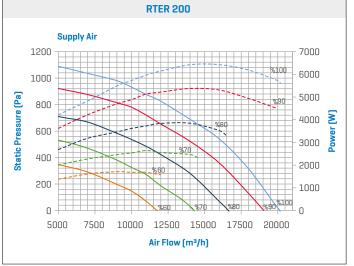



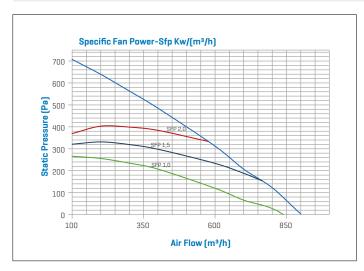


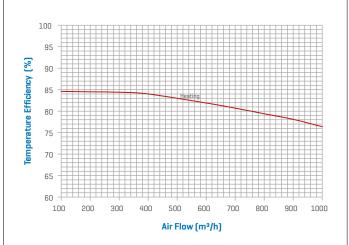



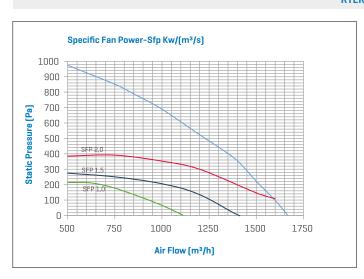



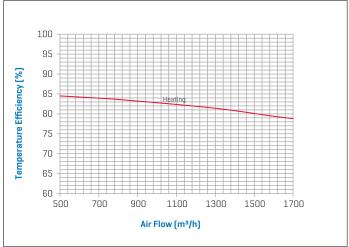



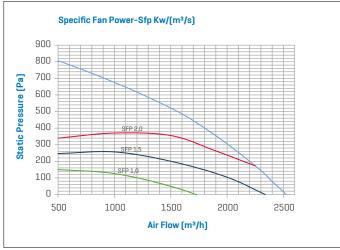



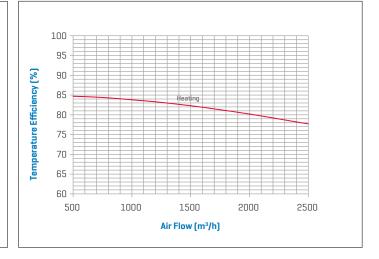





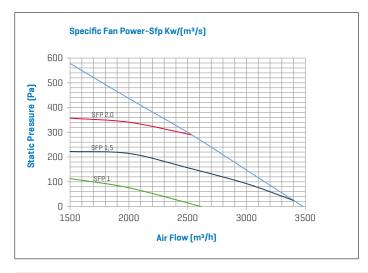



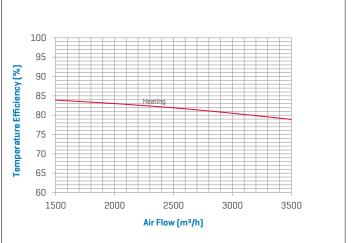



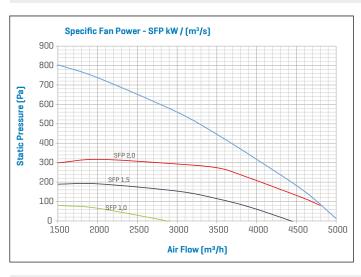



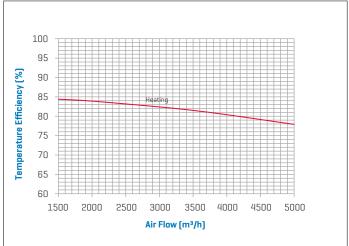

### RTER 018

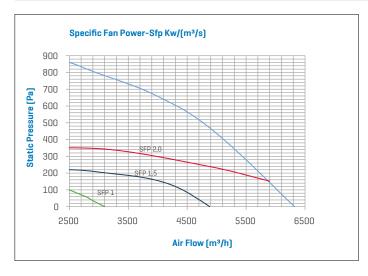


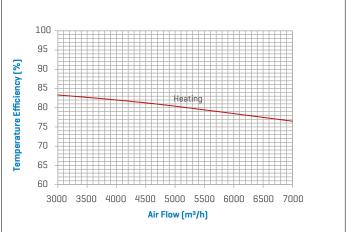



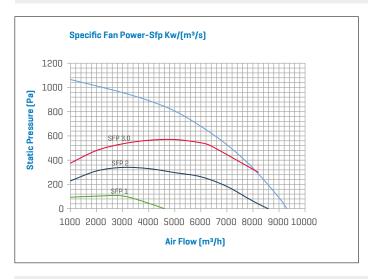


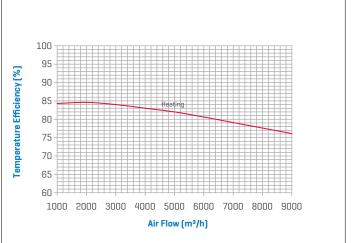



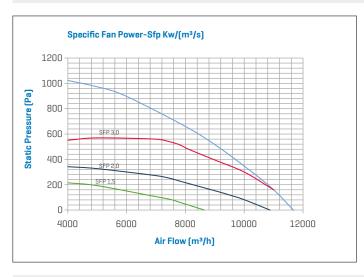



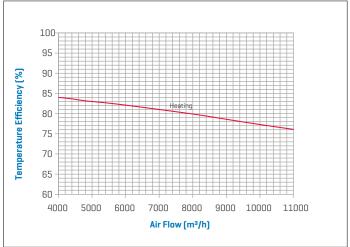



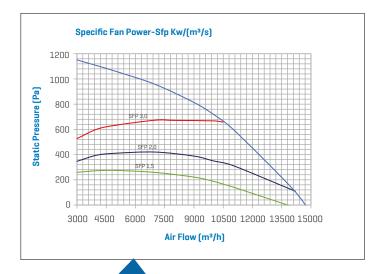


### **RTER 050**

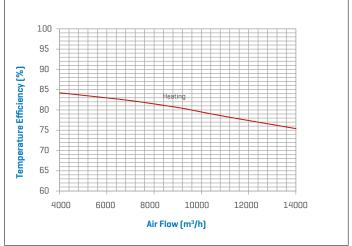


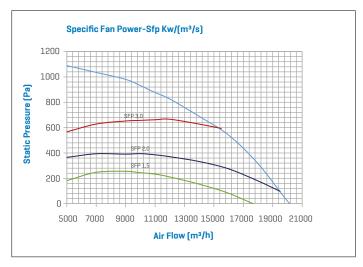


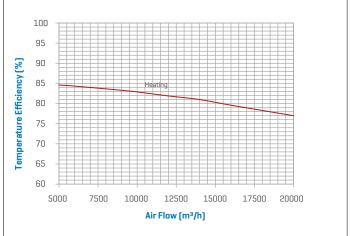



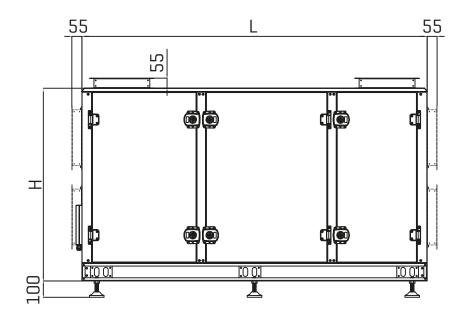



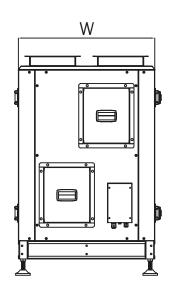



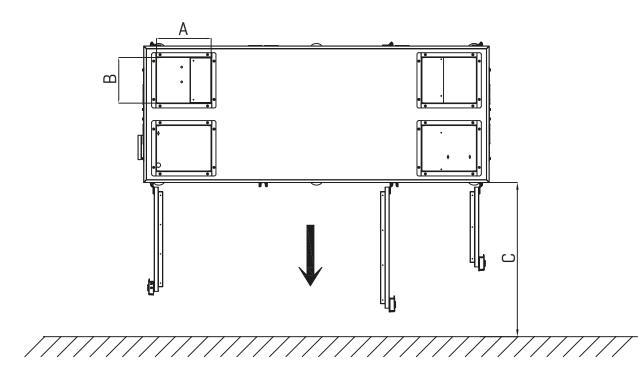





### RTER 110



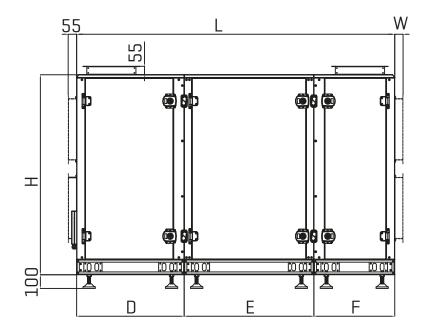



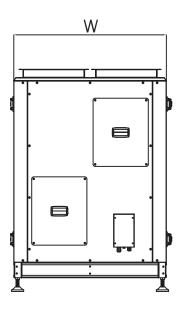



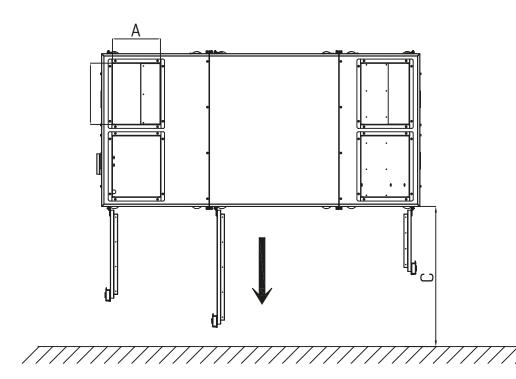







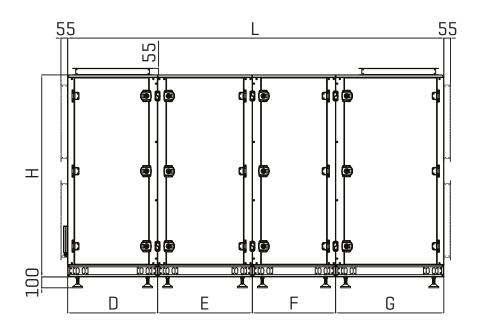



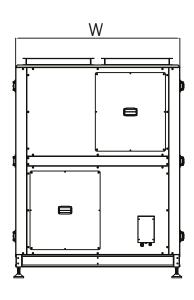



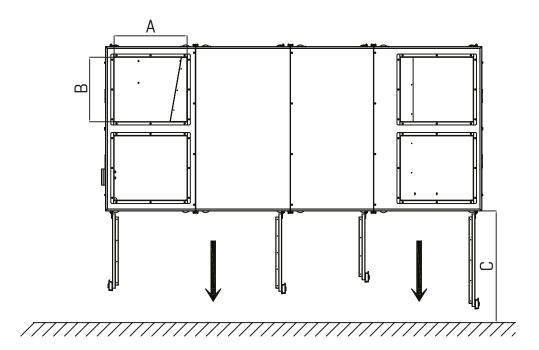




| CAPACITY  | L    | W   | Н    | Α   | В   | С   | KG  |
|-----------|------|-----|------|-----|-----|-----|-----|
| RTER010-1 | 1900 | 700 | 1060 | 300 | 225 | 800 | 200 |
| RTER018-1 | 1900 | 750 | 1060 | 300 | 250 | 850 | 206 |
| RTER025-1 | 1980 | 850 | 1160 | 300 | 310 | 950 | 253 |

All units are in mm.

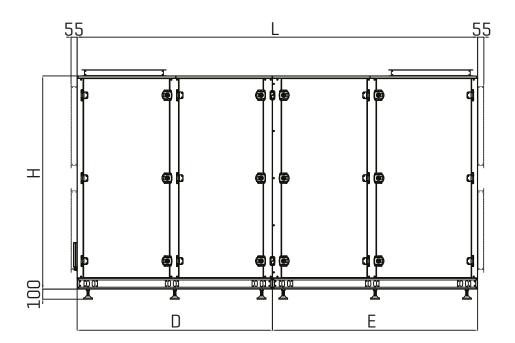


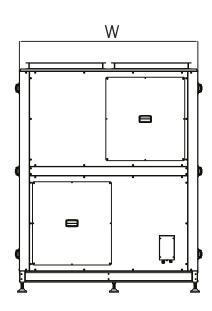



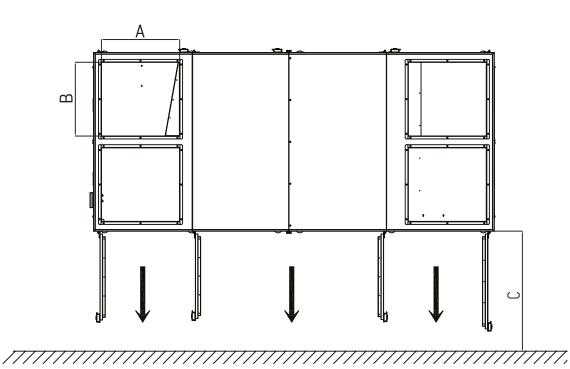




| CAPACITY  | L    | W    | Н    | A   | В   | С    | D   | E   | F   | KG  |
|-----------|------|------|------|-----|-----|------|-----|-----|-----|-----|
| RTER035-1 | 2085 | 1000 | 1310 | 315 | 400 | 1100 | 705 | 850 | 530 | 416 |
| RTER050-1 | 2340 | 1120 | 1430 | 400 | 400 | 1220 | 790 | 850 | 700 | 610 |

<sup>\*</sup>All units are in mm.

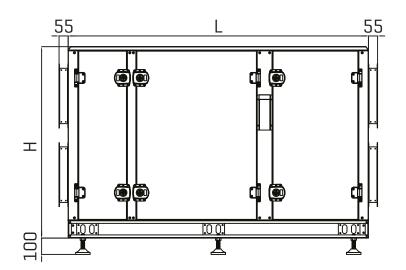


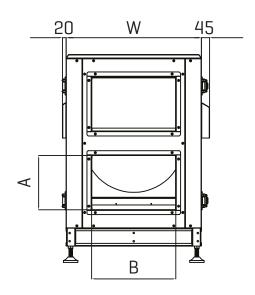



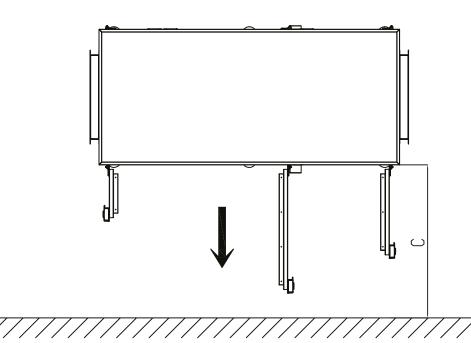




| CAPACITY  | L    | W    | Н    | A   | В   | С    | D   | E   | F   | G   | KG   |
|-----------|------|------|------|-----|-----|------|-----|-----|-----|-----|------|
| RTER070-1 | 2895 | 1230 | 1540 | 500 | 460 | 1330 | 640 | 780 | 685 | 790 | 832  |
| RTER098-1 | 3095 | 1350 | 1660 | 600 | 530 | 1450 | 740 | 780 | 685 | 890 | 976  |
| RTER110-1 | 3095 | 1475 | 1785 | 600 | 595 | 1575 | 740 | 780 | 685 | 890 | 1040 |

<sup>\*</sup>All units are in mm.

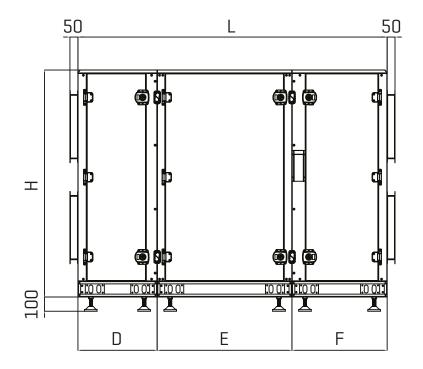


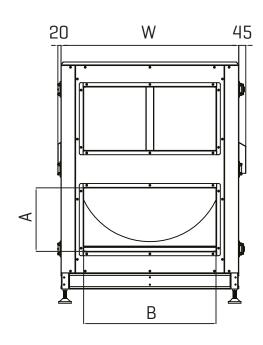




| CAPACITY  | L    | W    | Н    | A   | В   | С    | D    | E    | F    | KG   |
|-----------|------|------|------|-----|-----|------|------|------|------|------|
| RTER140-1 | 3590 | 1600 | 1910 | 700 | 660 | 1700 | 1750 | 1840 | 0    | 1445 |
| RTER200-1 | 3530 | 2025 | 2250 | 900 | 800 | 2125 | 1300 | 1200 | 1030 | 2160 |

<sup>\*</sup>All units are in mm.



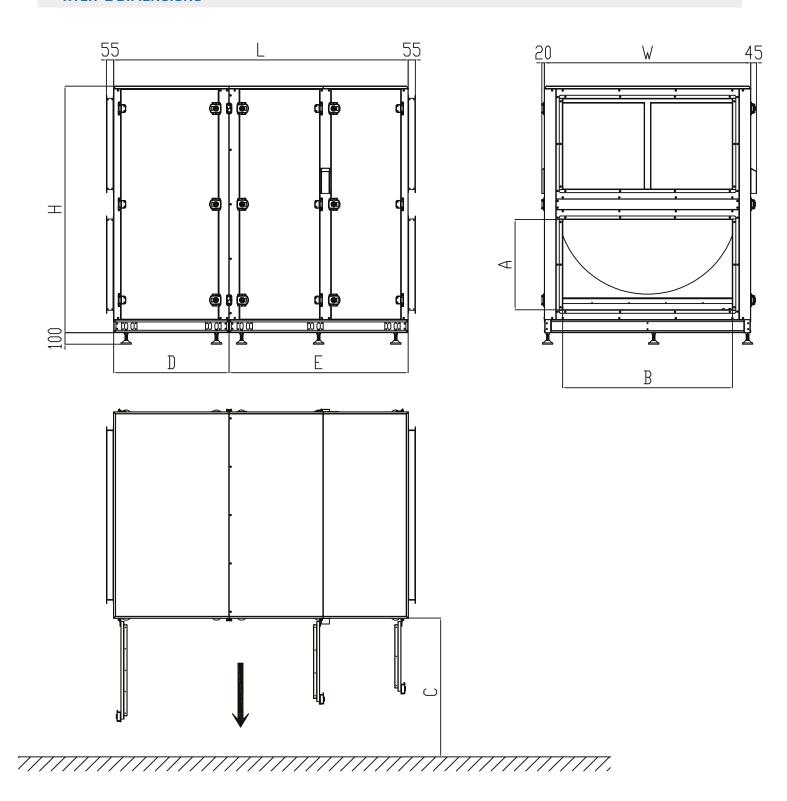







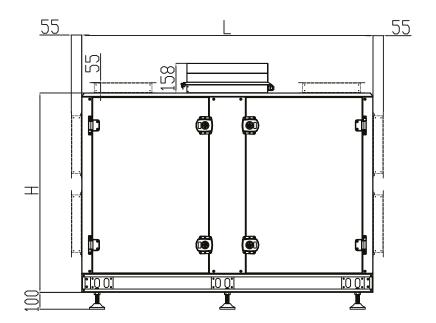
| CAPACITY  | L    | W    | Н    | A   | В   | С    | D   | E   | KG  |
|-----------|------|------|------|-----|-----|------|-----|-----|-----|
| RTER010-2 | 1665 | 700  | 961  | 415 | 300 | 865  | 0   | 0   | 185 |
| RTER018-2 | 1665 | 750  | 961  | 465 | 300 | 915  | 0   | 0   | 195 |
| RTER025-2 | 1745 | 850  | 1061 | 565 | 300 | 1015 | 0   | 0   | 210 |
| RTER035-2 | 1720 | 1000 | 1211 | 715 | 400 | 1165 | 825 | 895 | 396 |

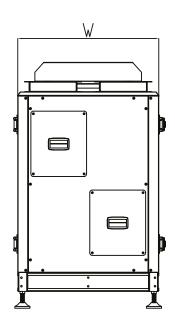
<sup>\*</sup>All units are in mm

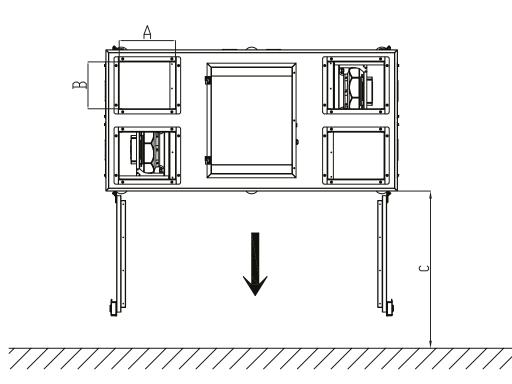






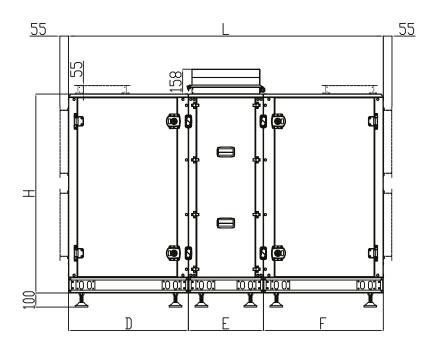


| CAPACITY  | L    | W    | Н    | Α    | В   | С    | D   | E   | F   | KG  |
|-----------|------|------|------|------|-----|------|-----|-----|-----|-----|
| RTER050-2 | 1950 | 1120 | 1430 | 835  | 400 | 1285 | 500 | 850 | 600 | 600 |
| RTER070-2 | 2050 | 1230 | 1441 | 945  | 500 | 1330 | 765 | 685 | 600 | 825 |
| RTER090-2 | 2050 | 1350 | 1661 | 1060 | 600 | 1450 | 765 | 685 | 600 | 920 |
| RTER110-2 | 2050 | 1475 | 1786 | 1190 | 600 | 1575 | 765 | 685 | 600 | 970 |

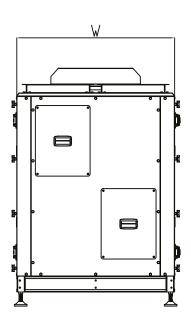

<sup>\*</sup>All units are in mm.

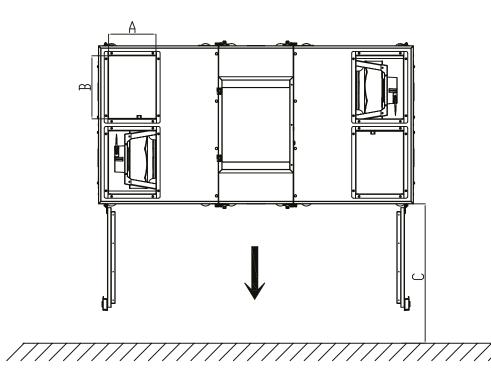



| CAPACITY  | L    | W    | Н    | Α    | В   | С    | D   | E    | KG   |
|-----------|------|------|------|------|-----|------|-----|------|------|
| RTER140-2 | 2285 | 1600 | 1911 | 1315 | 700 | 1765 | 895 | 1390 | 1250 |
| RTER200-2 | 2365 | 2025 | 2250 | 1725 | 900 | 2190 | 975 | 1390 | 2000 |

<sup>\*</sup>All units are in mm.

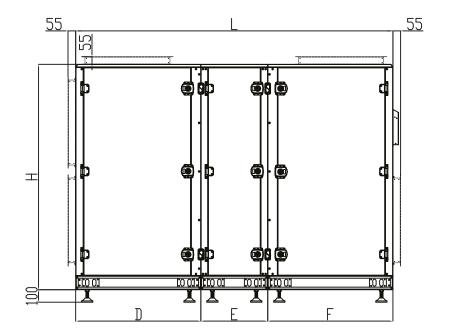


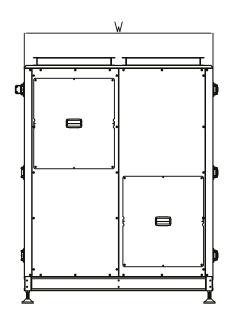



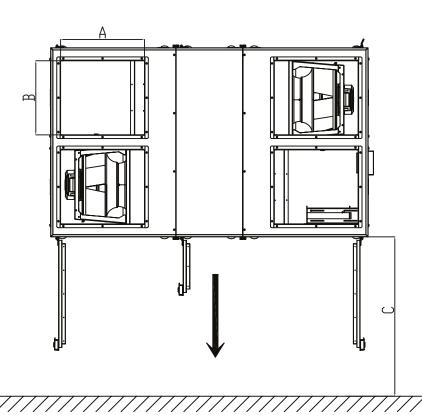




| CAPACITY   | L    | W   | Н    | Α   | В   | С   | KG  |
|------------|------|-----|------|-----|-----|-----|-----|
| RTER-010-3 | 1450 | 700 | 1010 | 200 | 225 | 800 | 190 |
| RTER-018-3 | 1550 | 750 | 1060 | 300 | 250 | 850 | 196 |
| RTER-025-3 | 1650 | 850 | 1160 | 300 | 310 | 950 | 243 |

<sup>\*</sup>All units are in mm.

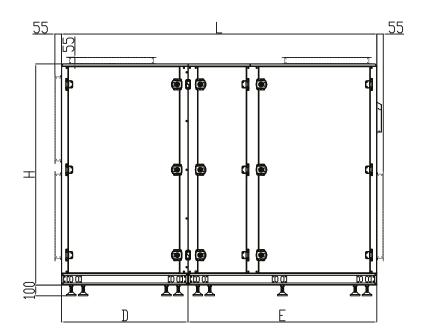


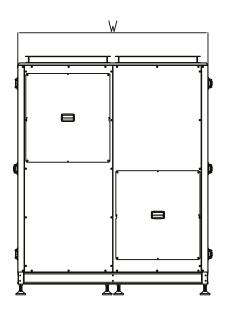



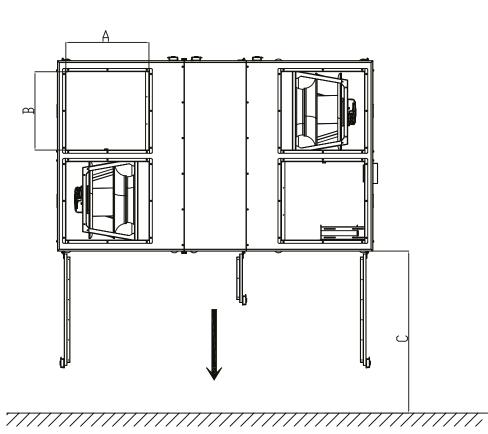




| CAPACITY  | L    | W    | Н    | Α   | В   | С    | D   | E   | F   | KG  |
|-----------|------|------|------|-----|-----|------|-----|-----|-----|-----|
| RTER035-3 | 1950 | 1000 | 1260 | 300 | 400 | 1100 | 760 | 475 | 760 | 406 |
| RTER050-3 | 2195 | 1120 | 1380 | 400 | 400 | 1220 | 810 | 475 | 810 | 600 |
| RTER070-3 | 2265 | 1230 | 1490 | 460 | 500 | 1330 | 895 | 475 | 895 | 823 |

<sup>\*</sup>All units are in mm.




| CAPACITY  | L    | W    | Н    | A   | В   | С    | D   | E   | F   | KG   |
|-----------|------|------|------|-----|-----|------|-----|-----|-----|------|
| RTER090-3 | 2268 | 1350 | 1610 | 600 | 530 | 1450 | 895 | 478 | 895 | 966  |
| RTER110-3 | 2268 | 1475 | 1735 | 600 | 595 | 1575 | 895 | 478 | 895 | 1030 |

<sup>\*</sup>All units are in mm.







| CAPACITY  | L    | w    | Н    | Α   | В   | С    | D    | E    | KG   |
|-----------|------|------|------|-----|-----|------|------|------|------|
| RTER140-3 | 2652 | 1600 | 1860 | 700 | 660 | 1700 | 1065 | 1587 | 1435 |
| RTER200-3 | 2973 | 2025 | 2285 | 800 | 850 | 2125 | 1273 | 1700 | 2150 |

<sup>\*</sup>All units are in mm.

| Operation                 | Description                                                                                                                                                                                                                                                                                                      | Standart |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| On / Off                  | Control panel or external start stop function is available.                                                                                                                                                                                                                                                      | Standard |
| Display                   | Digital control panel is available.                                                                                                                                                                                                                                                                              | Standard |
| Rotor Control             | On/Off Control                                                                                                                                                                                                                                                                                                   | Standard |
| Fan Speed Control         | Constant air flow or constant pressure.                                                                                                                                                                                                                                                                          | Optional |
| Fan Speed Control         | Airflow control based on the air quality sensor is available.                                                                                                                                                                                                                                                    | Optional |
| Frost Protection Function | When outdoor temperature is low, this function will become active by receiving information from humidity and temperature sensors.                                                                                                                                                                                | Standard |
| ModBus                    | It controls all functions of unit via PC or central control system board.                                                                                                                                                                                                                                        | Standard |
| Filter Function           | There are 2 alternatives to control filters: 1: It records run time of the unit and when set time expires, control panel gives an alert for filter change. 2: Filter change time can be controlled with pressure switch mechanically. By this way, control panel gives an alert when filter needs to be changed. | Standard |
| Safety                    | It automatically stops operating in case of interfering to the unit while it is working.                                                                                                                                                                                                                         | Standard |
| Fire Alarm Function       | It will be active in case of fire.                                                                                                                                                                                                                                                                               | Standard |
| Heating Coil              | Heating coil valves on the device which include optional heating coil, are controlled by proportional valve motors with PID logic and sensitivity.                                                                                                                                                               | Optional |
| Frost Control             | Optional heating coils also include frost thermostat to prevent the coil to freeze.                                                                                                                                                                                                                              | Optional |

# **ACCESSORIES**

## **Attenuator**



|             | RTER 010 | RTER 018 | RTER 025 | RTER 035 | RTER 050 | RTER 070 | RTER 090 | RTER 110 | RTER 140 | RTER 200 |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Width (mm)  | 710      | 770      | 820      | 760      | 1310     | 1300     | 1210     | 1960     | 2130     | 2420     |
| Height (mm) | 250      | 250      | 300      | 315      | 375      | 490      | 550      | 610      | 700      | 880      |
| Lenght (mm) | 600      | 600      | 600      | 600      | 600      | 600      | 600      | 600      | 600      | 600      |
| De 63 Hz    | 3        | 3        | 2        | 2        | 2        | 2        | 2        | 2        | 2        | 2        |
| De 125 Hz   | 6        | 5        | 4        | 3        | 4        | 4        | 2        | 4        | 4        | 4        |
| De 250 Hz   | 11       | 9        | 8        | 6        | 8        | 8        | 6        | 8        | 8        | 8        |
| De 500 Hz   | 20       | 16       | 15       | 12       | 15       | 15       | 11       | 15       | 15       | 15       |
| De 1 kHz    | 24       | 19       | 17       | 14       | 17       | 18       | 13       | 17       | 17       | 18       |
| De 2 kHz    | 19       | 16       | 16       | 14       | 16       | 16       | 12       | 16       | 16       | 16       |
| De 4 kHz    | 16       | 13       | 12       | 10       | 12       | 12       | 8        | 12       | 12       | 13       |
| De 8 KHz    | 13       | 10       | 9        | 7        | 9        | 9        | 7        | 9        | 9        | 10       |
| Press (Pa)  | 19       | 19       | 18       | 17       | 18       | 19       | 17       | 19       | 19       | 19       |

|             | RTER 010 | RTER 018 | RTER 025 | RTER 035 | RTER 050 | RTER 070 | RTER 090 | RTER 110 | RTER 140 | RTER 200 |
|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Width (mm)  | 720      | 770      | 820      | 980      | 1310     | 1300     | 1780     | 1960     | 2130     | 2424     |
| Height (mm) | 250      | 250      | 300      | 315      | 375      | 490      | 550      | 610      | 700      | 880      |
| Lenght (mm) | 1000     | 1000     | 1000     | 1000     | 1000     | 1000     | 1000     | 1000     | 1000     | 1000     |
| De 63 Hz    | 5        | 4        | 4        | 4        | 4        | 4        | 4        | 4        | 4        | 4        |
| De 125 Hz   | 10       | 7        | 6        | 7        | 6        | 7        | 7        | 7        | 6        | 7        |
| De 250 Hz   | 19       | 15       | 14       | 4        | 14       | 14       | 14       | 14       | 14       | 14       |
| De 500 Hz   | 30       | 25       | 23       | 23       | 23       | 23       | 23       | 23       | 23       | 23       |
| De 1 kHz    | 34       | 29       | 27       | 27       | 27       | 27       | 27       | 27       | 27       | 27       |
| De 2 kHz    | 29       | 26       | 25       | 25       | 25       | 25       | 25       | 25       | 25       | 25       |
| De 4 kHz    | 24       | 20       | 19       | 19       | 19       | 20       | 20       | 19       | 19       | 20       |
| De 8 KHz    | 20       | 16       | 15       | 15       | 15       | 15       | 15       | 15       | 15       | 15       |
| Press (Pa)  | 20       | 20       | 19       | 20       | 19       | 19       | 20       | 20       | 20       | 20       |

#### DX / Heating / Cooling Coil



- Coils are Eurovent certified.
- © Coils are made of copper pipes and aluminum fins.
- The cassette material is galvanized or stainless steel.
- The coils were tested at a pressure of at least 20 bar. On request, 30 bars can be tested under pressure.
- The collectors used in the coils are copper pipes.
- In hot and cold water coils, the water inlet is from the bottom and the water outlet is at the top.
- Air and water flows are counter-flowing to increase the heat transfer between them.
- Under the cooling coil, a condensate pan with a double slope is placed and the accumulated water is discharged through the drain pipe. In the case of a Drip Holder, a high-performance drill holder made of PVC material that can with stand up to 90° C is used.

#### **Electrical Heater**



Rectangular electric heaters have two thermostats as standard.

The first thermostat is set to 70° C, the air in the electric heater cuts off the electric current when it reaches 70° C, allowing the device to restart automatically when the temperature drops.

The second thermostat used for safety purposes is activated at 110° C and cuts off the electric current.

The thermostat must be reset manually from the red button in order for the appliance to operate again.

|          |                 | ΔT:5 | ΔT:10 | ΔT:15 |
|----------|-----------------|------|-------|-------|
|          | AIR FLOW (m³/h) | kW   | kW    | kW    |
| RTER 10  | 1000            | 2    | 4     | 5,5   |
| RTER 18  | 1500            | 3    | 6     | 8     |
| RTER 25  | 2200            | 4    | 8     | 12    |
| RTER 35  | 2800            | 5    | 10    | 15    |
| RTER 50  | 3900            | 7    | 14    | 21    |
| RTER 70  | 5200            | 10   | 19    | 28    |
| RTER 90  | 5900            | 11   | 21    | 32    |
| RTER 110 | 7800            | 14   | 28    | 42    |
| RTER 140 | 9500            | 17   | 34    | 51    |
| RTER 200 | 15400           | 28   | 56    | 83    |

| NOTES |                              |
|-------|------------------------------|
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       | İKLİMLENDİRME L HVAC SYSTEMS |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |

| NOTES                        |  |
|------------------------------|--|
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
| İKLİMLENDİRME L HVAC SYSTEMS |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56











ACA
Rectangular Variable Air Volume Device



# Venues Breathe with DOGU HVAC Systems!

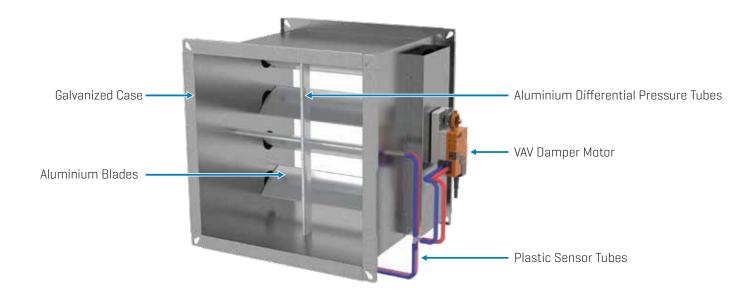
DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.












- ♠ ACA Prismatic Variable Air Volume Unit, operating room, clean room, special processes etc. It is used in prismatic ducts to control air flow in projects with special requirements such as comfort and hygiene. With variable air flow VAV systems, it provides energy savings of up to 50% in the energy consumed by the fan motor.
- Air flow control is used in ventilation applications, variable air flow systems for each space and duct pressure control applications.
- © Operates at flow rates between 216 17000 m<sup>3</sup> / h.
- All VAV units produced are calibrated in the VAV laboratory according to the flow rates specified in the order and their leakage is tested according to DIN EN 1751. In this laboratory, calibration is completed by testing one-to-one field conditions with 7 measuring stations, each with different diameter and nominal flow.
- Casing leakage is Class B according to DIN EN 1751 standard.
- ACA has DIN EN 1946/4 and VDI 6022 hygiene standards.
- S ACA has a compact structure. It works efficiently with low pressure loss thanks to its blades working opposite to each other.

#### **MATERIAL**

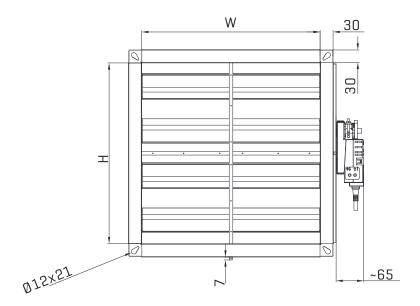
- The casing is manufactured from galvanized steel sheet as standard. AISI 304 quality stainless case option is available.
- Blades and differential pressure tubes are made of aluminum profile.
- Belimo damper motor is fixed on the case.

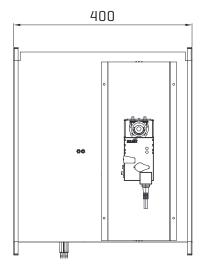


## **ACCESSORIES**

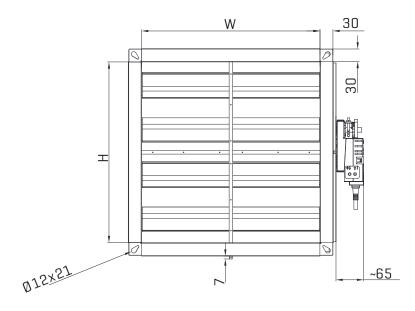
- Acoustic Insulation: In order to fulfill the acoustic comfort conditions in the selected product, it is insulated with an optional 19 mm thick foamed rubber. Rubber insulation is covered with galvanized sheet.
- ♠ ACQ Electric Heater: When an additional heater power is needed for the supply air, an Electric Heater can be added to the output of the ACA.
- **© GSX Prismatic Silencer:** Duct type silencer option is available to meet comfort conditions.




ACE - Electric Heater




GSX - Duct Type Silencer


## **STANDARD DIMENSIONS**

## **NON-INSULATED**





## **INSULATED**



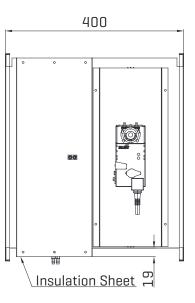



Table 1. Standard Dimensions

| W [mm] (Width)                      | Dimensions between 150 mm and 1000 mm         |  |  |  |  |  |  |  |
|-------------------------------------|-----------------------------------------------|--|--|--|--|--|--|--|
| H [mm]<br>(Fixed Height Dimensions) | 150 - 200 - 300 - 405 - 505 - 605 - 705 - 805 |  |  |  |  |  |  |  |

#### **FLOW - SIZE RANGE**

Table 2. Flow - Size Ranges

| Flow Rate [m³/h] |        |              | H Height (mm) |      |       |       |       |       |       |       |  |  |  |
|------------------|--------|--------------|---------------|------|-------|-------|-------|-------|-------|-------|--|--|--|
| 1 1044           | i (deb | [ <b>/</b> ] | 150           | 200  | 300   | 405   | 505   | 605   | 705   | 805   |  |  |  |
|                  |        | Vmin         | 162           | 360  | 540   | 720   | 900   | 1080  | 1260  | 1440  |  |  |  |
|                  | 150    | Vnom         | 972           | 2160 | 3240  | 4320  | 5400  | 6480  | 7560  | 8640  |  |  |  |
|                  | 000    | Vmin         | 216           | 288  | 432   | 583   | 727   | 871   | 1015  | 1159  |  |  |  |
|                  | 200    | Vnom         | 1296          | 1730 | 2600  | 3460  | 4320  | 5190  | 6050  | 6920  |  |  |  |
|                  |        | Vmin         | 270           | 360  | 540   | 720   | 900   | 1080  | 1260  | 1440  |  |  |  |
|                  | 250    | Vnom         | 1620          | 2160 | 3240  | 4320  | 5400  | 6480  | 7560  | 8640  |  |  |  |
|                  |        | Vmin         | 324           | 440  | 650   | 870   | 1080  | 1300  | 1520  | 1730  |  |  |  |
|                  | 300    | Vnom         | 1944          | 2600 | 3890  | 5190  | 6480  | 7780  | 9080  | 10370 |  |  |  |
|                  |        | Vmin         | 378           | 510  | 760   | 1010  | 1260  | 1520  | 1770  | 2020  |  |  |  |
|                  | 350    | Vnom         | 2268          | 3030 | 4540  | 6050  | 7560  | 9080  | 10590 | 12100 |  |  |  |
|                  |        | Vmin         | 432           | 580  | 870   | 1160  | 1440  | 1730  | 2020  | 2310  |  |  |  |
|                  | 400    | Vnom         | 2592          | 3460 | 5190  | 6920  | 8640  | 10370 | 12100 | 13830 |  |  |  |
| W Width [mm]     | 450    | Vmin         | 486           | 650  | 980   | 1300  | 1620  | 1950  | 2270  | 2600  |  |  |  |
| =                |        | Vnom         | 2916          | 3890 | 5840  | 7780  | 9720  | 11670 | 13610 | 15560 |  |  |  |
|                  | 500    | Vmin         | 540           | 720  | 1080  | 1440  | 1800  | 2160  | 2520  | 2880  |  |  |  |
| 主                |        | Vnom         | 3240          | 4320 | 6480  | 8640  | 10800 | 12960 | 15120 | 17000 |  |  |  |
| ).<br>           |        | Vmin         | 594           | 800  | 1190  | 1590  | 1980  | 2380  | 2780  | 3170  |  |  |  |
| <b> </b>         | 550    | Vnom         | 3564          | 4760 | 7130  | 9510  | 11880 | 14260 | 16640 | 73010 |  |  |  |
| >                |        | Vmin         | 648           | 870  | 1300  | 1730  | 2160  | 2600  | 3030  | 3460  |  |  |  |
|                  | 600    | Vnom         | 3888          | 5190 | 7780  | 10370 | 12960 | 15560 | 17000 | 17000 |  |  |  |
|                  |        | Vmin         | 702           | 940  | 1410  | 1880  | 2340  | 2810  | 3280  | 3750  |  |  |  |
|                  | 650    | Vnom         | 4212          | 5620 | 8430  | 11240 | 14040 | 16850 | 19660 | 22470 |  |  |  |
|                  | 700    | Vmin         | 756           | 1010 | 1520  | 2020  | 2520  | 3030  | 3530  | 4040  |  |  |  |
|                  | 700    | Vnom         | 4536          | 6050 | 9080  | 12100 | 15120 | 17000 | 17000 | 17000 |  |  |  |
|                  | 750    | Vmin         | 810           | 1080 | 1620  | 2160  | 2700  | 3240  | 3780  | 4320  |  |  |  |
|                  | 750    | Vnom         | 4860          | 6480 | 9720  | 12960 | 16200 | 17000 | 17000 | 17000 |  |  |  |
|                  |        | Vmin         | 864           | 1160 | 1730  | 2310  | 2880  | 3460  | 4040  | 4610  |  |  |  |
|                  | 800    | Vnom         | 5184          | 6920 | 10370 | 13830 | 17000 | 17000 | 17000 | 17000 |  |  |  |
|                  |        | Vmin         | 972           | 1300 | 1950  | 2600  | 3240  | 3890  | 4540  | 5190  |  |  |  |
|                  | 900    | Vnom         | 5832          | 7780 | 11670 | 15560 | 17000 | 17000 | 17000 | 17000 |  |  |  |
|                  | 1000   | Vmin         | 1080          | 1440 | 2160  | 2880  | 3600  | 4320  | 5040  | 5760  |  |  |  |
|                  | 1000   | Vnom         | 6480          | 8640 | 12960 | 17000 | 17000 | 17000 | 17000 | 17000 |  |  |  |

**Note:** Vmin air speed of 2 m / s, 12 V nom values of air velocity m / s refers to the nominal flow is to pass through a channel according to product size.

Vmax and Vmin values should be determined in the flow rate selection. The Vmin value can be selected between 0% and 100% of the Vnom value. The Vmax value can be chosen between 40% and 80% of the Vnom value. When Vmin and Vmax values are selected the same, the product will operate in constant flow (CAV) mode.

#### **VELOCITY & MINIMUM PRESSURE DROP**

The minimum pressure loss is given in Table 3 when the VAV fully open.

Table 3. Velocity & Minimum Static Pressure Drop Data

| Air Velocity<br>[m/s] | Pressure Drop<br>[Pa] |
|-----------------------|-----------------------|
| 2                     | 5                     |
| 4                     | 9                     |
| 6                     | 14                    |
| 8                     | 23                    |
| 10                    | 38                    |
| 12                    | 61                    |

**Example:** 400X405 ACA, minimum pressure loss at 1200 m<sup>3</sup> / h flow rate: Flow area = 0.162 m<sup>2</sup>

Flow rate =  $3.53 \, \text{m} / \text{s}$ 

Minimum pressure drop at the desired flow = 8 Pa

#### **FLOW AREA**

Table 4. Flow Area by Product Dimensions

|             | Flow Area |       | H Height (mm) |       |       |       |       |       |       |  |  |  |  |
|-------------|-----------|-------|---------------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| [m²]        |           | 150   | 200           | 300   | 405   | 505   | 605   | 705   | 805   |  |  |  |  |
|             | 150       | 0,023 | 0,030         | 0,045 | 0,061 | 0,076 | 0,091 | 0,106 | 0,121 |  |  |  |  |
|             | 200       | 0,030 | 0,040         | 0,060 | 0,081 | 0,101 | 0,121 | 0,141 | 0,161 |  |  |  |  |
|             | 250       | 0,038 | 0,050         | 0,075 | 0,101 | 0,126 | 0,151 | 0,176 | 0,201 |  |  |  |  |
|             | 300       | 0,045 | 0,060         | 0,090 | 0,122 | 0,152 | 0,182 | 0,212 | 0,242 |  |  |  |  |
| _           | 350       | 0,053 | 0,070         | 0,105 | 0,142 | 0,177 | 0,212 | 0,247 | 0,282 |  |  |  |  |
| [mm]        | 400       | 0,060 | 0,080         | 0,120 | 0,162 | 0,202 | 0,242 | 0,282 | 0,322 |  |  |  |  |
| <u>.</u> E. | 450       | 0,068 | 0,090         | 0,135 | 0,182 | 0,277 | 0,272 | 0,317 | 0,362 |  |  |  |  |
| ا<br>با     | 500       | 0,075 | 0,100         | 0,150 | 0,203 | 0,253 | 0,303 | 0,353 | 0,403 |  |  |  |  |
| w Width     | 550       | 0,083 | 0,110         | 0,165 | 0,223 | 0,278 | 0,333 | 0,388 | 0,443 |  |  |  |  |
| ≥           | 600       | 0,090 | 0,120         | 0,180 | 0,243 | 0,303 | 0,363 | 0,423 | 0,483 |  |  |  |  |
| ≥           | 650       | 0,098 | 0,130         | 0,195 | 0,263 | 0,328 | 0,393 | 0,458 | 0,523 |  |  |  |  |
|             | 700       | 0,105 | 0,140         | 0,210 | 0,284 | 0,354 | 0,424 | 0,494 | 0,564 |  |  |  |  |
|             | 750       | 0,113 | 0,150         | 0,225 | 0,304 | 0,379 | 0,454 | 0,529 | 0,604 |  |  |  |  |
|             | 800       | 0,120 | 0,160         | 0,240 | 0,324 | 0,404 | 0,484 | 0,564 | 0,644 |  |  |  |  |
|             | 900       | 0,135 | 0,180         | 0,270 | 0,365 | 0,455 | 0,545 | 0,635 | 0,725 |  |  |  |  |
|             | 1000      | 0,150 | 0,200         | 0,300 | 0,405 | 0,505 | 0,605 | 0,705 | 0,805 |  |  |  |  |

#### **SOUND LEVEL DATA**

Table 5. Sound Level Data

| 150 Pa Static<br>Pressure difference | Flow Sound<br>Level | Noise Emitted from<br>the Case [dB(A)] |           |  |  |
|--------------------------------------|---------------------|----------------------------------------|-----------|--|--|
| Air Velocity [m/s]                   | [dB(A)]             | Uninsulated                            | Insulated |  |  |
| 2                                    | 46                  | 35                                     | 22        |  |  |
| 4                                    | 46                  | 39                                     | 29        |  |  |
| 6                                    | 47                  | 42                                     | 33        |  |  |
| 8                                    | 47                  | 44                                     | 36        |  |  |
| 10                                   | 47                  | 46                                     | 39        |  |  |

## **INSTALLATION**

It is installed by considering the air flow direction arrow on the ACA. For the differential pressure sensors to function correctly, the following distance rules must be observed. For duct connections such as elbows, branches, tee connections and reductions must conform to EN 1505 design.

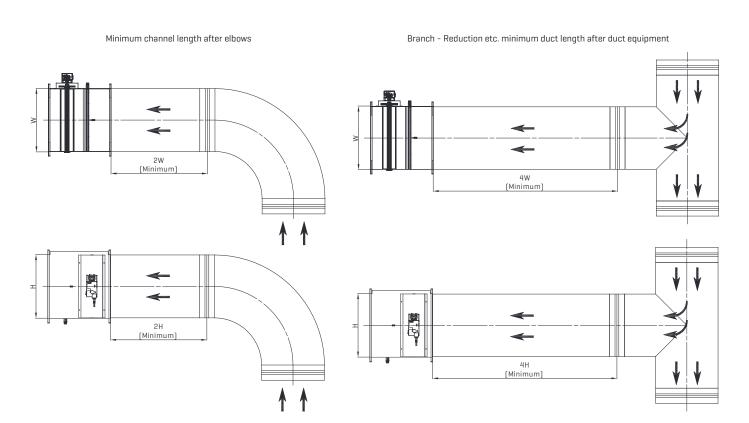



Table 6. Minimum Duct Length Table

| Connection                                                         | Minimum Duct Length |
|--------------------------------------------------------------------|---------------------|
| Elbow                                                              | 2 x W/H             |
| Other duct equipment [T connection, reduction etc. duct equipment] | 4 × W/H             |
| Fire Damper                                                        | 4 x W/H             |
| Silencer                                                           | 4 x W/H             |

#### **VAV COMPACT CONTROLLERS**

VAV controllers are equipped as standard with actuators with analog setpoint and feedback signals in DC 2 V... 10 V or DC 0 V... 10 V mode.

MP-BUS, MODBUS and BACnet communication options are available in the control devices.

Control devices are calibrated and adjusted at the factory to the desired flow rate and Vmin Vmax value with ZTH-EU and Belimo PC Tool.

**Table 7.** VAV Controller Information Table

| Order Code | Belimo Motor Code                       | Flow Volume<br>Adjustment<br>Analog Input | Flow Volume<br>Adjustment<br>via BUS Com. | Controller Parameters Setup                     | Hard<br>Wired<br>Override            | Feedback<br>Signal Type                     | Feedback<br>Values <sup>[2]</sup>              | BUS Communicated<br>Variables                                                                                                          | Power<br>Supply     | Operating<br>Temperature<br>[°C] |
|------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------|--------------------------------------|---------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|
| S71<br>S70 | LMV-D3-MP (5 Nm)<br>NMV-D3-MP (10 Nm)   |                                           | MP-BUS                                    | ZTH-EU,<br>PC TOOL,<br>NFC (Android),<br>MP-BUS |                                      | DC 010 V,<br>DC 210 V,<br>MP-BUS            |                                                | Read/Write: Setpoint, Vmin, Vmax, Open, Close  Read: Actual volume, Damper angle, Actual pressure, Serial number, Fault/Alarm messages |                     |                                  |
| S72        | LMV-D3-MF (5 Nm)                        | DC 010 V,                                 | _                                         | ZTH-EU,<br>PC TOOL                              | Open <sup>(1)</sup> Close Vmin, Vmax | DC 010 V,                                   | Actual volume.  Damper angle, Actual  pressure | _                                                                                                                                      | AC 24 V,<br>DC 24 V | 0+50 °C                          |
| S71<br>S86 | LMV-D3-MOD (5 Nm)<br>NMV-D3-MOD (10 Nm) |                                           | MODBUS,<br>BACnet,<br>MP-BUS              | ZTH-EU,<br>PC TOOL,<br>MODBUS,<br>MP-BUS        | viilli, viilda                       | DC 010 V,<br>DC 210 V,<br>MODBUS,<br>MP-BUS |                                                | Read/Write: Setpoint, Vmin, Vmax, Open, Close  Read: Actual volume, Damper angle, Actual pressure, Serial number, Fault/Alarm messages |                     |                                  |

#### Note:

- 1) Available on AC 24 supply only.
- 2) Output is analog. Therefore, only one feedback value can be selected.
- 3) Control units are not provided as accessories.

## **VAV COMPACT CONTROL DEVICE ELECTRIC CONNECTION**

# **S72: LMV-D3-MF (STANDART PRDUCTION)**



| No. | Wire<br>Colour | Designation Function |                                             |  |
|-----|----------------|----------------------|---------------------------------------------|--|
| 1   | Black          | Τ-                   | AC/DC 2/LV Cupply                           |  |
| 2   | Red            | ~+                   | AC/DC 24 V Supply                           |  |
| 3   | White          | ٩Y                   | Reference Signal                            |  |
| 5   | Orange         | ►U                   | -Actual Value Signal<br>-Tool Communication |  |

S71: LMV-D3-MP & S70: NMV-03-MP



| No. | Wire<br>Colour | Designation | Function                                    |  |  |  |  |
|-----|----------------|-------------|---------------------------------------------|--|--|--|--|
| 1   | Black          | Ι-          | ΛC/DC 2/LV Supply                           |  |  |  |  |
| 2   | Red            | ~+          | - AC/DC 24 V Supply                         |  |  |  |  |
| 3   | White          | ٩Y          | Reference Signal                            |  |  |  |  |
| 5   | Orange         | ٠           | -Actual Value Signal<br>-Tool Communication |  |  |  |  |

## **S73: LMV-D3-MOD & S86: NMV-D3-MOD**



| No. | Wire<br>Colour | Designation | Function                |  |  |
|-----|----------------|-------------|-------------------------|--|--|
| 1   | Black          | T-          | AC/DC 2/LV Cupply       |  |  |
| 2   | Red            | ~+          | AC/DC 24 V Supply       |  |  |
| 3   |                |             |                         |  |  |
| 5   | Orange         | ►MFT        | MP Connection           |  |  |
| 6   | Pink           | D-          | BACnet / Modbus (RS485) |  |  |
| 7   | Gray           | D+          | DACHEL / Moubus [R3403] |  |  |

## **OPTIONAL ADAPTIVE VAV CONTROL SYSTEM**

If desired, a product option is available with a fast response VAV servomotor, static pressure sensor and control platform. It provides the adaptive control of the ambient air flow by providing an on-off speed control independent of the duct pressure in 2.5 seconds.

**Table 8.** VRP-M Regulator Information Table

| VRP-M Controller                 |                                                                                       |  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------|--|--|--|
| Nominal Voltage                  | 24 V AC, 50/60 Hz<br>24 V DC                                                          |  |  |  |
| Power Supply                     | 1,1 W (Without Servomotor, with VFP-300)                                              |  |  |  |
| Transmission Signal              | Input impedance > 200 kΩ<br>010 / 210 V DC or<br>020 / 420 mA (with 500 Ω resistance) |  |  |  |
| Actual Value                     | 010 / 210 DC, maximum 5 mA                                                            |  |  |  |
| Case Insulation Class            | IP 42                                                                                 |  |  |  |
| Operating Ambient<br>Temperature | 0+50°C                                                                                |  |  |  |
| Electromagnetic Compatibility    | CE 2004/108/EC                                                                        |  |  |  |
| Operating Humidity               | 595% Relative Humidity                                                                |  |  |  |



VRP-M Regulator

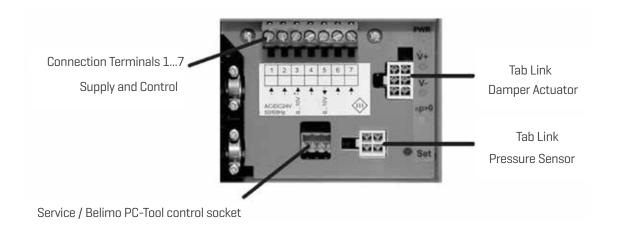
**Table 9.** VFP-300 Static Differential Pressure Transducer Information Table

| VFP-300 Static Differential Pressure Sensor |                      |  |  |  |
|---------------------------------------------|----------------------|--|--|--|
| Rated Voltage 15 V DC (with VRP-M Regulator |                      |  |  |  |
| Measuring Range                             | 0300 Pa              |  |  |  |
| Output Signal                               | 010 V DC             |  |  |  |
| Pressure Connection                         | Inner Diameter 46 mm |  |  |  |
| Electrical Insulation Class                 | III (Safe Voltage)   |  |  |  |
| Case Insulation Class                       | IP42                 |  |  |  |
| Operating Ambient<br>Temperature            | 0+50°C               |  |  |  |
| Electromagnetic Compatibility               | CE 2004/108/EC       |  |  |  |

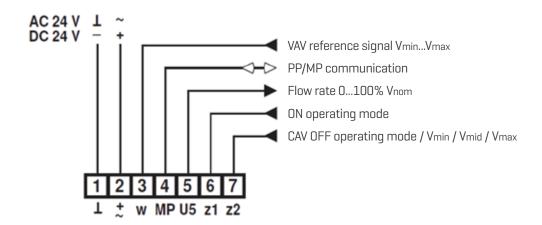


VRP-300 Static Differential Pressure Transducer

**Table 10.** LMQ24A-SRV-ST Servomotor Information Table


| LMQ24A-SRV-ST Servo Motor     |                    |  |  |  |
|-------------------------------|--------------------|--|--|--|
| Rated Voltage                 | 24 V AC, 50/60 Hz  |  |  |  |
| (with VRP-M Regulator)        | 24 V DC            |  |  |  |
| Power Consumption             | 12 W               |  |  |  |
| Electrical Insulation Class   | III (Safe Voltage) |  |  |  |
| <b>Torque</b> 4 Nm            |                    |  |  |  |
| Velocity                      | 2,5 s / 90°        |  |  |  |
| Case Insulation Class         | IP54               |  |  |  |
| Operating Ambient Temperature | 0+50°C             |  |  |  |
| Electromagnetic Compatibility | CE 89/336/EEC      |  |  |  |
| Operating Humidity            | 595% RH            |  |  |  |
| Maintenance                   | Maintenance Free   |  |  |  |




LMQ24A-SRV-ST Servo Motor NMQ24A-SRV-ST Servo Motor

## ADAPTIVE VAV CONTROL SYSTEM COMMISSIONING

## **PANEL**



## PANEL CONNECTION TERMINAL FUNCTIONS



#### **PRODUCT SELECTION**

The maximum air flow rate of the space is known as Vmax. Vmax volume flow rate can be selected between maximum 80% and 40% of the nominal volume flow rate of the damper. Vmin flow rate can be selected as 30% of the nominal air flow rate of the damper. In 2-10V controller selection, the damper operates at a flow rate of Vmin at 2V and below. Between 0-10V, the damper has the feature of completely closing. If Vmax and Vmin are selected at the same value, the damper will operate in CAV [constant flow rate setting] mode.

**Example:** The total air flow of a building is determined as 25000 m<sup>3</sup> / h. 5 VAV devices for the room will be installed in the supply channel. Select your product.

The maximum supply flow rate for each VAV to be used is calculated as  $25000/5 = 5000 \, \text{m}^3$  / h. Since Vmax = 80% Vnom and Vmax =  $5000 \, \text{m}^3$  / h, it is calculated as Vnom =  $6250 \, \text{m}^3$  / h from the formula. According to the values of Vmin and Vmax, the appropriate size is selected from the Table 2. Quick Selection table as Vnom =  $6480 \, \text{m}^3$  / h and duct dimensions  $500 \, \text{mm} \times 300 \, \text{mm}$ .

Flow area according to the selected throat size is found as 0.15 m<sup>2</sup> according to Table 4. Flow Area by Product Dimensions table.

Minimum pressure losses from the flow area in the selected Vmin and Vmax ranges:

 $Vmax = 5000 \text{ m}^3/h$ , Air velocity is 5000/0.15/3600 = 9.26 m/s

If  $Vmin = 30\% \ Vnom = 1875 \ m^3 / h$  then minimum air velocity =  $1875 \ / \ 0.15 \ / \ 3600 = 3.47 \ m / s$ 

Approximately the minimum pressure loss is 31 Pa for 9.26 m / s.

Sound values are checked from Table 5. Sound Data Table. Accordingly, the flow noise that will occur in the device at 150 Pa static pressure difference value is 46 dB [A], and the case radiated noise is 36 dB [A]. If additional sound insulation is required in the VAV device, then the case radiated noise is 23 dB [A].

#### **Motor Selection**

For commissioning connection information, see the "Vav Compact Controllers Commissioning" section. If the system is required to be fast reactive under special conditions, the adaptive vav control system is preferred.

## **PRODUCT ORDER CODES**

#### ACA. A > < B > < C > 30.< D > < E > < F >

| Α | Material        |                                     |  |
|---|-----------------|-------------------------------------|--|
|   | GAL             | Galvanized                          |  |
|   | PAS             | AISI 304 Stainless Steel            |  |
| В | Flow Type       |                                     |  |
|   | E               | Exhaust Side                        |  |
|   | U               | Supply Side                         |  |
| C | Controller      |                                     |  |
|   | S70             | NMV-D3-MP                           |  |
|   | S71             | LMV-D3-MP                           |  |
|   | S72             | LMV-D3-MF                           |  |
|   | S73             | LMV-D3-MOD                          |  |
|   | S86             | NMV-D3-MOD                          |  |
|   | S97             | Adaptive VAV Control System         |  |
| D | Insulation      |                                     |  |
|   | 00              | Uninsulated                         |  |
|   | 04              | Acoustic Insulation                 |  |
| Е | Width (W) (mm)  |                                     |  |
|   | 0000            | You can look at the standard sizes. |  |
| F | Height (H) (mm) |                                     |  |
|   | 0000            | You can look at the standard sizes. |  |

**Example;** ACA.GAL.E.S72.30.00.0400.0300

| NOTES                        |  |
|------------------------------|--|
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
| iklimlendirme   HVAC SYSTEMS |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |







#### Headquarter

iTOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TÜRKİYE Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44



Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, İstanbul/TÜRKİYE Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56













OSA Adjustable Blade Swirl Diffuser – Type 1



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in Istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.



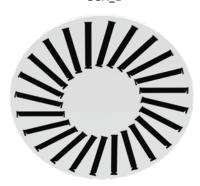








- SOSA Adjustable Blade Swirl Diffuser Type 1 effectively keeps the comfort of the room at the ideal level with the swirl effect it brings to the air. They can be used in distributor and collector systems.
- There are air supply options between 50 and 4000 m³/h air flow rates depending on the product dimensions..
- In applications with a temperature difference of ±14°C in heating and cooling, blade positions can be adjusted in accordance with ambient conditions..
- The throw geometry remains stable regardless of the desired air flow and temperature difference in space ventilation..
- The air passage pattern is designed to create low pressure drop, low sound level and effective throw geometry. There are bladess on the patterns that allow to adjust the throw directions.
- © Compatible with ready-made aluminum suspended ceiling systems and metal suspended ceiling systems.
- € It can be produced in square or circular form according to architectural requirements and has a decorative structure.
- € It has TSE ISO EN 14644, DIN 1946/4, DIN 24194 and DIN 25414 hygiene quality standards.


#### **PRODUCT OPTIONS**

Two product options are available. In both options, the blades are arranged in a circular form on the case.

OSA\_P



OSA D



#### **MATERIAL**

- Standard Galvanized manufacturing, optional stainless manufacturing.
- There are ABS plastic blades that provide air direction inside the case.

#### **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard.
- Optional

■ Tile

- Different RAL color code
- Paintless production

#### **INSTALLATION**

## Standard Installation Types

Screwed (OSA\_P)

♥ With Clip-in (OSA P)

€ Center Bolted (OSA\_P ve OSA\_D)

(OSA\_P)



## **STANDARD SIZES**

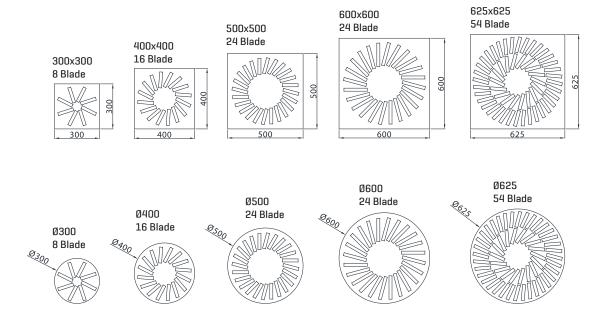
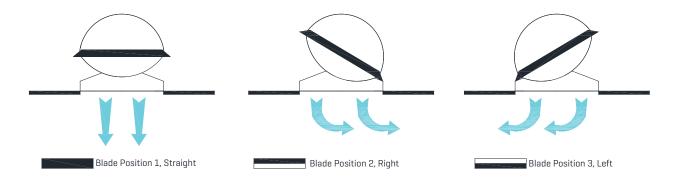
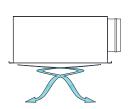
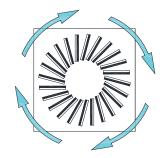



Table 1. Standard Sizes


| Product Series              | Product Dimension [mm] | Number of Wings |
|-----------------------------|------------------------|-----------------|
|                             | 300x300                | 8               |
|                             | 400x400                | 16              |
| OSA_P                       | 500x500                | 24              |
| Square OSA Swirl Diffuser   | 600x600                | 24              |
|                             | 625X625                | 54              |
|                             | 825x825                | 72              |
|                             | Ø300                   | 8               |
| OSA D                       | Ø400                   | 16              |
| Circular OSA Swirl Diffuser | Ø500                   | 24              |
| Circular USA Swiri Dilluser | Ø600                   | 24              |
|                             | Ø625                   | 54              |

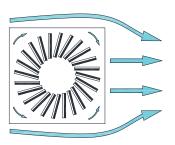



800x800 72 Blade

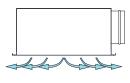

## **BLADE ADJUSTMENTS FOR SPECIAL AIR THROW**

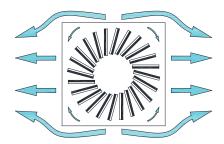
OSA Swirl diffuser has the ability to throw air that will meet the desired comfort conditions. Each blade can be adjusted separately.




Recommended blade position for areas where high performance spreading and penetration properties are required:







Suggested blade position to ensure one-way air supply from the ceiling in the room:





Suggested blade position to provide air supply from ceiling in the room in two directions:







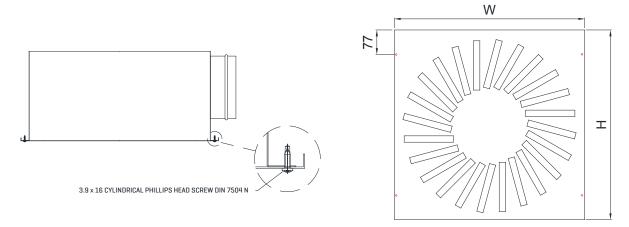
## **PERFORMANCE DATA**

**Table 2.** Performance Data

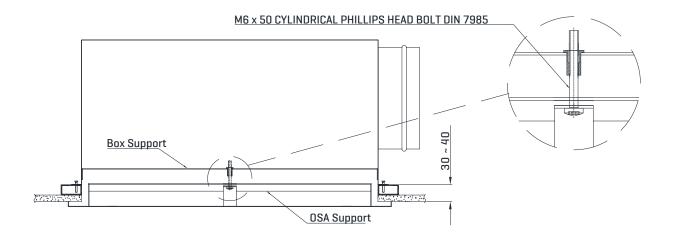
| Sizes [mm]                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    |                    |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|                                                                                                 | Ø300 / 300x300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ø400 / 400x400     | Ø500 / 500×500     | Ø600 / 600x600     | Ø625 / 625x625     | 825x825            |
|                                                                                                 | 8 Blade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16 Blade           | 24 Blade           | 24 Blade           | 54 Blade           | 72 Blade           |
| Pressure Drop [Pa]                                                                              | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1                 | <1                 | <1                 | <1                 | <1                 |
|                                                                                                 | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <15                | <15                | <15                | <15                | <15                |
|                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                  | <1                 | <1                 | <1                 | <1                 |
| <del></del>                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <1                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <15                |
| L 1/2                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <1                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <1                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <15                |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <1                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    |                    |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <1                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <15                |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <1                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <1                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <15                |
| Throw Distance [m]                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                    |                    |                    | <1                 |
| Pressure Drop [Pa]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 10                 | 10                 | 2                  | <1                 |
| Sound Pressure Level [db(A)]                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32                 | 23                 | 23                 | <15                | <15                |
| Throw Distance [m]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                  | 2                  | 2                  | <1                 | <1                 |
| Pressure Drop [Pa]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32                 | 16                 | 16                 | 3                  | 1                  |
| Sound Pressure Level [db[A]]                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39                 | 30                 | 30                 | <15                | <15                |
| L 1/2                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                  |                    |                    | 1                  | <1                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 3                  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | <15                |
|                                                                                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                    |                    |                    | 1                  |
| <del></del>                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U                  |                    |                    |                    | 6                  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    |                    |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 20                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 2                  |
| 1 2 2                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 9                  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 26                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 7                  | 7                  |                    | 2                  |
| Pressure Drop [Pa]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    | 23                 | 13                 |
| Sound Pressure Level [db(A)]                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    | 40                 | 32                 |
| Throw Distance [m]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    | 3                  | 2                  |
| Pressure Drop [Pa]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    | 31                 | 17                 |
| Sound Pressure Level [db[A]]                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    | 44                 | 37                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    | 4                  | 3                  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    | 41                 | 23                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 41                 |
| - 17                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 3                  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 29                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    |                    |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 3                  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    |                    |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 36                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 48                 |
| <del></del>                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 4                  |
| Pressure Drop [Pa]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 43                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 50                 |
| Throw Distance [m]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    | 6                  | 4                  |
| Pressure Drop [Pa]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    | 92                 | 51                 |
| Sound Pressure Level [db(A)]                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    | 61                 | 53                 |
| Throw Distance [m]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    | 6                  | 5                  |
| Pressure Drop [Pa]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 60                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 56                 |
| Throw Distance [m]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 5                  |
| Pressure Drop [Pa]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 70                 |
| i rossuic biop [Fd]                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 58                 |
| Sound Proceure Lovel Edb(A)1                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | JU                 |
| Sound Pressure Level [db(A)]                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | Е                  |
| Throw Distance [m]                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 5                  |
| Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |                    | 5<br>92<br>62      |
|                                                                                                 | Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] Pressure Drop [Pa] Sound Pressure Level [db(A)] Throw Distance [m] | Pressure Drop [Pa] | Pressure Drop [Pa] | Pressure Drop [Pa] | Pressure Drop [Pa] | Pressure Drop [Pa] |

- The data is obtained when the blades are in the flat position, the heating mode temperature difference is 8K.
- Throw distance: It is the vertical distance of the air in the comfort zone leaving the air diffuser equipment at a speed of 0.25 m/s.

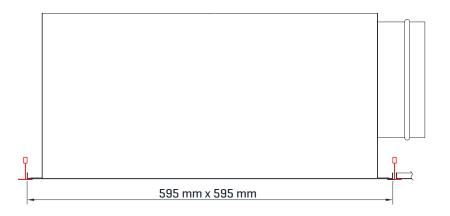



## **THROW DISTANCE CORRECTION TABLE**

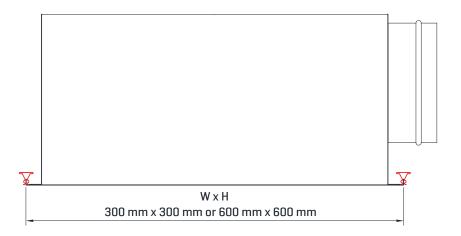
**Table 3.** Throw Distance Correction Table


| Heating Mode (ΔT)      | 4    | 6    | 8    | 10   | 12   |
|------------------------|------|------|------|------|------|
| Throw Range Multiplier | 1.07 | 1.02 | 1    | 0.90 | 0.83 |
| Cooling Mode (AT)      | 4    | 6    | 8    | 10   | 12   |
| Throw Range Multiplier | 1.31 | 1.36 | 1.42 | 1.48 | 1.54 |

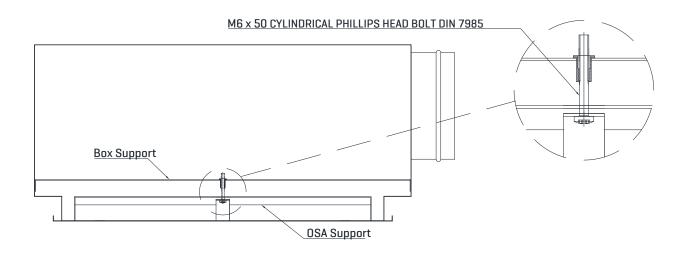
## **INSTALLATION TYPES**


## **OSA\_P SCREW INSTALLATION**




## OSA\_P MIDDLE BOLT INSTALLATION




## **OSA\_P TILE INSTALLATION**



## OSA\_P CLIP-IN INSTALLATION



## ${\tt OSA\_D\:MIDDLE\:BOLT\:INSTALLATION}$



# **BOX SIZES**

Standard box dimensions for OSA\_P are given below.

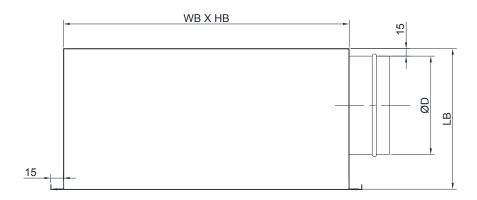



Table 4. Standard Box Sizes for OSA\_P

| OSA_P | Box Throat Diameter<br>(ØD) [mm] | Box Height<br>(LB) [mm] | Box Width (WB) [mm] | Box Length<br>(HB) [mm] |
|-------|----------------------------------|-------------------------|---------------------|-------------------------|
| 300   | 200                              | 280                     | 270                 | 270                     |
| 400   | 200                              | 280                     | 370                 | 370                     |
| 500   | 250                              | 330                     | 470                 | 470                     |
| 600   | 300                              | 380                     | 570                 | 570                     |
| 625   | 300                              | 380                     | 595                 | 595                     |
| 825   | 350                              | 430                     | 795                 | 795                     |

Standard box dimensions for OSA\_D are given below.

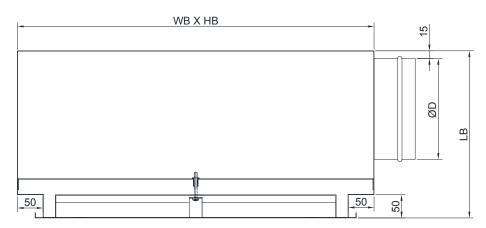



Table 5. Standard Box Sizes for OSA\_D

| OSA_D | Box Throat Diameter<br>(ØD) [mm] |     | Box Width<br>(WB) [mm] | Box Length<br>(HB) [mm] |
|-------|----------------------------------|-----|------------------------|-------------------------|
| 300   | 200                              | 330 | 400                    | 400                     |
| 400   | 200                              | 330 | 500                    | 500                     |
| 500   | 250                              | 380 | 600                    | 600                     |
| 600   | 300                              | 430 | 700                    | 700                     |
| 625   | 300                              | 430 | 725                    | 725                     |

#### **PRODUCT SELECTION**

**Example:** The air flow rate distributed in the space is 4000 m<sup>3</sup>/h and the cooling temperature difference is determined as -8 K. 10 prismatic swirl diffusers will be used. Make your product selection.

Solution: Supply flow rate for a diffuser 4000/10 = 400 m<sup>3</sup>/h

From the performance data table (Table 2), the product corresponding to the appropriate pressure loss, sound pressure level and throw distance at 400m³/h air flow is selected.

For example, the pressure loss that will occur in a  $400 \text{ mm} \times 400 \text{ mm}$  product will be 20 Pa, the sound pressure level will be 32 dB[A] and the throw distance will be 5 m.

#### **Throw Distance Correction Chart**

In the previous example, the throw distance was found to be 5 m for the heating mode 8K. For cooling mode -8 K, refer to the Throw Distance Correction Table (Table 3). The multiplier is 1.42.

Corrected throw distance =  $5 \text{ m} \times 1,42 = 7.1 \text{ m}$ 

## OSA\_P ORDER CODE

You can place your prismatic swirl diffuser orders according to the coding format below.

| Α | Raw Material Type |                             |  |
|---|-------------------|-----------------------------|--|
|   | GAL               | Galvanized                  |  |
|   | PAS               | Stainless Steel             |  |
| В | Installation Type |                             |  |
|   | VD                | Screwed                     |  |
|   | GC                | Center Bolted               |  |
|   | KR                | Tile                        |  |
|   | KL                | Clip-in                     |  |
| C | Size [mm]         |                             |  |
|   | 300-08            | 300 x 300 - 8 blade         |  |
|   | 400-16            | 400 x 400 - 16 blade        |  |
|   | 500-24            | 500 x 500 - 24 blade        |  |
|   | 600-24            | 600 x 600 - 24 blade        |  |
|   | 625-54            | 625 x 625 - 54 blade        |  |
|   | 825-72            | 825 x 825 - 72 blade        |  |
| D | Paint             |                             |  |
|   | 00                | Unpainted                   |  |
|   | S1                | Standard Painted - RAL 9010 |  |
|   | S2                | Standard Painted - RAL 9016 |  |
|   | XX                | Special Painted             |  |

Sample Coding: OSA\_P.GAL.GC.600-24.XX

# OSA\_D ORDER CODE

You can place your circular swirl diffuser orders according to the coding format below.

| Α | Raw Material Type |                             |
|---|-------------------|-----------------------------|
|   | GAL               | Galvanized                  |
|   | PAS               | Stainless Steel             |
| В | Installation Type |                             |
|   | GC                | Center Bolted               |
| С | Size [mm]         |                             |
|   | 300-08            | 300 mm - 8 blade            |
|   | 400-16            | 400 mm - 16 blade           |
|   | 500-24            | 500 mm - 24 blade           |
|   | 600-24            | 600 mm - 24 blade           |
|   | 625-54            | 625 mm - 54 blade           |
| D | Paint             |                             |
|   | 00                | Unpainted                   |
|   | S1                | Standard Painted - RAL 9010 |
|   | S2                | Standard Painted - RAL 9016 |
|   | XX                | Special Painted             |

**Sample Coding:** OSA\_D.GAL.GC.600-24.S1

| İKLİMLENDİRME   HVAC SYSTEMS |  |
|------------------------------|--|
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56

info@doguhvac.com | www.doguhvac.com















# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45,000 sqm. in which 25,000 sqm. indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 3 sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.

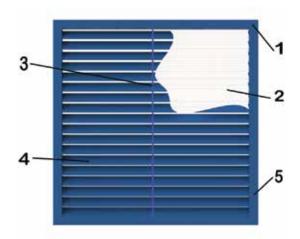













## **DPE - EXTERNAL LOUVRE**

- © DPE External Air Louvre is used to provide fresh air intake in ventilation systems and to prevent rain, snow, foreign matter and living creatures from entering the system at exhaust air discharge points.
- lt can be produced in one piece from 100 mm x 100 mm to 2300 mm x 2100 mm. Group assembly is made in higher sizes.
- © Casing and blades are produced from aluminum profile.
- € There is a standard 10 mm x 10 mm bird wire in the louver throat.
- Painted with RAL 9010 electrostatic powder paint as standard. It can also be painted in different RAL codes or coated with matte aluminum eloxal upon the request of the customer. It has high corrosion resistance.

## **MATERIAL**

**DPE** – The casing and blades of the **External Air Louvre** are produced from aluminum profile. There is 10 mm x 10 mm bird wire made of galvanized steel as standard in the shutter throat. Production is also made wirelessly in line with the customer preference.



- 1. Frame
- 2. 10 mm x 10 mm bird wire
- 3. W>1000' den itibaren kullanılan dikme
- 4. Louver Blade
- 5. Mounting holes

## **SELECTION PARAMETERS**

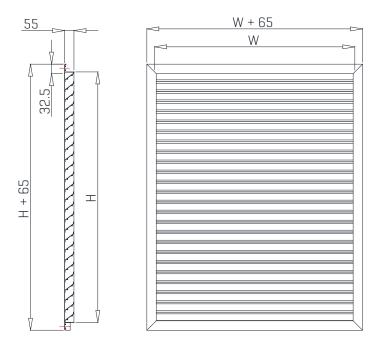
Table 1. Effective Area

| Effe           | ctive | H (Height) (mm) |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|----------------|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Area           | a[m²] | 100             | 200   | 300   | 400   | 500   | 600   | 700   | 800   | 900   | 1000  | 1100  | 1300  | 1500  | 1700  | 1900  | 2100  |
|                | 100   | 0.004           | 0.013 | 0.017 | 0.026 | 0.034 | 0.043 | 0.051 | 0.055 | 0.064 | 0.072 | 0.081 | 0.098 | 0.111 | 0.128 | 0.141 | 0.158 |
|                | 200   | 0.009           | 0.026 | 0.034 | 0.051 | 0.068 | 0.085 | 0.102 | 0.111 | 0.128 | 0.145 | 0.162 | 0.196 | 0.222 | 0.256 | 0.281 | 0.315 |
|                | 300   | 0.013           | 0.038 | 0.051 | 0.077 | 0.102 | 0.128 | 0.153 | 0.166 | 0.192 | 0.217 | 0.243 | 0.294 | 0.332 | 0.383 | 0.422 | 0.473 |
|                | 400   | 0.017           | 0.051 | 0.068 | 0.102 | 0.136 | 0.170 | 0.204 | 0.222 | 0.256 | 0.290 | 0.324 | 0.392 | 0.443 | 0.511 | 0.562 | 0.630 |
|                | 500   | 0.021           | 0.064 | 0.085 | 0.128 | 0.170 | 0.213 | 0.256 | 0.277 | 0.320 | 0.362 | 0.405 | 0.490 | 0.554 | 0.639 | 0.703 | 0.788 |
|                | 600   | 0.026           | 0.077 | 0.102 | 0.153 | 0.204 | 0.256 | 0.307 | 0.332 | 0.383 | 0.435 | 0.486 | 0.588 | 0.665 | 0.767 | 0.843 | 0.946 |
|                | 700   | 0.030           | 0.089 | 0.119 | 0.179 | 0.239 | 0.298 | 0.358 | 0.388 | 0.447 | 0.507 | 0.567 | 0.686 | 0.775 | 0.895 | 0.984 | 1.103 |
|                | 800   | 0.034           | 0.102 | 0.136 | 0.204 | 0.273 | 0.341 | 0.409 | 0.443 | 0.511 | 0.579 | 0.648 | 0.784 | 0.886 | 1.022 | 1.125 | 1.261 |
|                | 900   | 0.038           | 0.115 | 0.153 | 0.230 | 0.307 | 0.383 | 0.460 | 0.498 | 0.575 | 0.652 | 0.728 | 0.882 | 0.997 | 1.150 | 1.265 | 1.419 |
| Ē              | 1000  | 0.043           | 0.128 | 0.170 | 0.256 | 0.341 | 0.426 | 0.511 | 0.554 | 0.639 | 0.724 | 0.809 | 0.980 | 1.108 | 1.278 | 1.406 | 1.576 |
| W [Width] [mm] | 1100  | 0.047           | 0.141 | 0.187 | 0.281 | 0.375 | 0.469 | 0.562 | 0.609 | 0.703 | 0.797 | 0.890 | 1.078 | 1.218 | 1.406 | 1.546 | 1.734 |
| 护              | 1200  | 0.051           | 0.153 | 0.204 | 0.307 | 0.409 | 0.511 | 0.613 | 0.665 | 0.767 | 0.869 | 0.971 | 1.176 | 1.329 | 1.534 | 1.687 | 1.891 |
| Ž              | 1300  | 0.055           | 0.166 | 0.222 | 0.332 | 0.443 | 0.554 | 0.665 | 0.720 | 0.831 | 0.941 | 1.052 | 1.274 | 1.440 | 1.661 | 1.828 | 2.049 |
| <b>&gt;</b>    | 1400  | 0.060           | 0.179 | 0.239 | 0.358 | 0.477 | 0.596 | 0.716 | 0.775 | 0.895 | 1.014 | 1.133 | 1.372 | 1.551 | 1.789 | 1.968 | 2.207 |
|                | 1500  | 0.064           | 0.192 | 0.256 | 0.383 | 0.511 | 0.639 | 0.767 | 0.831 | 0.959 | 1.086 | 1.214 | 1.470 | 1.661 | 1.917 | 2.109 | 2.364 |
|                | 1600  | 0.068           | 0.204 | 0.273 | 0.409 | 0.545 | 0.682 | 0.818 | 0.886 | 1.022 | 1.159 | 1.295 | 1.568 | 1.772 | 2.045 | 2.249 | 2.522 |
|                | 1700  | 0.072           | 0.217 | 0.290 | 0.435 | 0.579 | 0.724 | 0.869 | 0.941 | 1.086 | 1.231 | 1.376 | 1.666 | 1.883 | 2.173 | 2.390 | 2.680 |
|                | 1800  | 0.077           | 0.230 | 0.307 | 0.460 | 0.613 | 0.767 | 0.920 | 0.997 | 1.150 | 1.304 | 1.457 | 1.764 | 1.994 | 2.300 | 2.530 | 2.837 |
|                | 1900  | 0.081           | 0.243 | 0.324 | 0.486 | 0.648 | 0.809 | 0.971 | 1.052 | 1.214 | 1.376 | 1.538 | 1.862 | 2.104 | 2.428 | 2.671 | 2.995 |
|                | 2000  | 0.085           | 0.256 | 0.341 | 0.511 | 0.682 | 0.852 | 1.022 | 1.108 | 1.278 | 1.448 | 1.619 | 1.960 | 2.215 | 2.556 | 2.812 | 3.152 |
|                | 2100  | 0.089           | 0.268 | 0.358 | 0.537 | 0.716 | 0.895 | 1.074 | 1.163 | 1.342 | 1.521 | 1.700 | 2.058 | 2.326 | 2.684 | 2.952 | 3.310 |
|                | 2200  | 0.094           | 0.281 | 0.375 | 0.562 | 0.750 | 0.937 | 1.125 | 1.218 | 1.406 | 1.593 | 1.781 | 2.156 | 2.437 | 2.812 | 3.093 | 3.468 |
|                | 2300  | 0.098           | 0.294 | 0.392 | 0.588 | 0.784 | 0.980 | 1.176 | 1.274 | 1.470 | 1.666 | 1.862 | 2.254 | 2.547 | 2.939 | 3.233 | 3.625 |

**Table 2.** Quick Selection According to 3 m/s Air Velocity

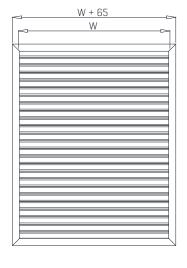
| m              | n³/h |      |      |      |      |      |       | Н     | (Heigh | it) (mm | 1)    |       |       |       |       |       |       |
|----------------|------|------|------|------|------|------|-------|-------|--------|---------|-------|-------|-------|-------|-------|-------|-------|
|                | . ,  | 100  | 200  | 300  | 400  | 500  | 600   | 700   | 800    | 900     | 1000  | 1100  | 1300  | 1500  | 1700  | 1900  | 2100  |
|                | 100  | 46   | 138  | 184  | 276  | 368  | 460   | 552   | 598    | 690     | 782   | 874   | 1058  | 1196  | 1380  | 1518  | 1702  |
|                | 200  | 92   | 276  | 368  | 552  | 736  | 920   | 1104  | 1196   | 1380    | 1564  | 1748  | 2116  | 2392  | 2760  | 3037  | 3405  |
|                | 300  | 138  | 414  | 552  | 828  | 1104 | 1380  | 1656  | 1794   | 2070    | 2346  | 2622  | 3175  | 3589  | 4141  | 4555  | 5107  |
|                | 400  | 184  | 552  | 736  | 1104 | 1472 | 1840  | 2208  | 2392   | 2760    | 3129  | 3497  | 4233  | 4785  | 5521  | 6073  | 6809  |
|                | 500  | 230  | 690  | 920  | 1380 | 1840 | 2300  | 2760  | 2991   | 3451    | 3911  | 4371  | 5291  | 5981  | 6901  | 7591  | 8511  |
|                | 600  | 276  | 828  | 1104 | 1656 | 2208 | 2760  | 3313  | 3589   | 4141    | 4693  | 5245  | 6349  | 7177  | 8281  | 9110  | 10214 |
|                | 700  | 322  | 966  | 1288 | 1932 | 2576 | 3221  | 3865  | 4187   | 4831    | 5475  | 6119  | 7407  | 8373  | 9662  | 10628 | 11916 |
|                | 800  | 368  | 1104 | 1472 | 2208 | 2945 | 3681  | 4417  | 4785   | 5521    | 6257  | 6993  | 8465  | 9570  | 11042 | 12146 | 13618 |
|                | 900  | 414  | 1242 | 1656 | 2484 | 3313 | 4141  | 4969  | 5383   | 6211    | 7039  | 7867  | 9524  | 10766 | 12422 | 13664 | 15321 |
| W (Width) (mm) | 1000 | 460  | 1380 | 1840 | 2760 | 3681 | 4601  | 5521  | 5981   | 6901    | 7821  | 8742  | 10582 | 11962 | 13802 | 15183 | 17023 |
| <u> </u>       | 1100 | 506  | 1518 | 2024 | 3037 | 4049 | 5061  | 6073  | 6579   | 7591    | 8603  | 9616  | 11640 | 13158 | 15183 | 16701 | 18725 |
| 돰              | 1200 | 552  | 1656 | 2208 | 3313 | 4417 | 5521  | 6625  | 7177   | 8281    | 9386  | 10490 | 12698 | 14354 | 16563 | 18219 | 20428 |
| Ž              | 1300 | 598  | 1794 | 2392 | 3589 | 4785 | 5981  | 7177  | 7775   | 8972    | 10168 | 11364 | 13756 | 15551 | 17943 | 19737 | 22130 |
| <b>&gt;</b>    | 1400 | 644  | 1932 | 2576 | 3865 | 5153 | 6441  | 7729  | 8373   | 9662    | 10950 | 12238 | 14815 | 16747 | 19323 | 21256 | 23832 |
|                | 1500 | 690  | 2070 | 2760 | 4141 | 5521 | 6901  | 8281  | 8972   | 10352   | 11732 | 13112 | 15873 | 17943 | 20704 | 22774 | 25534 |
|                | 1600 | 736  | 2208 | 2945 | 4417 | 5889 | 7361  | 8834  | 9570   | 11042   | 12514 | 13986 | 16931 | 19139 | 22084 | 24292 | 27237 |
|                | 1700 | 782  | 2346 | 3129 | 4693 | 6257 | 7821  | 9386  | 10168  | 11732   | 13296 | 14861 | 17989 | 20336 | 23464 | 25810 | 28939 |
|                | 1800 | 828  | 2484 | 3313 | 4969 | 6625 | 8281  | 9938  | 10766  | 12422   | 14078 | 15735 | 19047 | 21532 | 24844 | 27329 | 30641 |
|                | 1900 | 874  | 2622 | 3497 | 5245 | 6993 | 8742  | 10490 | 11364  | 13112   | 14861 | 16609 | 20105 | 22728 | 26225 | 28847 | 32344 |
|                | 2000 | 920  | 2760 | 3681 | 5521 | 7361 | 9202  | 11042 | 11962  | 13802   | 15643 | 17483 | 21164 | 23924 | 27605 | 30365 | 34046 |
|                | 2100 | 966  | 2899 | 3865 | 5797 | 7729 | 9662  | 11594 | 12560  | 14493   | 16425 | 18357 | 55555 | 25120 | 28985 | 31884 | 35748 |
|                | 2200 | 1012 | 3037 | 4049 | 6073 | 8097 | 10122 | 12146 | 13158  | 15183   | 17207 | 19231 | 23280 | 26317 | 30365 | 33402 | 37451 |
|                | 2300 | 1058 | 3175 | 4233 | 6349 | 8465 | 10582 | 12698 | 13756  | 15873   | 17989 | 20105 | 24338 | 27513 | 31746 | 34920 | 39153 |

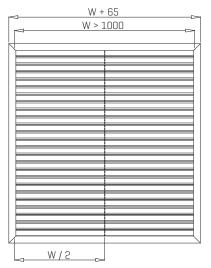
**Table 3.** Weight Table


|                | kg   |      |      |      |      |      |       | Н     | (Heigh | ıt) (mm | 1)    |       |       |       |       |       |       |
|----------------|------|------|------|------|------|------|-------|-------|--------|---------|-------|-------|-------|-------|-------|-------|-------|
|                | Ng . | 100  | 200  | 300  | 400  | 500  | 600   | 700   | 800    | 900     | 1000  | 1100  | 1300  | 1500  | 1700  | 1900  | 2100  |
|                | 100  | 0.26 | 0.42 | 0.55 | 0.72 | 0.88 | 1.05  | 1.21  | 1.34   | 1.50    | 1.67  | 1.83  | 2.16  | 2.45  | 2.78  | 3.07  | 3.40  |
|                | 200  | 0.42 | 0.66 | 0.82 | 1.05 | 1.28 | 1.51  | 1.74  | 1.91   | 2.14    | 2.37  | 2.60  | 3.06  | 3.46  | 3.92  | 4.31  | 4.78  |
|                | 300  | 0.59 | 0.89 | 1.08 | 1.38 | 1.68 | 1.98  | 2.28  | 2.47   | 2.77    | 3.07  | 3.37  | 3.96  | 4.46  | 5.06  | 5.55  | 6.15  |
|                | 400  | 0.75 | 1.12 | 1.35 | 1.71 | 2.08 | 2.44  | 2.81  | 3.04   | 3.41    | 3.77  | 4.14  | 4.87  | 5.46  | 6.19  | 6.79  | 7.52  |
|                | 500  | 0.92 | 1.35 | 1.61 | 2.05 | 2.48 | 2.91  | 3.34  | 3.61   | 4.04    | 4.47  | 4.91  | 5.77  | 6.47  | 7.33  | 8.03  | 8.89  |
|                | 600  | 1.08 | 1.58 | 1.88 | 2.38 | 2.88 | 3.38  | 3.88  | 4.17   | 4.67    | 5.17  | 5.67  | 6.67  | 7.47  | 8.47  | 9.27  | 10.27 |
|                | 700  | 1.24 | 1.81 | 2.14 | 2.71 | 3.28 | 3.84  | 4.41  | 4.74   | 5.31    | 5.88  | 6.44  | 7.58  | 8.47  | 9.61  | 10.51 | 11.64 |
|                | 800  | 1.41 | 2.04 | 2.41 | 3.04 | 3.67 | 4.31  | 4.94  | 5.31   | 5.94    | 6.58  | 7.21  | 8.48  | 9.48  | 10.75 | 11.75 | 13.01 |
|                | 900  | 1.57 | 2.27 | 2.67 | 3.37 | 4.07 | 4.78  | 5.48  | 5.88   | 6.58    | 7.28  | 7.98  | 9.38  | 10.48 | 11.88 | 12.98 | 14.39 |
| Ē              | 1000 | 1.73 | 2.50 | 2.94 | 3.70 | 4.47 | 5.24  | 6.01  | 6.44   | 7.21    | 7.98  | 8.75  | 10.28 | 11.49 | 13.02 | 14.22 | 15.76 |
| W (Width) (mm) | 1100 | 1.90 | 2.73 | 3.20 | 4.04 | 4.87 | 5.71  | 6.54  | 7.01   | 7.84    | 8.68  | 9.52  | 11.19 | 12.49 | 14.16 | 15.46 | 17.13 |
| 높              | 1200 | 2.06 | 2.97 | 3.47 | 4.37 | 5.27 | 6.17  | 7.08  | 7.58   | 8.48    | 9.38  | 10.28 | 12.09 | 13.49 | 15.30 | 16.70 | 18.51 |
| ۸              | 1300 | 2.23 | 3.20 | 3.73 | 4.70 | 5.67 | 6.64  | 7.61  | 8.14   | 9.11    | 10.08 | 11.05 | 12.99 | 14.50 | 16.44 | 17.94 | 19.88 |
| <b>×</b>       | 1400 | 2.39 | 3.43 | 3.99 | 5.03 | 6.07 | 7.11  | 8.14  | 8.71   | 9.75    | 10.78 | 11.82 | 13.90 | 15.50 | 17.57 | 19.18 | 21.25 |
|                | 1500 | 2.55 | 3.66 | 4.26 | 5.36 | 6.47 | 7.57  | 8.68  | 9.28   | 10.38   | 11.49 | 12.59 | 14.80 | 16.50 | 18.71 | 20.42 | 22.63 |
|                | 1600 | 2.72 | 3.89 | 4.52 | 5.70 | 6.87 | 8.04  | 9.21  | 9.84   | 11.02   | 12.19 | 13.36 | 15.70 | 17.51 | 19.85 | 21.66 | 24.00 |
|                | 1700 | 2.88 | 4.12 | 4.79 | 6.03 | 7.27 | 8.50  | 9.74  | 10.41  | 11.65   | 12.89 | 14.13 | 16.60 | 18.51 | 20.99 | 22.89 | 25.37 |
|                | 1800 | 3.05 | 4.35 | 5.05 | 6.36 | 7.66 | 8.97  | 10.28 | 10.98  | 12.28   | 13.59 | 14.90 | 17.51 | 19.51 | 22.13 | 24.13 | 26.75 |
|                | 1900 | 3.21 | 4.58 | 5.32 | 6.69 | 8.06 | 9.44  | 10.81 | 11.54  | 12.92   | 14.29 | 15.66 | 18.41 | 20.52 | 23.26 | 25.37 | 28.12 |
|                | 2000 | 3.37 | 4.81 | 5.58 | 7.02 | 8.46 | 9.90  | 11.34 | 12.11  | 13.55   | 14.99 | 16.43 | 19.31 | 21.52 | 24.40 | 26.61 | 29.49 |
|                | 2100 | 3.54 | 5.04 | 5.85 | 7.35 | 8.86 | 10.37 | 11.88 | 12.68  | 14.19   | 15.69 | 17.20 | 20.22 | 22.53 | 25.54 | 27.85 | 30.86 |
|                | 2200 | 3.70 | 5.28 | 6.11 | 7.69 | 9.26 | 10.83 | 12.41 | 13.25  | 14.82   | 16.39 | 17.97 | 21.12 | 23.53 | 26.68 | 29.09 | 32.24 |
|                | 2300 | 3.86 | 5.51 | 6.38 | 8.02 | 9.66 | 11.30 | 12.94 | 13.81  | 15.45   | 17.10 | 18.74 | 22.02 | 24.53 | 27.82 | 30.33 | 33.61 |

**Note**: The weight values given are ± 10%.

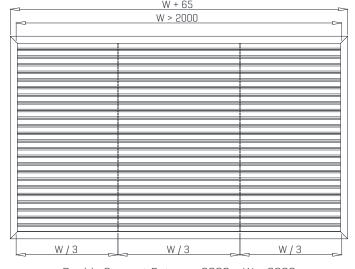
**Table 4.** Pressure Loss and Noise Intensity


|             |                    | Air Velocity [m/s] |    |    |    |     |     |     |     |
|-------------|--------------------|--------------------|----|----|----|-----|-----|-----|-----|
|             |                    | 1.5                | 2  | 3  | 4  | 5   | 6   | 7   | 8   |
| Fresh Air   | Pressure Drop (Pa) | 17                 | 28 | 54 | 96 | 148 | 208 | 264 | 349 |
| FIESHAII    | Sound Level (dB)   | 34                 | 43 | 56 | 65 | >70 | >70 | >70 | >70 |
| Exhaust Air | Pressure Drop (Pa) | 10                 | 20 | 45 | 80 | 125 | 180 | 245 | 320 |
| LAHAUSTAH   | Sound Level (dB)   | 30                 | 40 | 51 | 60 | 70  | >70 | >70 | >70 |


## **MEASUREMENT**



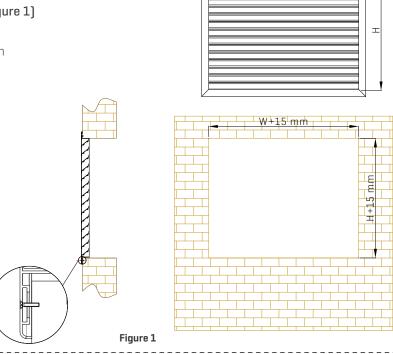
| W (mm) | H (mm) |  |  |  |
|--------|--------|--|--|--|
| 100    | 100    |  |  |  |
| 200    | 200    |  |  |  |
| 300    | 300    |  |  |  |
| 400    | 400    |  |  |  |
| 500    | 500    |  |  |  |
| 600    | 600    |  |  |  |
| 700    | 700    |  |  |  |
| 800    | 800    |  |  |  |
| 900    | 900    |  |  |  |
| 1000   | 1000   |  |  |  |
| 1100   | 1100   |  |  |  |
| 1300   | 1300   |  |  |  |
| 1500   | 1500   |  |  |  |
| 1700   | 1700   |  |  |  |
| 1900   | 1900   |  |  |  |
| 2100   | 2100   |  |  |  |
| 2300   |        |  |  |  |


Support details are described in the drawings below.

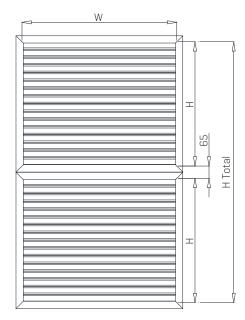




 $W \le 1000 Unsupported$ 


Single Support Between 1000 < W ≤ 2000




Double Support Between  $2000 < W \le 2300$ 

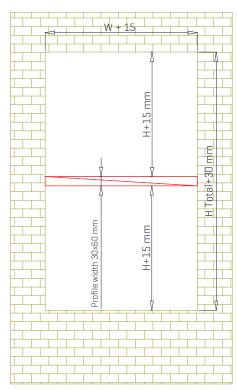
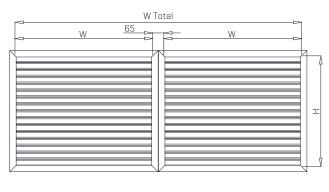
## **TYPES OF MOUNTING**

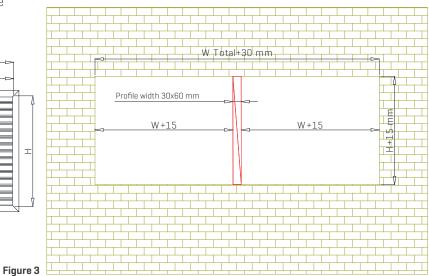
**DPE** – The assembly of the **External Weather Louvre** is done by screwing it to the wall or the blind casing with mounting screws from the curb surface. [Figure 1] The assembled surface must be smooth and flat. Note: Mounting screws are painted and shipped in the color of the shutter.



In the case of  $W \le 2300 - H \ge 2100$ , the louvers are divided from the H dimension and produced as modules. During the installation, a profile should be placed at the module junction as shown in Figure 2. You can use 30 mm x 60 mm profile in module assemblies.





Figure 2

In case of  $W \ge 2300 - H \le 2100$ , the louvers are divided in W dimensions and produced as modules.

During the assembly, a profile must be placed at the module junction as shown in **Figure 3**.

You can use 30 mm x 60 mm profile in module assemblies.





In the case of  $W \ge 2300 - H \ge 2100$ , the louvers are divided in both W and H dimensions and produced as modules. During the assembly, a profile must be placed at the module junction as shown in **Figure 4**.

You can use 30 mm x 60 mm profile in module assemblies.

## Note: W Total=W x n+(n-1)x65 mm

W Total: Module louver throat size

W: Horizontal size for 1 module (specified in the offer.)

n: Number of modules (specified in the offer.)

#### Example:

What is the module size and mounting hole size of the 3600 mm x 3000 mm louver?

W Total=3600 mm

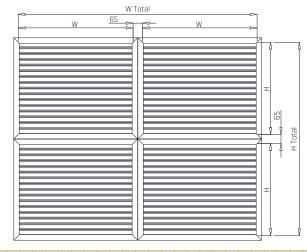
3600 mm=W x n+(n-1)x65 mm

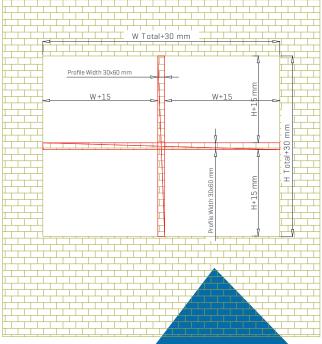
n=2 (Will be specified in the offer.)

It is found as W=1768 mm.

H Total=3000 mm

 $3000 \text{ mm} = \text{H x n} + (\text{n} - 1) \times 65 \text{ mm}$ 


n=2 (Will be specified in the offer.)


It is found as H=1468 mm.

1 Module Size=1768 mm x 1468 mm (W x H)

Hole Size=3615 mm  $\times$  3015 mm (W total+15 mm  $\times$ 

H total+15 mm)





| NOTES |          |               |         |
|-------|----------|---------------|---------|
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               | (B)     |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       | IKLIMLEN | IDIRME   HVAC | SYSTEMS |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |
|       |          |               |         |

| NOTES |                 |      |
|-------|-----------------|------|
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 | (R)  |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       | iklimlendirme i |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 |      |
|       |                 | <br> |

| NOTES |                        |           |
|-------|------------------------|-----------|
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       | iklimlendirme i hvac s |           |
|       | TRETTELIABILITE   TIMO | 710121110 |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |
|       |                        |           |

| NOTES |          |   |
|-------|----------|---|
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          | R |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       | <u> </u> |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |
|       |          |   |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY













# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











VKM - Control Cap provides easy access to places that need maintenance, control or intervention in various ventilation system applications.

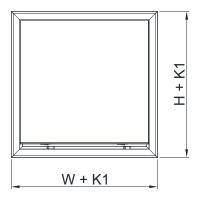
## **MATERIAL**

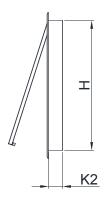
- Frame options from aluminum 6063 extrusion profile.
- © Cap made of galvanized sheet.

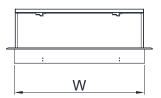
## **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard
- Optional
  - Different RAL Codes
  - Unpainted

## **INSTALLATION OPTIONS**


- Screw
- ♠ Tile
- Clip-in


## **LOCK OPTIONS**


- ♥ With snap fastener
- Butterfly key
- With latch
- Allen wrench

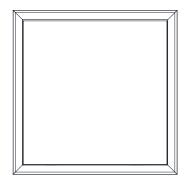


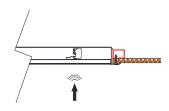
## **STANDARD DIMENSIONS**





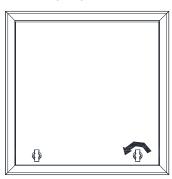


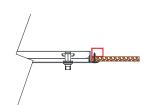

**Table 1.** Standard Dimensions


| W [mm]<br>(Width)  | 200 - 400 - 500 - 600 - 700 - 800 - 900 - 1000 - 1100 - 1200 |
|--------------------|--------------------------------------------------------------|
| H [mm]<br>(Height) | 100 - 200 - 300 - 400 - 500 - 600 - 700 - 800 - 900          |



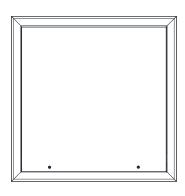
## **LOCK OPTIONS**

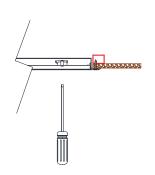

## With Snap Fastener





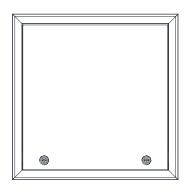

Opens with force applied to the cover

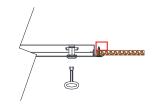

## ButterflyKey






The butterfly key is unlocked or locked by hand


## With Latch

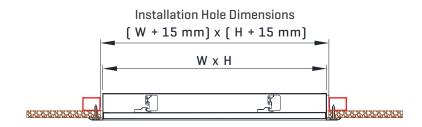




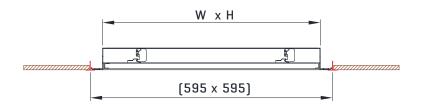

Phillips screwdriver is used

## Allen Wrench





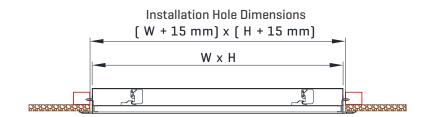

14 mm allen wrench is used



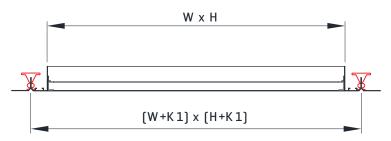

## **INSTALLATION OPTIONS**

#### **SCREW**




#### **TILE CEILING**




|               | W [mm] | H [mm] |
|---------------|--------|--------|
| Snap Fastener | 529    | 529    |
| With latch    | 529    | 529    |
| 22 mm Frame   | 553    | 553    |

W and H dimensions that can be selected according to the frame dimensions specified in the product selection are shown in the table above.

#### **INTERNAL INSTALLATION**



#### WITH CLIP-IN



| Frame with Clip-in K1 = 59.2 mm | W [mm] | H [mm] |
|---------------------------------|--------|--------|
| 600x600                         | 541    | 541    |
| 300x300                         | 241    | 241    |

W and H dimensions that can be selected according to the frame dimensions specified in the product selection are shown in the table above.

## PRODUCT ORDER CODE

You can place your orders according to the coding format below.

VKM. ALM . < A > . < B > . < C > . < D > . < E > . < F >

| Α | Frame Options        |                                     |
|---|----------------------|-------------------------------------|
|   | 08                   | With Latch                          |
|   | 07                   | With Snap Fastener                  |
|   | 03                   | 22 mm Frame                         |
|   | 09                   | Frame with Clip-in                  |
| В | Installation Options |                                     |
|   | VD                   | Screw                               |
|   | KR                   | Tile                                |
|   | KL                   | Clip-in                             |
|   | IC                   | Internal Installation               |
| C | Lock Options         |                                     |
|   | СТ                   | With Snap Fastener                  |
|   | KA                   | Butterfly Key                       |
|   | MA                   | With Latch                          |
|   | AH                   | Allen Wrench                        |
| D | Width (W) [mm]       |                                     |
|   | 0000                 | You can see the standard dimensions |
| E | Height (H) [mm]      |                                     |
|   | 0000                 | You can see the standard dimensions |
| F | Paint                |                                     |
|   | 00                   | Unpainted                           |
|   | S1                   | Standard Painted - RAL 9010         |
|   | S2                   | Standard Painted - RAL 9016         |
|   | XX                   | Special Painted                     |

Sample Codding: VKM.ALM.VD.CT.0400.0400.S1

| NOTES |                              |
|-------|------------------------------|
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       | IKLIMLENDIRME   HVAC SYSTEMS |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |







# **Adana Sales Office**

**Antalya Sales Office** 

Tel.: +90 242 505 87 77

Mimar Semih Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A

Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY

Blok Kat:11 Ofis:1104 06520 Söğütözü,

Yenimahalle, Ankara/TURKEY











## OSH High Effective Adjustable Blade Swirl Diffuser



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in Istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











- © OSH is designed to reduce the air homogeneously to the comfort zone in spaces with high ceilings.
- It can be used in high ceiling spaces such as conference rooms, gymnasiums, atriums, hypermarkets and factory production areas..
- S With the adjustable blade mechanism, the most suitable throw characteristic for heating and cooling can be created.
- Their appearance is decorative.
- Suitable for areas with ceilings of 3.80 m and higher.

#### **OPERATION**

OSH High Effective Adjustable Blade Swirl Diffuser; Due to the variable thermal loads in the spaces, it is necessary to direct the supply air and change the throw movement in heating and cooling. OSH's blade positions can be changed to throw air vertically and horizontally. In this way, it is ensured that the supply air enters the space in a way that provides the appropriate movement in the comfort zone when heating or cooling is performed, and at the same time, it can meet the comfort criteria in the best way.

#### MATERIAL AND SURFACE COATING

OSH – High Effective Adjustable Blade Swirl Diffuser consists of three main parts. These are the outer flange, the blade group and the spigot. Out of these sections, the outer flange is shaped from aluminum sheet. Other parts are made of galvanized sheet. The product is painted in RAL9010 color with the "Electrostatic Powder Coating" process as standard. It can be painted in other RAL codes in line with the customer's request, or it can be shipped unpainted when a metallic appearance is desired.

#### **OPTIONAL**

Duct Connection Apparatus: It is used to connect the Swirl Diffuser to circular ducts.

Column Flap: Used to adjust the air volume of the Swirl Diffuser.

**Servo Motor:** SIt enables the position of the blades of the Swirl Diffuser to be adjusted by electrical control. The motor can be 24 V or 230 V and on-off or proportional in parallel with the automation need.

## **STANDARD SIZES**

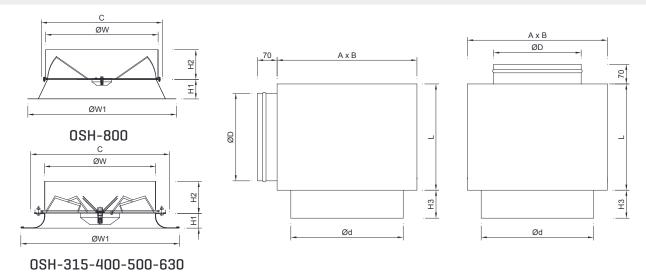
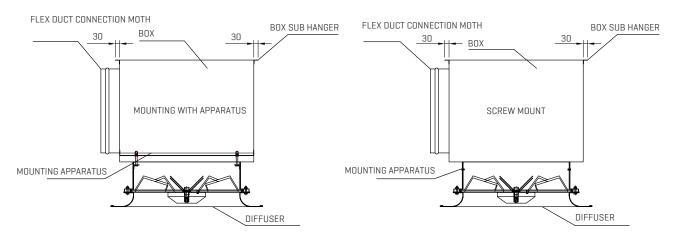




Table 1. Standard Sizes

| Sizes   | ØW<br>[mm] | H1<br>[mm] | H2<br>[mm] | H3<br>[mm] | Ød<br>[mm] | A<br>[mm] | B<br>[mm] | ØC<br>[mm] | ØD<br>[mm] | ØW1<br>[mm] | L<br>[mm] |
|---------|------------|------------|------------|------------|------------|-----------|-----------|------------|------------|-------------|-----------|
| OSH-315 | 313        | 60         | 80         | 100        | 319        | 435       | 435       | 400        | 248        | 380         | 280       |
| OSH-400 | 398        | 60         | 90         | 150        | 402        | 500       | 500       | 485        | 313        | 475         | 379       |
| OSH-630 | 628        | 80         | 100        | 170        | 632        | 750       | 750       | 715        | 398        | 700         | 470       |
| OSH-800 | 798        | 80         | 110        | 200        | 802        | 1000      | 1000      | 845        | 498        | 880         | 570       |

Note: C dimension is the cut-off dimension that must be left on the wall for mounting.

## **INSTALLATION METHOD**



**Note:** It is produced with the product box in the weft assembly. With screw mounting, the order is also available without the box.

#### **PERFORMANCE DATA**

Table 2. Performance data

| OSH  | Effective<br>Area m <sup>2</sup> | Flow Rate (m³/h)    | 250 | 375 | 500 | 625 | 750 | 875 | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 5000 |
|------|----------------------------------|---------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|
|      |                                  | Pressure Loss (Pa)  | 10  | 22  | 39  | 61  | 88  | 120 | 156  |      |      |      |      |      |      |      |
| Ø315 | 0,023                            | Throw Distance (m)  | 2,6 | 3,8 | 5   | 6,1 | 7,2 | 8,4 | 9,4  |      |      |      |      |      |      |      |
|      |                                  | Sound Level [dB(A)] | 22  | 35  | 45  | 52  | 58  | 63  | 68   |      |      |      |      |      |      |      |
|      |                                  | Pressure Loss (Pa)  |     |     | 15  | 23  | 34  | 46  | 60   | 135  |      |      |      |      |      |      |
| Ø400 | 0,031                            | Throw Distance (m)  |     |     | 2,8 | 3,5 | 4,1 | 4,8 | 5,4  | 7,9  |      |      |      |      |      |      |
|      |                                  | Sound Level [dB(A)] |     |     | 27  | 33  | 39  | 43  | 47   | 59   |      |      |      |      |      |      |
|      |                                  | Pressure Loss (Pa)  |     |     | <5  | 13  | 19  | 25  | 33   | 74   | 131  |      |      |      |      |      |
| Ø500 | 0,049                            | Throw Distance (m)  |     |     | 2,2 | 2,6 | 3,1 | 3,6 | 4,1  | 6    | 7,7  |      |      |      |      |      |
|      |                                  | Sound Level [dB(A)] |     |     | 17  | 23  | 28  | 32  | 36   | 48   | 56   |      |      |      |      |      |
|      |                                  | Pressure Loss (Pa)  |     |     |     | 5   | 7   | 9   | 12   | 27   | 47   | 74   | 106  | 145  |      |      |
| Ø630 | 0,078                            | Throw Distance (m)  |     |     |     | 2   | 2,4 | 2,7 | 3,1  | 4,5  | 5,8  | 7,1  | 8,4  | 9,7  |      |      |
|      |                                  | Sound Level [dB(A)] |     |     |     | 15  | 20  | 24  | 28   | 39   | 47   | 53   | 58   | 62   |      |      |
|      |                                  | Pressure Loss (Pa)  |     |     |     |     |     | 5   | 6    | 14   | 25   | 38   | 55   | 75   | 98   | 153  |
| Ø800 | 0,111                            | Throw Distance (m)  |     |     |     |     |     | 2,4 | 2,7  | 3,9  | 5,1  | 6,3  | 7,4  | 8,5  | 9,7  | 11,9 |
|      |                                  | Sound Level [dB(A)] |     |     |     |     |     | 15  | 19   | 31   | 40   | 47   | 53   |      | 62   | 69   |

Data obtained with air  $\bullet T = 0$ °C, blades in vertical position.

## THROW DISTANCE MULTIPLIER BY BLADE POSITION







Horizontal Position (Cooling)

45° Position (Isothermal)

Vertical Position (Heating)

Sample:

Ø500 OSH Air Flow: 1000 m³/h Pressure drop: 7 Pa Throw Distance: 5 m

Sound Pressure Level: 30 dBA

Pressure drop

Blade Position: Horizontal (Blade Multiplier = 2)

Corrected Pressure: 7 x 2 = 14 Pa

Table 3. Throw distance according to blade position

| Blade Position      | Pressure<br>Multiplier | Sound<br>Multiplier | Throw Distance<br>Multiplier |  |  |
|---------------------|------------------------|---------------------|------------------------------|--|--|
| Horizontal Position | 1                      | 1                   | 1                            |  |  |
| 45° Position        | 0,75                   | 0,9                 | 1,7                          |  |  |
| Vertical Position   | 0,5                    | 0,6                 | 2,5                          |  |  |

Throw Distance

Blade Position: Horizontal (Blade Multiplier = 0.4) Air Temperature:  $\Delta T = +4$  (Temperature Multiplier

= 0.88)

Adjusted Throw Distance:  $5 \times 0.4 \times 0.88 = 1.76 \text{ m}$ 

Sound Pressure Level

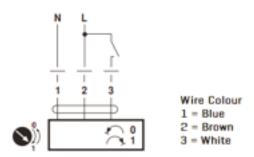
Blade Position: Horizontal [Blade Multiplier = **1.6**] Corrected Sound Pressure Level: 30 x **1.6** = 48 dBA

## THROW DISTANCE MULTIPLIER ACCORDING TO AIR TEMPERATURE

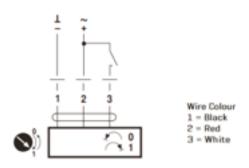
Tablo 4. Throw distance according to temperature

| Heating Mode (△T)         | 4    | 6    | 8    | 10   | 12   |
|---------------------------|------|------|------|------|------|
| Throw Distance Multiplier | 0.88 | 0.82 | 0.81 | 0.71 | 0.64 |
| Cooling Mode (△T)         | 4    | 6    | 8    | 10   | 12   |
| Throw Distance Multiplier | 1.11 | 1.17 | 1.23 | 1.29 | 1.35 |

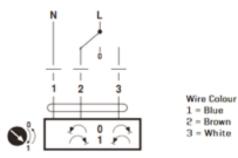
#### **ACTUATORS**


OSH is adjusted by hand adjuster as standard. Optional actuator can be used instead of adjustment with mechanical arm. Servo motor actuators have on-off and proportional control options.

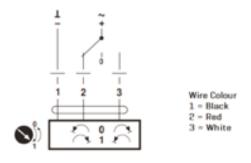
Tablo 5. Actuator Table


|                           | Order Code | Name      | Control                                              | Voltaj         | Torque | Switch Option |
|---------------------------|------------|-----------|------------------------------------------------------|----------------|--------|---------------|
|                           | S66        | LM230A    | 1 wired control (On Off)<br>2-wire control (3-point) | 100 - 240 V AC | 5Nm    | -             |
| On-Off                    | S59        | LM24A     | 1 wired control (On Off)<br>2-wire control (3-point) | 24 V AC/DC     | 5Nm    | -             |
| Actuators                 | S44        | LM230A    | 1 wired control (On Off)<br>2-wire control (3-point) | 100 - 240 V AC | 5Nm    | S2A           |
|                           | S20        | LM24A     | 1 wired control (On Off)<br>2-wire control (3-point) | 24 V AC/DC     | 5Nm    | S2A           |
| Proportional<br>Actuators | S61        | LM24A-SR  | 2 - 10 V DC                                          | 24 V AC/DC     | 5Nm    | -             |
|                           | S92        | LM230A-SR | 2 - 10 V DC                                          | 100 - 240 V AC | 5Nm    | -             |

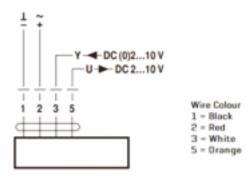
#### **ACTUATOR WIRING DIAGRAMS**


1 wired control AC 230 V (On-Off)

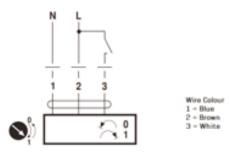



1 wired control AC/DC 24 V (On-Off)




2 wired control AC 230 V (3 Point)




#### 2 wired control AC/DC 24 V (3 Point)



# 2-10 V DC Proportional (AC/DC 24 V)



# 2-10 V DC Proportional (AC/DC 230 V) AC 230 V (On-Off)

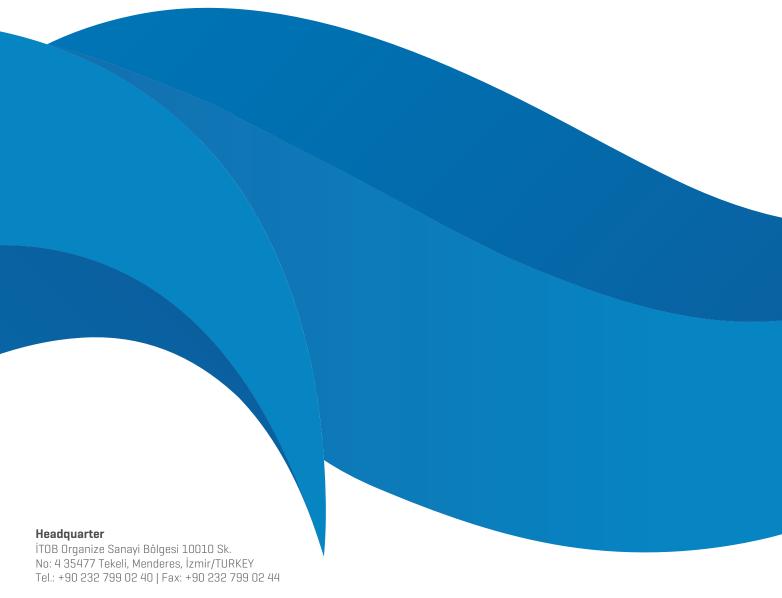


# **PRODUCT ORDER CODES**

You can place your orders according to the coding format given below.

PRODUCT ORDER CODE
OSH\_D.ALM. <A> . <B> . <C> . <D>

Tablo 5. Actuator Table - Order Codes


| Α | Installation Type     |                                  |
|---|-----------------------|----------------------------------|
|   | VD                    | Screwed                          |
|   | KP                    | With Support                     |
|   | MD                    | Without İnstallation Hole        |
| В | Mechanism             |                                  |
|   | MEK                   | Mechanic                         |
|   | MBU                   | Suitable for Actuator Connection |
|   |                       |                                  |
| С | Product Diameter [mm] |                                  |
|   | 315 - 400 - 500       | - 630 - 800                      |
| D | Paint                 |                                  |
|   | 00                    | Unpainted                        |
|   | S1                    | Standard Painted - RAL 9010      |
|   | S2                    | Standard Painted - RAL 9016      |
|   | XX                    | Special Painted                  |

 $\textbf{Sample Codding: } \texttt{OSH\_D.ALM.VD.MEK.400.S1}$ 

| NOTES |                              |
|-------|------------------------------|
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       | IKLIMLENDIRME   HVAC SYSTEMS |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |







#### **İstanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, İstanbul/TURKEY Tel.: +90 216 250 55 45 | Fax:+90 216 250 55 56

#### **Ankara Sales Office**

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A Blok Kat:11 Ofis:1104 06520 Söğütözü, Yenimahalle, Ankara/TURKEY Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

#### **Antalya Sales Office**

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel.: +90 242 505 87 77

#### **Adana Sales Office**

Mimar Selim Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301















# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.







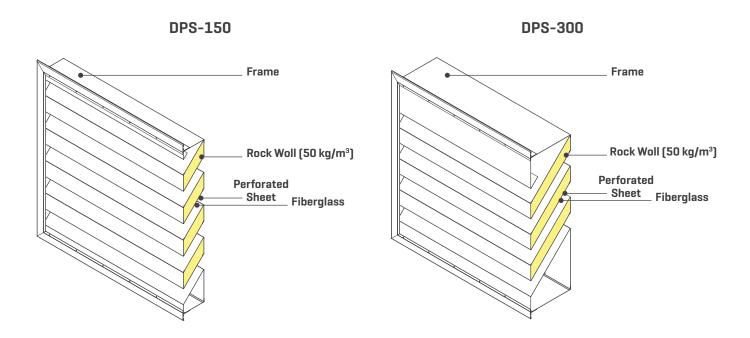


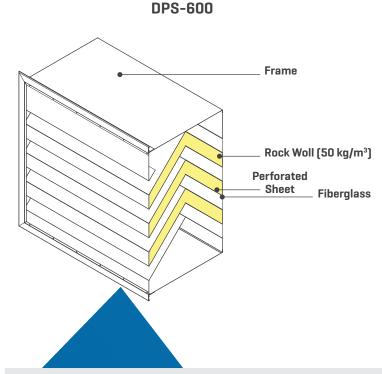




# **DPS ACOUSTIC LOUVRE**

- DPS Acoustic Louvres are used in places where acoustic insulation is required, such as air duct ends, generator rooms, engine rooms, to reduce the spread of sound to the environment and the sounds coming from the environment.
- In order to meet different performance requirements, there are 3 different model options: DPS-150, DPS-300 and DPS-600. [Table 1]
- Thanks to its wing structure, it also provides rain protection.
  - It is painted with electrostatic powder paint. It has high corrosion resistance.
- It prevents foreign objects from entering the canal with mesh wire.


|                                          | DPS-150 | DPS-300 | DPS-600 |  |  |
|------------------------------------------|---------|---------|---------|--|--|
| MODEL                                    |         |         |         |  |  |
| Average Sound<br>Reduction Index<br>[Rw] | 11      | 17      | 25      |  |  |

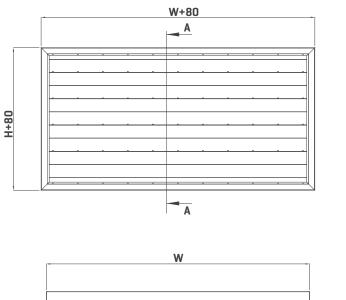

**Table 1.** Acoustic Louvre Models Sound Attenuation Comparison Table

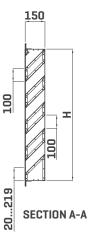
## **MATERIAL**

Frame and blades of all models of DPS – Acoustic Louvre are manufactured from galvanized sheet as standard. Rock wool insulation material with a density of 50 kg/m3 is used inside the blades. The surfaces of the rock wool that come into contact with the air are covered with fiber glass in order to protect them against particle abrasion. Frame and blades can also be made of stainless steel, if desired.

The product is painted in RAL9010 color with the "Electrostatic Powder Coating" process as standard. It can be painted in different RAL codes according to customer preferences. DPS is produced as standard unless specified in the order.







#### 1. DPS-150



- It can be used in places where sound absorption is less desired.
- lt is advantageous for places with narrow wall thickness.

#### **DIMENSIONS**





| W (mm) | H (mm) |
|--------|--------|
| 300    | 370    |
| 500    | 570    |
| 700    | 770    |
| 900    | 970    |
| 1100   | 1170   |
| 1300   | 1370   |
| 1500   | 1570   |
| 1700   | 1770   |
| 1900   | 1970   |
| 2000   |        |

#### Note:

H dimension increases as the standard 200 mm. When intermediate values are requested, production is made by extending the length of the lower by-pass sheet.

Sizes larger than this range can be produced modularly.

# **SELECTION PARAMETERS**

| H<br>(mm) | Number of<br>Blades | Effective Area<br>Rate (%) |
|-----------|---------------------|----------------------------|
| 370569    | 1                   | 1912                       |
| 570769    | 2                   | 2518                       |
| 770969    | 3                   | 2822                       |
| 9701169   | 4                   | 2924                       |
| 11701369  | 5                   | 3026                       |
| 13701569  | 6                   | 3127                       |
| 15701769  | 7                   | 3228                       |
| 17701969  | 8                   | 3229                       |
| 1970      | 9                   | 32                         |

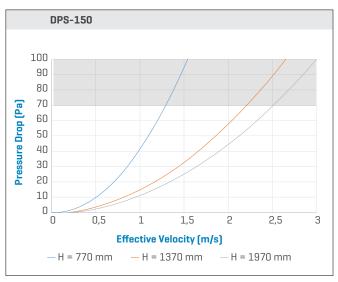
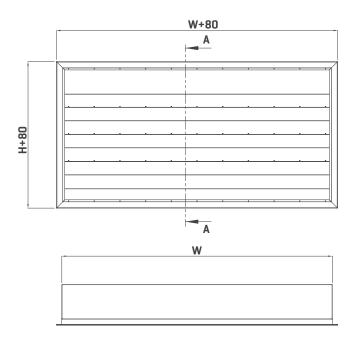
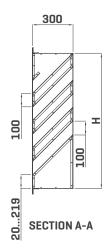



Chart 1. DPS-150 Pressure Drop Chart

#### Note:

It is recommended that the pressure loss be below 70 Pa in DPS - Acoustic Louvre selections. It is also recommended that the selected effective air velocity should not exceed 2 - 2.5 m/s.


| DPS - 150 Acoustic Louvre Performance Parameters                                       |    |     |     |     |      |      |      |      |
|----------------------------------------------------------------------------------------|----|-----|-----|-----|------|------|------|------|
| Octave Band Center Frequencies (Hz)                                                    | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| Sound Level Reduction Index (dB)                                                       | 4  | 4   | 6   | 8   | 11   | 11   | 11   | 10   |
| Sound Power Level Produced in Acoustic<br>Louvre when Effective Velocity is 1 m/s (dB) | 48 | 41  | 34  | 35  | 30   | 22   | 13   | 12   |
| Sound Power Level Produced in Acoustic<br>Louvre when Effective Velocity is 2 m/s (dB) | 66 | 58  | 51  | 51  | 50   | 47   | 41   | 28   |


#### 2. DPS-300



- It is possible to produce in the dimensions of Min 400 mm x 520 mm, Max 2000 mm x 2120 mm.
- lt can also be used as an acoustic panel.
- € It has a higher sound absorption feature than DPS-150.

# **DIMENSIONS**





| W (mm) | H (mm) |
|--------|--------|
| 400    | 520    |
| 600    | 720    |
| 800    | 920    |
| 1000   | 1120   |
| 1200   | 1320   |
| 1400   | 1520   |
| 1600   | 1720   |
| 1800   | 1920   |
| 2000   | 2120   |

#### Note

H dimension increases as the standard 200 mm. When intermediate values are requested, production is made by extending the length of the lower by-pass sheet.

Sizes larger than this range can be produced modularly.



# **SELECTION PARAMETERS**

| H<br>(mm) | Number Of<br>Blades | Effective Area<br>Rate (%) |
|-----------|---------------------|----------------------------|
| 520719    | 1                   | 1410                       |
| 720919    | 2                   | 2015                       |
| 9201119   | 3                   | 2319                       |
| 11201319  | 4                   | 2522                       |
| 13201519  | 5                   | 2723                       |
| 15201719  | 6                   | 2825                       |
| 17201919  | 7                   | 2926                       |
| 19202119  | 8                   | 3027                       |
| 2120      | 9                   | 30                         |

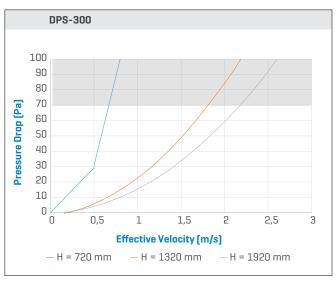
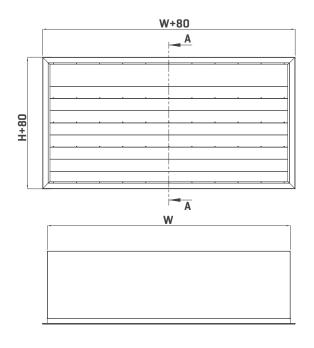


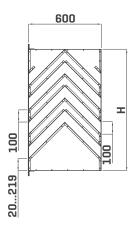

Chart 1. DPS-150 Pressure Drop Chart

#### Note:

It is recommended that the pressure loss be below 70 Pa in DPS - Acoustic Louvre selections. It is also recommended that the selected effective air velocity should not exceed 2 - 2.5 m/s.

| DPS - 300 Acoustic Louvre Performance Parameters                                       |    |     |     |     |      |      |      |      |
|----------------------------------------------------------------------------------------|----|-----|-----|-----|------|------|------|------|
| Octave Band Center Frequencies (Hz)                                                    | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| Sound Level Reduction Index (dB)                                                       | 6  | 6   | 9   | 13  | 21   | 20   | 16   | 13   |
| Sound Power Level Produced in Acoustic<br>Louvre when Effective Velocity is 1 m/(dB)   | 48 | 41  | 34  | 30  | 25   | 20   | 13   | 12   |
| Sound Power Level Produced in Acoustic<br>Louvre when Effective Velocity is 2 m/s (dB) | 66 | 58  | 51  | 47  | 45   | 43   | 39   | 28   |





#### 3. DPS-600



- It is the louvre with the highest sound absorption feature among the acoustic louvre models.
- It is used in places with high noise values such as generator room.

## **DIMENSIONS**





| W (mm) | H (mm) |
|--------|--------|
| 400    | 520    |
| 600    | 720    |
| 800    | 920    |
| 1000   | 1120   |
| 1200   | 1320   |
| 1400   | 1520   |
| 1600   | 1720   |
| 1800   | 1920   |
| 2000   | 2120   |

#### Note:

H dimension increases as the standard 200 mm. When intermediate values are requested, production is made by extending the length of the lower by-pass sheet.

Sizes larger than this range can be produced modularly.



# **SELECTION PARAMETERS**

| H<br>(mm) | Number of<br>Blades | Effective Area<br>Rate (%) |
|-----------|---------------------|----------------------------|
| 520719    | 1                   | 1410                       |
| 720919    | 2                   | 2015                       |
| 9201119   | 3                   | 2319                       |
| 11201319  | 4                   | 2522                       |
| 13201519  | 5                   | 2723                       |
| 15201719  | 6                   | 2825                       |
| 17201919  | 7                   | 2926                       |
| 19202119  | 8                   | 3027                       |
| 2120      | 9                   | 30                         |

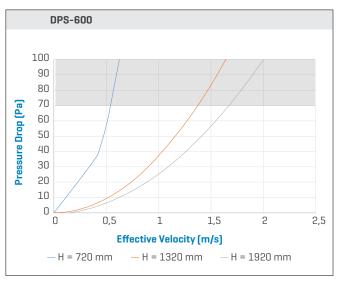
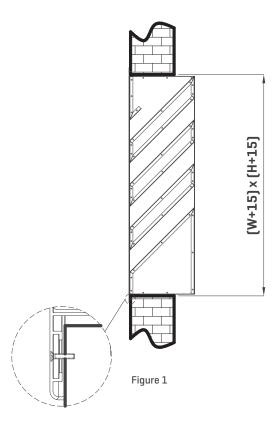


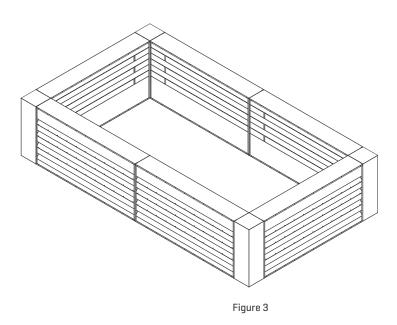

Chart 1. DPS-150 Pressure Drop Chart

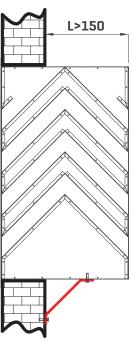
#### Note:

It is recommended that the pressure loss be below 70 Pa in DPS - Acoustic Louvre selections. It is also recommended that the selected effective air velocity should not exceed 2 - 2.5 m/s.

| DPS - 600 Acoustic Louvre Performance Parameters                                       |    |     |     |     |      |      |      |      |  |  |
|----------------------------------------------------------------------------------------|----|-----|-----|-----|------|------|------|------|--|--|
| Octave Band Center Frequencies (Hz)                                                    | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |  |  |
| Sound Level Reduction Index (dB)                                                       | 7  | 8   | 13  | 23  | 37   | 33   | 29   | 29   |  |  |
| Sound Power Level Produced in Acoustic<br>Louvre when Effective Velocity is 1 m/s (dB) | 54 | 46  | 37  | 32  | 28   | 24   | 15   | 12   |  |  |
| Sound Power Level Produced in Acoustic<br>Louvre when Effective Velocity is 2 m/s (dB) | 71 | 66  | 57  | 50  | 47   | 46   | 41   | 30   |  |  |





## **INSTALLATION**


Installation of DPS - Acoustic Louver is done by screwing it to the wall or blind frame with mounting screws from the sill surface. (Figure 1) The mounting surface must be smooth and flat.

In cases where the length of the overhanging part of the acoustic louver exceeds 150 mm, support profiles should be removed as seen in Figure 2.

It can also be used as an acoustic barrier around open machines or in cooling towers. (Figure 3). The products ordered for this purpose must be specified at the time of order.







| NOTES |               |               |  |
|-------|---------------|---------------|--|
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       | İKLİMLENDİRME | L HVAC SYSTEM |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |
|       |               |               |  |

| NOTES |                              |
|-------|------------------------------|
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       | İKLİMLENDİRME   HVAC SYSTEMS |
|       | TREMPERABILITY TO STOTE TO   |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |







Tel: +90 216 250 55 45 | Fax:+90 216 250 55 56

#### **Ankara Sales Office**

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A Blok Kat:11 Ofis:1104 06520 Söğütözü, Yenimahalle, Ankara/TURKEY Tel: +90 312 295 62 06 | Fax: +90 533 441 68 23

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel: +90 242 505 87 77

#### **Adana Sales Office**

Mimar Selim Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301









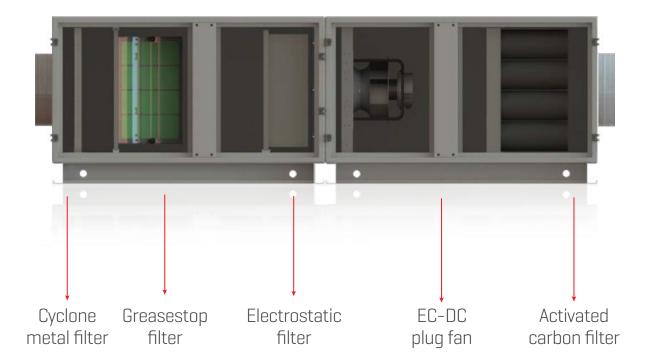








#### **GENERAL FEATURES**


- Ideally manufactured for the kitchens with chimney problems. It is environmentally friendly.
- It is manufactured with the capacity between 2.100-10.500 m³/h depending on the exhaust flow rate and kitchen size.
- It has a double-walled, Eurovent certified panel structure in thickness of 50mm. Inner wall is manufactured from stainless steel AISI304 quality.
- It is able to filter and clean odor and smoke by 99% in exhaust air by virtue of "Electrostatic Filter" and "UV-C Filter".
- Removes possibility of performance loss due to its specially designed automatic driven EC / DC motor plug fans due to filter pollution.
- Specially manufactured in two different types as "With UV lamp (FOUR-KITCHEN UV)" and "Without UV lamp (FOUR-KITCHEN).
- Principally it is ideally used in kitchens, hotels, hospitals, industrial facilities, business centers and offices.

#### 1- TECHNICAL STRUCTURE

FOUR-KITCHEN, which has been developed specially for the places with chimney problem, has been manufacturing in modular structure. Thanks to its modular structure, the parts are separable thus it can be positioned at different points where it is necessary.

It consists of 50mm thickness, double-walled and Eurovent certified panels. Inner wall is manufactured from stainless steel AISI304 quality so it can be easily cleaned.

FOUR KITCHEN device is controllable through an automated system and compatible with the other equipment manufactured by Doğu HVAC Systems.



#### **SPECIFICATIONS**

- The inside walls of the device are manufactured from 304 stainless steel as standard. Taylor-made production is also available in line with the customer demand.
- Automatic control panel is supplied as standard with the device.
- Self-inverter, backward curved, EC-DC plug fan is used in device.
- Fan flow control unit is associated with the devise as Standard.
- Upon request, remote-controlled fan flow control unit is supplied with the device.
- Double inclined condensation pan is available in the sections where the solid and liquid particles are caught.
- In case of request, it is able to be manufactured with mounted roofing sheet

# Cyclone Filter

AG4 class cyclone flame repellent metal filter is used in device as the pre-filter. Thanks to this type of filter, the particles in size of  $5 \mu m$  are able to be caught by 63% and particles of  $10 \mu m$  by 95%. It has an anti-clogging design thus it can be used for longer times without the need of cleaning.

When it is filled, it can be easily removed from its place and washed thoroughly. It features a long time of use. It produces a constant and low pressure loss in the system. Cyclone filter is completely manufactured from stainless steel.



# **Greasestop Filter**

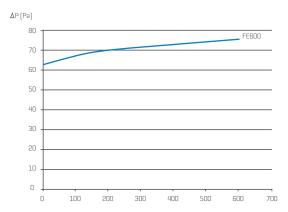
The main objective of this filter is to catch oil and similar liquids in air current and also it serves to protect the electrostatic filter against various substances in liquid form.

Greasestop filters are able to catch the rough oil molecules by 99%.

"Greasestop filter" featuring high efficiency in oil catch is washable. In case of clogged, it can be washed by hand or in washing machine.

Following the washing process, it can be re-attached to its place after dried well then it continues to its function.

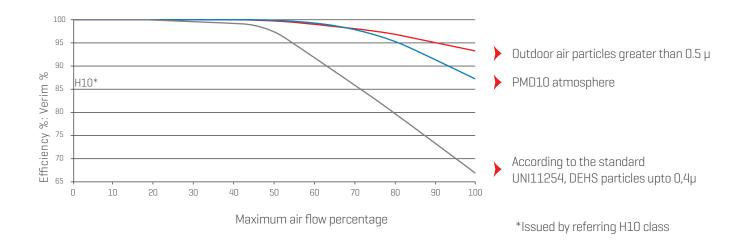
Thus it offers lower costs. To prevent any interruption in operation while the filter is getting dried, another filter set is supplied free of charge.




**Greasestop Filter** 

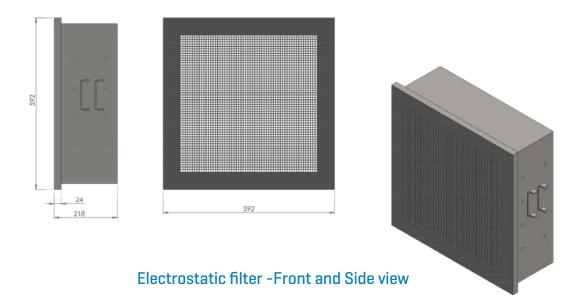
#### **Electrostatic Filter**

Electrostatic filter, which is one of the most important parts of FOUR KITCHEN device is able to catch dust, particles, soot and other solid particles up to  $0.3 \mu$  (1 micron = 0.001 mm) due to its highly efficient particle retention capability thus it offers high performance filtration solution.


On the other side, another important feature of the filter is that it is able to work with low pressure loss. It is shown in the following graph including the relation between the particle retention amount [gr] and the pressure loss [Pa].



Clogging graph of full size electrostatic filter in gr for ISO12103-A2 dust class


In addition, electrostatic filter efficiency is also shown in the following graph in accordance with the results of the tests done in compliance with UNI 11254 standard.

Electrostatic filters having 10 to 15 year lifespan can be used for several times by washing in into a container filled with water thanks to its waterproof structure.



#### Electrostatic filters efficiency curve

The working principle of electrostatic filters is given as follows; all particles entering the filter first are electrically loaded with +/- then these particles are forced to pass through the plates electrically loaded with +/-. By magnetic force effect, the particles are directed to the plates thus filtered from the air current.



| Filter efficiency                               | % 80-99                                            |
|-------------------------------------------------|----------------------------------------------------|
| Performance                                     | Full efficiency up to 600 gr particle accumulation |
| Input voltage                                   | 230 V - 50/60 Hz                                   |
| Full Size [Width / Height] - Half-length filter | 592/592 - 287/592 mm                               |
| Power consumption                               | 9-16 Watt                                          |
| Origin                                          | Italy                                              |



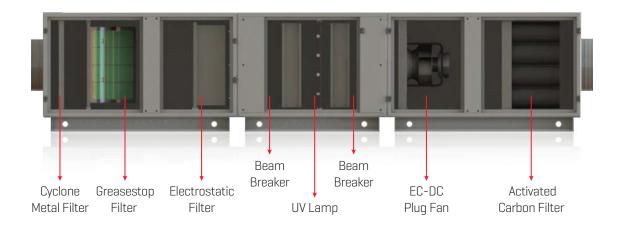
**UV** Lamp

## **UV** Lamp

UV lamps that are offered optionally are used just after electrostatic filter.

Each type of oil molecules, odor and microorganisms are entirely destructed with short-wave electromagnetic heat-producing ultraviolet lamps [UV-C type]. Maximum UV radiation can be achieved due to the lamps manufactured from the synthetic quartz glass. a

Some of the properties of UV lamps used are given as follows;


- Resistant up to 60 C.
- 4.8 (100 Watt) 10 g / hour (220 watts) ozone production
- Thanks to its special glass coverage, lamps are prevented to have mercuric oxide layer. Thus, permanently high and fixed amount of ozone production can be achieved.
- Allows the longer life of activated carbon filter. The need of filter replacement remains at minimum level
- No need for chemicals use, since there is no need for air duct cleaning and maintenance after use. Minimizes water and environmental pollution
- Removes any risk of fire inside the air duct
- It provides efficiency run of other ventilation units (fan, air ducts etc.) by protecting them against any dirt thus allows the air flow remains constant

www.dngubyac.com

On one hand, UV-C lamps are breaking all microorganisms, oil and other particles by emitting ultraviolet light and on the other hand they produce ozone gas and increase the efficiency of UV lamp. Ozone gas having the capability of high reaction reacts with all odor molecules and other organic/inorganic molecules thus provides these substances become harmless.

The inner walls of FOUR KITCHEN device is manufactured ozone protected and all other parts and cables are coated with protective layers against ozone.

Depending on usage, it has a life of over 10,000 hours.





**Activated Carbon Filter** 



#### **Activated Carbon Filter**

Cartridge type activated carbon filters are used on the device. Ideal solution is offered by adjusting the number of cartridges according to the flow and interior size.

Thanks to other filters used before this activated carbon filter, this filter has lower load and longer life of use significantly.

Thus the replacement cost of activated carbon filter that forms an important item of cost in operating expenses of the device can be lowered accordingly.

The activated carbon filters used in devices are able to catch food, burn fat and meat smell, soot, nicotine, the scent of flowers and other organic compounds. In addition, use of activated carbon filter prevents ozone gas produced by UV lamp to be released to air directly.



Plug Fan



# Fan

Considering low energy consumption, EC plug fans are preferred in FOUR KITCHEN devices.

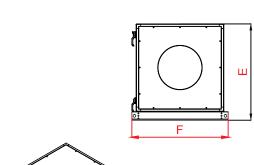
These fans having high effaiciency aerodynamic structure have rather low energy consumption and sound emission levels.

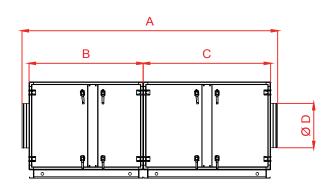
All fans are categorized in IP54 protection class. In view from rotor, these fans are appeared clockwise rotating backward curved aluminum fins fans. These fans that are automatically driven when the filters are clogged ensure to prevent efficiency decrease in filtration along with the time. General characteristics of the fan are listed in the table below.

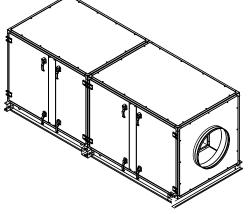
| MODEL            | Voltage [V] | Frequency<br>[Hz] | Emitting noise<br>[M] | Operating<br>temperature °C |
|------------------|-------------|-------------------|-----------------------|-----------------------------|
| FOUR KITCHEN 21  | 380         | 50/60             | 53                    | -25/60                      |
| FOUR KITCHEN 42  | 380         | 50/60             | 56                    | -25/60                      |
| FOUR KITCHEN 63  | 380         | 50/60             | 49                    | -25/60                      |
| FOUR KITCHEN 84  | 380         | 50/60             | 48                    | -25/60                      |
| FOUR KITCHEN 105 | 380         | 50/60             | 56                    | -25/60                      |

#### 2- WORKING PRINCIPLE AND INSTALLATION

Air is first entering the device through cyclone filter and rough particles are caught. Then the oil filtration takes place with the oil holding filter. Air passing through these both filters enters electrostatic filter and here all particles up to  $0.3 \mu$  are caught. UV-C lamps that are being offered optionally take part behind these filters.

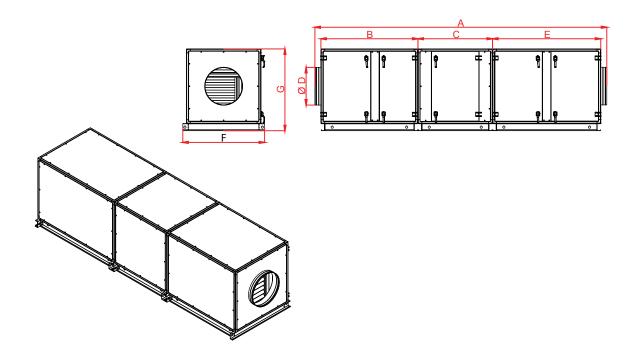

The activated carbon filters are seen as the final section.


The odor in exhausted air can be caught through these filters significantly and the cleaned air is released.


FOUR KITCHEN device manufactured in modular structure is able to be used separately or entirely. The start- up is activated by the experienced technical staff of Doğu HVAC Systems then the system is delivered to the customer after the initial tests are completed.

#### 3- DIMENSIONING - SELECTION










|        |                  | Flow<br>Rate | А    | В    | С    | Inlet Outlet<br>(ØD) | E    | F    | Weight | Power |
|--------|------------------|--------------|------|------|------|----------------------|------|------|--------|-------|
|        |                  | m³/h         | mm   | mm   | mm   | mm                   | mm   | mm   | Kg     | kW    |
|        | FOUR-KITCHEN-021 | 2100         | 2860 | 1340 | 1340 | Ø395                 | 820  | 820  | 340    | 1,67  |
| MODELS | FOUR-KITCHEN-042 | 4200         | 3015 | 1340 | 1495 | Ø555                 | 820  | 1440 | 630    | 3,04  |
| MOL    | FOUR-KITCHEN-063 | 6300         | 3015 | 1340 | 1495 | Ø705                 | 1440 | 1130 | 690    | 3,53  |
|        | FOUR-KITCHEN-084 | 8400         | 2945 | 1340 | 1495 | 660x1280             | 1440 | 1440 | 810    | 5,45  |
|        | FOUR-KITCHEN-105 | 10500        | 2945 | 1340 | 1495 | 660x1590             | 1440 | 1750 | 910    | 5,6   |

# FOUR-KITCHEN UV



|     |                     | Flow<br>Rate | A    | В    | С    | Inlet Outlet<br>(ØD) | E    | F    | G    | Weight | Power |
|-----|---------------------|--------------|------|------|------|----------------------|------|------|------|--------|-------|
|     |                     | m³/h         | mm   | mm   | mm   | mm                   | mm   | mm   | mm   | Kg     | kW    |
|     | FOUR-KITCHEN-UV-021 | 2100         | 3890 | 1340 | 1030 | Ø395                 | 1340 | 820  | 820  | 470    | 2,07  |
| ELS | FOUR-KITCHEN-UV-042 | 4200         | 4045 | 1340 | 1030 | Ø555                 | 1495 | 1440 | 820  | 850    | 3,92  |
| MOD | FOUR-KITCHEN-UV-063 | 6300         | 4045 | 1340 | 1030 | Ø705                 | 1495 | 1130 | 1440 | 950    | 4,63  |
|     | FOUR-KITCHEN-UV-084 | 8400         | 3975 | 1340 | 1030 | 660x1280             | 1495 | 1440 | 1440 | 1080   | 6,77  |
|     | FOUR-KITCHEN-UV-105 | 10500        | 3975 | 1340 | 1030 | 660x1590             | 1495 | 1750 | 1440 | 1200   | 7,36  |

# 4- FILTER CAPACITIES FOUR-KITCHEN

|        |                  |                         | Р    | Odor<br>Capture % | Grease<br>Capture % |       |       |    |    |
|--------|------------------|-------------------------|------|-------------------|---------------------|-------|-------|----|----|
|        |                  | 0,4 μ                   | ≥ 99 | 99-95             | 95-90               | 90-80 | < 80  |    |    |
|        |                  | > 0,5 µ                 | 99,6 | 99,5              | 98,4                | 97,3  | 93,2  |    |    |
| S.     | FOUR-KITCHEN-021 | Flow Rate -<br>(m³/h) - | 1300 | 1700              | 2100                | 2550  | 3360  | 90 | 95 |
|        | FOUR-KITCHEN-042 |                         | 2600 | 3400              | 4200                | 5100  | 6720  | 90 | 95 |
| MODELS | FOUR-KITCHEN-063 |                         | 3900 | 5100              | 6300                | 7650  | 10080 | 90 | 95 |
| M      | FOUR-KITCHEN-084 |                         | 5200 | 6800              | 8400                | 10200 | 13440 | 90 | 95 |
|        | FOUR-KITCHEN-105 |                         | 6500 | 8500              | 10500               | 12750 | 16800 | 90 | 95 |

- There are four distinct filter stages in the device.
- Solid and coarse particles are caught with flame repellent metal filter.
- GreaseStop filter stops rough oil particles by 99% and prevents passage of water vapor.
- Electrostatic filter catches particles with the efficiency by 99 %.
- Activated carbon filter eliminates odor by 90%.

#### FOUR-KITCHEN UV LAMP MODEL

|          |                     |           |        | Particle Ca | Odor<br>Capture % | Grease<br>Capture % |       |    |      |
|----------|---------------------|-----------|--------|-------------|-------------------|---------------------|-------|----|------|
|          |                     | 0,4 μ     | ≥ 99,5 | 99,5-96     | 96-91             | 91-85               | < 85  |    |      |
|          |                     | > 0,5 µ   | 99,8   | 99,6        | 99                | 97,8                | 94    |    |      |
|          | FOUR-KITCHEN-UV-021 |           | 1300   | 1700        | 2100              | 2550                | 3360  | 99 | 99,9 |
| 딾        | FOUR-KITCHEN-UV-042 | Flow Data | 2600   | 3400        | 4200              | 5100                | 6720  | 99 | 99,9 |
| MODELLER | FOUR-KITCHEN-UV-063 | Flow Rate | 3900   | 5100        | 6300              | 7650                | 10080 | 99 | 99,9 |
| MOM      | FOUR-KITCHEN-UV-084 | (m³/h)    | 5200   | 6800        | 8400              | 10200               | 13440 | 99 | 99,9 |
|          | FOUR-KITCHEN-UV-105 |           | 6500   | 8500        | 10500             | 12750               | 16800 | 99 | 99,9 |

- There are five distinct filter stages in the device.
- Solid and coarse particles are caught with flame repellent metal filter.
- GreaseStop filter stops rough oil particles by 99% and prevents passage of water vapor.
- Electrostatic filter catches particles with the efficiency by 99 %.
- Activated carbon filter eliminates odor by 90%.
- UV-C Lamps catch oil molecules in gas form by 99,9%.
- UV-C and activated carbon filters remove odor by 99%.
- Exhausted air through UV-C system is purified from microorganisms.



# Factory

ITOB Organize Sanayi Bölgesi 10010 Sok. No: 4 35473 Tekeli / Menderes / Izmir / TURKEY Tel: +90 (232) 799 02 40 Faks: +90 (232) 799 92 04

#### Istanbul Area

Barbaros Mah. Çigdem Sok. No:1 Agaoglu My Office Kat: 4/18 Atasehir/Istanbul Tel: +90 (216) 250 55 45 Faks: +90 (216) 250 55 46

#### Ankara Area

Çetin Emeç Bulvarı 1065 Cad. (Eski 2.Cad) 1309 Sok. No: B/4 Öveçler / Çankaya / ANKARA Tel: +90 (312) 472 11 45 Faks: +90 (312) 472 11 46









# KITCHEN HOOD CATALOG



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.

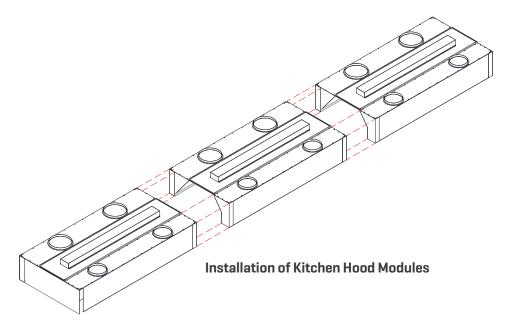











# INTRODUCTION

Since 2005, DOGU HVAC has been directing the sector with its projects on industrial hoods, which are the most important part of kitchen ventilation, and new products it has developed, and exports to European, Asian, Middle Eastern and African countries. It is the first domestic company in Turkey to produce high performance kitchen hoods, which are the most preferred industrial hood types in the world, and to produce high performance kitchen hoods with water wash with the TÜBITAK project in 2012.

### **1-GENERAL FEATURES**

All kitchen hoods are manufactured from AISI 304 quality stainless steel as island and wall type in desired dimensions and modularly. It can also be produced from galvanized or AISI 316 stainless steel upon request. All parts are joined by TIG welding and welding traces are completely removed. Corners and all kinds of joints are felted in such a way that the joint traces will not be visible, and a uniform appearance is provided by polishing the top. IP 65 class lighting modules are used in kitchen hoods. Lighting under the hood is made with LED lamps. There is a tempered glass protector on the lamps that allows it to work between -40 and +300°C. The minimum and maximum dimensions of the hoods produced are given in the table below. Hoods that are larger than these values are produced as modular and assembled on site.

|           |           | MODE      | L SIZE      |
|-----------|-----------|-----------|-------------|
| KITCHEN H | IOOD CODE | WALL TYPE | ISLAND TYPE |
|           |           | LxW       | L×W         |
| нрр       | Min.      | 650x800   | 1000×1700   |
| 1100      | Max.      | 2600x2000 | 2900x2800   |
| нүн       | Min.      | 1000×1000 | 1000x1700   |
|           | Max.      | 2600x2100 | 2900x2800   |
| HWW       | Min.      | 1000x1300 | 2900x2200   |
| 110000    | Max.      | 2900x2800 | 2900x2800   |
| HDS       | Min.      | 1000x1000 | -           |
| про       | Max.      | 2950x1800 | -           |
| нрх       | Min.      | 500x500   | -           |
| ппх       | Max.      | 2950x1800 | -           |
| HYH-UV    | Min.      | 1000×1000 | 1000x1700   |
| 11111-0V  | Max.      | 2600x2100 | 2900x2800   |



All kitchen hoods are put into use by the expert technical personnel of DOGU HVAC after they are assembled on site and system settings are made. It is under the guarantee of our company against production faults for 2 years from its installation.

### **KITCHEN HOOD GENERAL FEATURES**

|                      | Standard                         | Option                                               |  |  |
|----------------------|----------------------------------|------------------------------------------------------|--|--|
| Material             | AISI 304 Quality Stainless Steel | AISI 316 Quality Stainless Steel Sheet or Galvanized |  |  |
| Body Sheet Thickness | 0,8 mm                           | 1 or 1,2 mm                                          |  |  |
| Height               | 400-600 mm                       | -                                                    |  |  |
| Exhaust Outlets      | Circular Section (ø 315 mm)      | Square or Rectangular Section                        |  |  |
| Fresh Air Intakes    | Circular Section (ø 250 mm)      | Square or Rectangular Section                        |  |  |
| Lighting             | LED Lamp                         | -                                                    |  |  |

### **FILTERS**

The filters are produced from 0.60 mm thick AISI 304 quality stainless steel material. Oil trap filters are produced as percussion and cyclone type. All filters are detachable and can be easily cleaned. The filters are flame-retardant and prevent the passage of flame into the kitchen hood.

# **BAFFEL TYPE FILTER**

Baffle type filters are one of the most used filter types in kitchen hoods. Approximate holding efficiencies for 10 µm particles are around 30%. In these filters, the exhaust air passes through the curtains. Together with the exhaust air, the oil particle rotates due to its momentum and hits the plate and filtration is provided. They have flame retardant properties. Pollution does not change the pressure drops too much.



**Baffel Type Filter** 

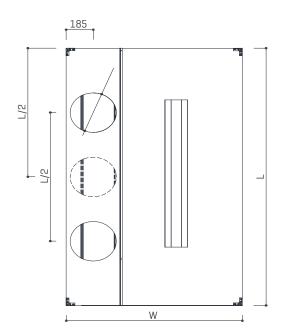
# **CYCLONE FILTER**

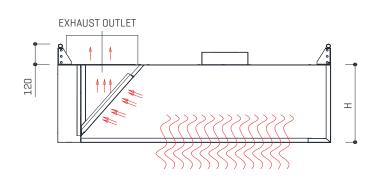
It has just started to be used in kitchen hoods. It has a non-clogging design; In this way, it can be used for long periods without cleaning. When it is full, it can be easily removed and washed easily. It has a long service life. It creates a constant and low pressure loss in the system.

With the cyclone type filter, approximately 60% of 5 µm particles and 95% of 10 µm particles are captured.

In cyclone type filters, the air entering the filter starts to rotate due to the structure of the filter and the oil particles collide with the filter surface and are collected in the condensation pan under the filter. The air leaves the filter from the top and bottom of the filter.

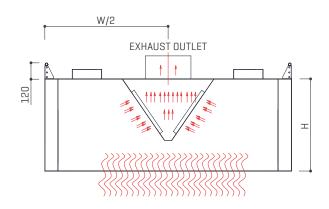


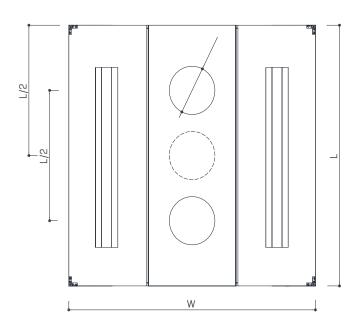

**Cyclone Filter** 


# 2-HDD CLASSIC FILTER KITCHEN HOOD

- © Classic type hoods are generally used in kitchens where small exhaust flow rates occur. The hood only removes the greasy fumes generated during cooking from the environment.
- © Classic type hoods exhaust the air from the environment with a single aspirator with the help of the duct and give it to the outside air. It has a condensation pan that covers the hood all around.
- This type of hoods are produced with filters to be used instead of high performance hoods if high performance hoods are not used.
- All parts of the classic type hoods are made of 100% AISI 304 stainless steel. It can also be produced from galvanized or AISI 316 stainless sheet according to the customer's request.
- The body of the hood is produced from AISI 304 quality stainless sheet with brushed appearance. The main elements are assembled with easy-to-assemble sealed connections. Sealing elements or welded connections are used where necessary. The hood has a condensation pan with rounded corners, free from burrs and covering the hood all around. The lower corners are combined with leak-proof welded manufacturing to prevent harmful water from dripping.




**Classic Filtered Hood Selection Wall Mounted** 






| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1 | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|----|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 6501500       |              | 400/600       | ø315 | -  | 750x150x85              | 1                                | 1                                   | -                                     |
| 15001700      | 8002000      | 400/600       | ø315 | -  | 1250x150x85             | 1                                | 1                                   | -                                     |
| 17002000      | 8002000      | 400/600       | ø315 | -  | 1250×150×85             | 1                                | 2                                   | -                                     |
| 20002600      |              | 400/600       | ø315 | -  | 1750×150×85             | 1                                | 2                                   | -                                     |

# 2-HDD CLASSIC FILTER KITCHEN HOOD

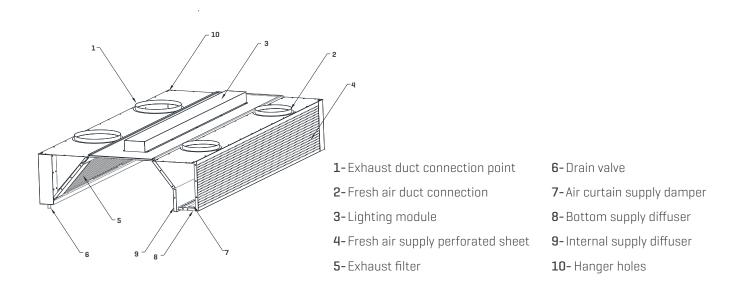




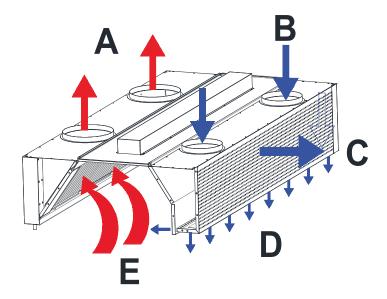
| LENGTH<br>100dL <del>1</del> 500 | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1 | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|----------------------------------|--------------|---------------|------|----|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001500                         |              | 400/600       | ø315 | -  | 750×150×85              | 2                                | 2                                   | -                                     |
| 15001700                         | 1700 2000    | 400/600       | ø315 | -  | 1250x150x85             | 2                                | 2                                   | -                                     |
| 17002000                         | 17002000     | 400/600       | ø315 | -  | 1250x150x85             | 2                                | 4                                   | -                                     |
| 20002600                         |              | 400/600       | ø315 | -  | 1750×150×85             | 2                                | 4                                   | -                                     |

# 3-HYH HIGH PERFORMANCE KITCHEN HOOD

High performance kitchen hoods, which provide energy savings of around 30-40%, pay for themselves within 1 year after the first investment in many projects. They also provide hygienic and quality environments in the cooking and show sections of kitchens and restaurants.

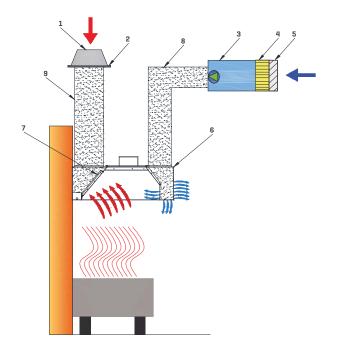



Unlike the classical type hood, the high performance hood supply fresh air over itself to the space and downwards to form an air curtain. In this way, less conditioned air is thrown out and some of the fresh air needed by the place is met.


### General Features of High Performance Kitchen Hoods

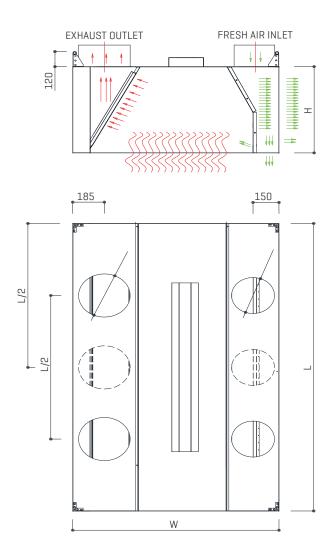
- Production as modular in every dimension
- Flame retardant cyclone type filter
- € 30% 40% reduction in exhaust air flow compared to conventional hood
- The fresh air side of the hood is insulated against internal condensation

### Yüksek Performanslı Davlumbaz Elemanları



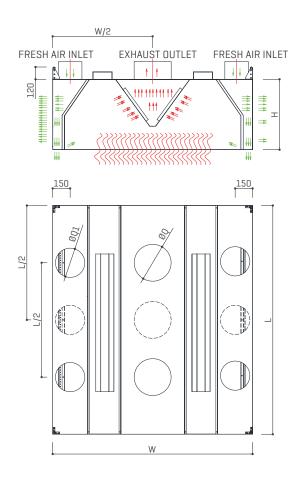

# **WORKING PRINCIPLE OF HIGH PERFORMANCE KITCHEN HOOD**




- A-Exhaust air
- **B-**Fresh air
- **C-**Fresh air is supply from the front surface towards the room with a homogeneous and low air velocity, both wrapping the hood and supporting the fresh air requirement of the space.
- **D-** Fresh air is supply from the bottom of the hood vertically to the floor, preventing the pollutant air from the cooking units escaping into the space by forming an air curtain and directing it towards the exhaust side.
- **E-** Fresh air is supply towards the filter, creating a pushing force on the pollutant air coming out of the cooking units and providing a better grip on the exhaust. Thanks to the fresh air, the conditioned air around the hood cannot be directed towards the hood and as a result, energy savings are achieved.

## Yüksek performanslı davlumbaz uygulaması asagıdaki sekilde gösterilmistir.




- 1- Aspirator
- 2- Aspirator Filter
- 3- Ventilator
- **4-** Dust Filter (F7)
- **5-** Coarse Filter (G4)
- 6- Kitchen Hood
- 7- Kitchen Hood Filter
- 8- Fresh Air Line
- 9- Egzoz Air Hattı

# **HIGH PERFORMANCE HOOD SELECTION (WALL MOUNTED)**



| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1    | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|-------|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001500      |              | 400/600       | ø315 | ø 250 | 750x150x85              | 1                                | 1                                   | 1                                     |
| 15001700      | 1000 0100    | 400/600       | ø315 | ø 250 | 1250x150x85             | 1                                | 1                                   | 1                                     |
| 17002000      | 10002100     | 400/600       | ø315 | ø 250 | 1250x150x85             | 1                                | 2                                   | 2                                     |
| 20002600      |              | 400/600       | ø315 | ø 250 | 1750x150x85             | 1                                | 2                                   | 2                                     |

# **ISLAND TYPE**



| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1    | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|-------|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001500      |              | 400/600       | ø315 | ø 250 | 750x150x85              | 2                                | 2                                   | 2                                     |
| 15001700      | 17002800     | 400/600       | ø315 | ø 250 | 1250x150x85             | 2                                | 2                                   | 2                                     |
| 17002000      | 17002800     | 400/600       | ø315 | ø 250 | 1250x150x85             | 2                                | 4                                   | 4                                     |
| 20002900      |              | 400/600       | ø315 | ø 250 | 1750x150x85             | 2                                | 4                                   | 4                                     |

### 4-HWW HIGH PERFORMANCE KITCHEN HOOD WITH WATER WASH

The high performance kitchen hood with water wash, developed with the TÜBITAK project in 2012, also includes all the features of the high performance kitchen hood.

With the washing installation in the exhaust line, filters, condensation pan and the line through which oily smoke passes are completely washed, preventing many problems such as the fire hazard that is frequently encountered in kitchens and not washing the filters.

The hood has a washing facility to wash the exhaust side and the back of the filters. All washing installation elements and connections used are leakproof. Panels and electrical components with IP55 protection class are used for the automation system.

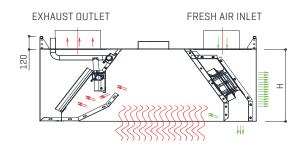


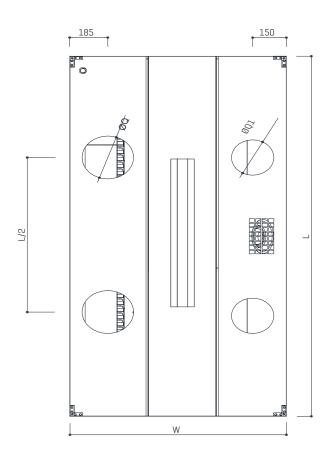
# GENERAL FEATURES OF HIGH PERFORMANCE KITCHEN HOODS WITH WATER WASH

- Realizing fresh air supply over itself with double-skin design
- © 30-40% lower exhaust flow requirement compared to conventional hoods
- Curinterrupted hygiene and safety in kitchens with washable filter and condensation pan
- Automatically controlled 7 days and 24 hours programmable detergent washing function
- Flame retardant cyclone type filter
- Production as modular in every dimension

### **OPERATION PRINCIPLE**

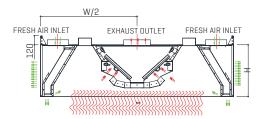
The hood, which is controlled by the automation system, can be programmed and can be washed for the desired time and duration. In the system with short, medium and long programs, the washing steps are as follows:

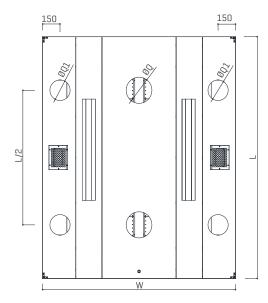

- **1-**Pre-wash: The oil accumulated on the exhaust side of the hood is softened with hot water.
- **2-Washing with detergent:** The washing liquid and water are mixed with the dosing pump and sent to the hoods and washing is carried out.
- **3-**Rinsing: After washing, the remaining detergent and dissolved oil in the hood are washed and discharged.


Note: The desired special program can also be created by the user.



High Performance Kitchen Hood with Water Wash Top View


# SELECTION OF HIGH PERFORMANCE KITCHEN HOOD WITH WATER WASH






| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q     | Q1    | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|-------|-------|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001500      |              | 400/600       | ø 315 | ø 250 | 750x150x85              | 1                                | 1                                   | 1                                     |
| 15001700      | 17002800     | 400/600       | ø 315 | ø 250 | 1250x150x85             | 1                                | 1                                   | 1                                     |
| 17002000      | 17002800     | 400/600       | ø 315 | ø 250 | 1250x150x85             | 1                                | 2                                   | 4                                     |
| 20002900      |              | 400/600       | ø 315 | ø 250 | 1750×150×85             | 1                                | 2                                   | 2                                     |

# **ISLAND TYPE**



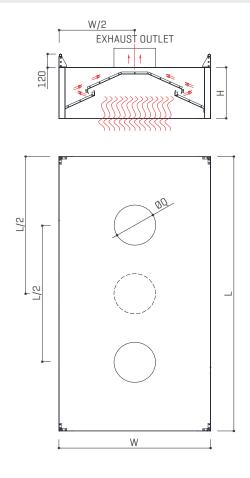


| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1    | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|-------|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001500      |              | 600           | ø315 | ø 250 | 750x150x85              | 2                                | 2                                   | 2                                     |
| 15001700      | 22002800     | 600           | ø315 | ø 250 | 1250x150x85             | 2                                | 2                                   | 2                                     |
| 17002000      | 22002800     | 600           | ø315 | ø 250 | 1250x150x85             | 2                                | 4                                   | 4                                     |
| 20002900      |              | 600           | ø315 | ø 250 | 1750x150x85             | 2                                | 4                                   | 4                                     |

# **HDS HIGH PERFORMANCE CONDENSING KITCHEN HOOD**

High performance condensing kitchen hoods are designed to be used in places where water vapor is concentrated (laundry, dishwashing room and tea stoves). In order to capture the water vapor at the maximum level, the inner walls of the hood are covered with condensation pans. The exhaust air coming with the dense amount of steam hits the condensation pans and the water vapor turns into water particles. These particles are collected and accumulated in condensation pans. The accumulated water is discharged through the valves in the condensation pans.

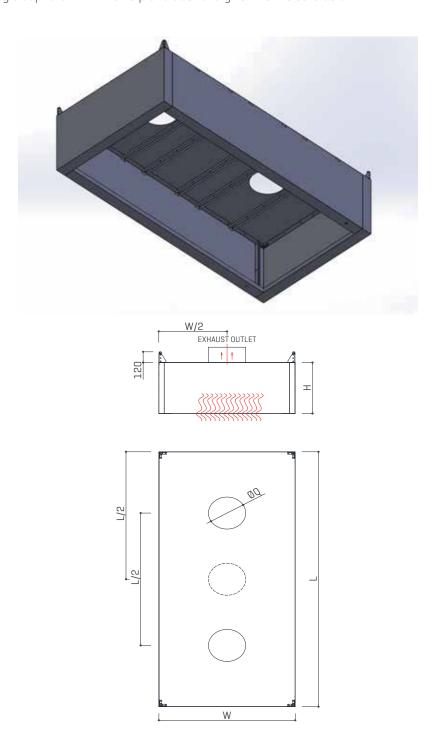



**HDS High Performance Condensing Kitchen Hood** 

Condensing hood is produced from AISI 304 quality stainless sheet. The main elements are assembled with easy-to-assemble sealed connections. Where necessary, sealing elements and welded connections are used.

The hood has a condensation duct with rounded corners, free from burrs and covering the hood all around. There are two condensation pans in the hoods. This pan is produced as welded and sealed.

There are drainage valves on both sides to drain the collected water. The lower corners are produced as welded to prevent harmful water from dripping.


# SELECTION OF HDS HIGH PERFORMANCE CONDENSING KITCHEN HOOD



| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1 | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|----|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001700      | 10002100     | 400/600       | ø315 | -  | -                       | -                                | 1                                   | -                                     |
| 17002950      | 10002100     | 400/600       | ø315 | -  | -                       | -                                | 2                                   | -                                     |

# HDX CLASSIC KITCHEN HOOD WITHOUT FILTER

This type of kitchen hoods are used in places where there is no oil outlet, only for the purpose of removing the air in the environment. Absolutely no filterless hood should be used on a cooking counter. It is suitable to be used in the dishwasher, tea room or cold preparation sections. The body and duct connection elements of classical type hoods are produced from 100% AISI 304 stainless steel, as in other hoods. Classic type hoods without filter draw the exhaust air from the environment with a single aspirator with the help of a duct and give it to the outside air.



| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1 | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|----|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 5001700       | 5002100      | 400/600       | ø315 | -  | -                       | -                                | 1                                   | -                                     |
| 17002950      | 3002100      | 400/600       | ø315 | -  | -                       | -                                | 2                                   | -                                     |

### High Performance Kitchen Hood With UV Lamp (HYH-UV)

Depending on the customer's request, a UV lamp can be added to the high performance kitchen hood. In this model, the filters and the section where the UV lamp is located are manufactured in a sealed structure to prevent UV rays from leaking. The hoods are delivered with the necessary electrical and automation infrastructure for the operation of the UV lamp.

HYH-UV model hoods are used in kitchens where there is intense oil and odor output, but where chimney problems are experienced. The ultraviolet rays and ozone gas created by the UV lamp break down the oil and odor molecules coming from the hood and prevent their passage to the exhaust duct. In this way, the exhaust ducts stay clean for longer and duct maintenance costs can be kept at a minimum. It also alleviates the load of filtered aspirators (air filtration units) to be used in the system.

In HYH-UV model hoods, V-UV type lamps producing rays with a wavelength of 185 nm are used. The light produced at this wavelength deforms the structure of organic molecules and neutralizes them, and also increases the filtration effect by producing ozone [03] gas.

# **HYY/Console Type Kitchen Hood**

Console type kitchen hoods, also known as Köfteci hoods, are produced as double-skin and, on the one hand, they remove the exhaust fumes formed under the hood, on the other hand, they give fresh air to the space.

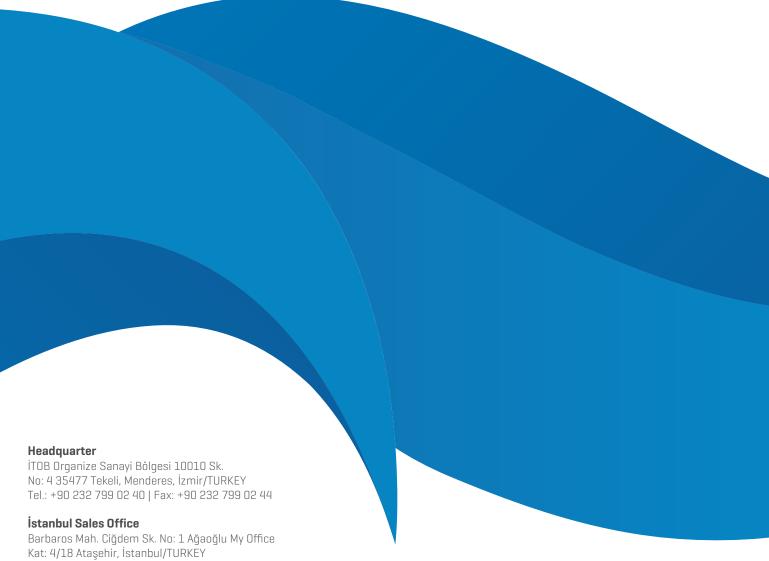
Console type high performance hoods are the hoods with high suction power preferred in fast food kitchens, grilling, frying and cooking areas of kitchens or narrow and small but high density kitchens. Thanks to its special design, it reduces the heat emitted in the cooking appliances. Due to this feature, it is a product that increases energy savings in air-conditioned kitchens.





www.davlumbazsecim.com

Our kitchen hood selection program, prepared by our software engineers with the support of TUBITAK in 2012, is the first product selection program in our sector written by a local company. The program calculates the hood exhaust flow rate according to the VDI 2052 standard. It prevents the exhaust flow rates calculated with wrong methods and enables the correct flow rates to be easily calculated.


### www.mutfakhavalandirmasi.com

You can also contribute with your comments on our page where we share information about kitchen ventilation with our articles that we add periodically.

| NOTES |               |              |
|-------|---------------|--------------|
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       | iklimlendirme | HVAC SYSTEMS |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |







Tel.: +90 216 250 55 45 | Fax:+90 216 250 55 56

#### **Ankara Sales Office**

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A Blok Kat:11 Ofis:1104 06520 Söğütözü, Yenimahalle, Ankara/TURKEY Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

## **Antalya Sales Office**

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel.: +90 242 505 87 77

### **Adana Sales Office**

Mimar Selim Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301











# KITCHEN HOOD CATALOG



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.

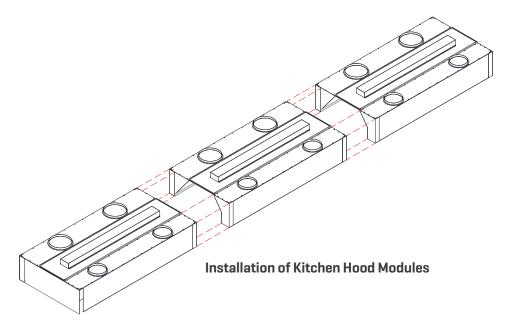











# INTRODUCTION

Since 2005, DOGU HVAC has been directing the sector with its projects on industrial hoods, which are the most important part of kitchen ventilation, and new products it has developed, and exports to European, Asian, Middle Eastern and African countries. It is the first domestic company in Turkey to produce high performance kitchen hoods, which are the most preferred industrial hood types in the world, and to produce high performance kitchen hoods with water wash with the TÜBITAK project in 2012.

### **1-GENERAL FEATURES**

All kitchen hoods are manufactured from AISI 304 quality stainless steel as island and wall type in desired dimensions and modularly. It can also be produced from galvanized or AISI 316 stainless steel upon request. All parts are joined by TIG welding and welding traces are completely removed. Corners and all kinds of joints are felted in such a way that the joint traces will not be visible, and a uniform appearance is provided by polishing the top. IP 65 class lighting modules are used in kitchen hoods. Lighting under the hood is made with LED lamps. There is a tempered glass protector on the lamps that allows it to work between -40 and +300°C. The minimum and maximum dimensions of the hoods produced are given in the table below. Hoods that are larger than these values are produced as modular and assembled on site.

|           |           | MODE      | L SIZE      |
|-----------|-----------|-----------|-------------|
| KITCHEN H | IOOD CODE | WALL TYPE | ISLAND TYPE |
|           |           | LxW       | L×W         |
| нрр       | Min.      | 650x800   | 1000×1700   |
| 1100      | Max.      | 2600x2000 | 2900x2800   |
| нүн       | Min.      | 1000×1000 | 1000x1700   |
|           | Max.      | 2600x2100 | 2900x2800   |
| HWW       | Min.      | 1000x1300 | 2900x2200   |
| 110000    | Max.      | 2900x2800 | 2900x2800   |
| HDS       | Min.      | 1000x1000 | -           |
| про       | Max.      | 2950x1800 | -           |
| нрх       | Min.      | 500x500   | -           |
| ппх       | Max.      | 2950x1800 | -           |
| HYH-UV    | Min.      | 1000×1000 | 1000x1700   |
| 11111-0V  | Max.      | 2600x2100 | 2900x2800   |



All kitchen hoods are put into use by the expert technical personnel of DOGU HVAC after they are assembled on site and system settings are made. It is under the guarantee of our company against production faults for 2 years from its installation.

### **KITCHEN HOOD GENERAL FEATURES**

|                      | Standard                         | Option                                               |  |
|----------------------|----------------------------------|------------------------------------------------------|--|
| Material             | AISI 304 Quality Stainless Steel | AISI 316 Quality Stainless Steel Sheet or Galvanized |  |
| Body Sheet Thickness | 0,8 mm                           | 1 or 1,2 mm                                          |  |
| Height               | 400-600 mm                       | -                                                    |  |
| Exhaust Outlets      | Circular Section (ø 315 mm)      | Square or Rectangular Section                        |  |
| Fresh Air Intakes    | Circular Section (ø 250 mm)      | Square or Rectangular Section                        |  |
| Lighting             | LED Lamp                         | -                                                    |  |

### **FILTERS**

The filters are produced from 0.60 mm thick AISI 304 quality stainless steel material. Oil trap filters are produced as percussion and cyclone type. All filters are detachable and can be easily cleaned. The filters are flame-retardant and prevent the passage of flame into the kitchen hood.

# **BAFFEL TYPE FILTER**

Baffle type filters are one of the most used filter types in kitchen hoods. Approximate holding efficiencies for 10 µm particles are around 30%. In these filters, the exhaust air passes through the curtains. Together with the exhaust air, the oil particle rotates due to its momentum and hits the plate and filtration is provided. They have flame retardant properties. Pollution does not change the pressure drops too much.



**Baffel Type Filter** 

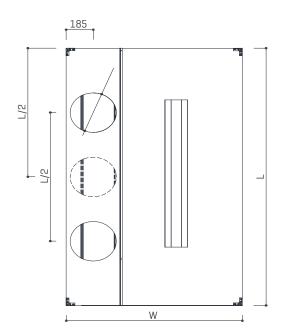
# **CYCLONE FILTER**

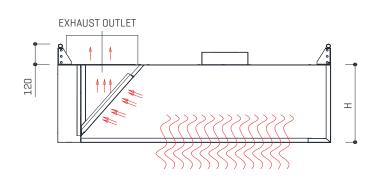
It has just started to be used in kitchen hoods. It has a non-clogging design; In this way, it can be used for long periods without cleaning. When it is full, it can be easily removed and washed easily. It has a long service life. It creates a constant and low pressure loss in the system.

With the cyclone type filter, approximately 60% of 5 µm particles and 95% of 10 µm particles are captured.

In cyclone type filters, the air entering the filter starts to rotate due to the structure of the filter and the oil particles collide with the filter surface and are collected in the condensation pan under the filter. The air leaves the filter from the top and bottom of the filter.

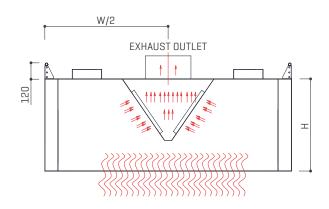


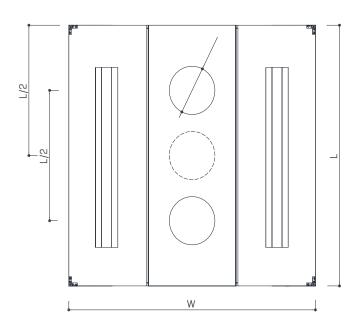

**Cyclone Filter** 


# 2-HDD CLASSIC FILTER KITCHEN HOOD

- © Classic type hoods are generally used in kitchens where small exhaust flow rates occur. The hood only removes the greasy fumes generated during cooking from the environment.
- © Classic type hoods exhaust the air from the environment with a single aspirator with the help of the duct and give it to the outside air. It has a condensation pan that covers the hood all around.
- This type of hoods are produced with filters to be used instead of high performance hoods if high performance hoods are not used.
- All parts of the classic type hoods are made of 100% AISI 304 stainless steel. It can also be produced from galvanized or AISI 316 stainless sheet according to the customer's request.
- The body of the hood is produced from AISI 304 quality stainless sheet with brushed appearance. The main elements are assembled with easy-to-assemble sealed connections. Sealing elements or welded connections are used where necessary. The hood has a condensation pan with rounded corners, free from burrs and covering the hood all around. The lower corners are combined with leak-proof welded manufacturing to prevent harmful water from dripping.




**Classic Filtered Hood Selection Wall Mounted** 






| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1 | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|----|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 6501500       |              | 400/600       | ø315 | -  | 750x150x85              | 1                                | 1                                   | -                                     |
| 15001700      | 8002000      | 400/600       | ø315 | -  | 1250x150x85             | 1                                | 1                                   | -                                     |
| 17002000      | 0002000      | 400/600       | ø315 | -  | 1250×150×85             | 1                                | 2                                   | -                                     |
| 20002600      |              | 400/600       | ø315 | -  | 1750×150×85             | 1                                | 2                                   | -                                     |

# 2-HDD CLASSIC FILTER KITCHEN HOOD

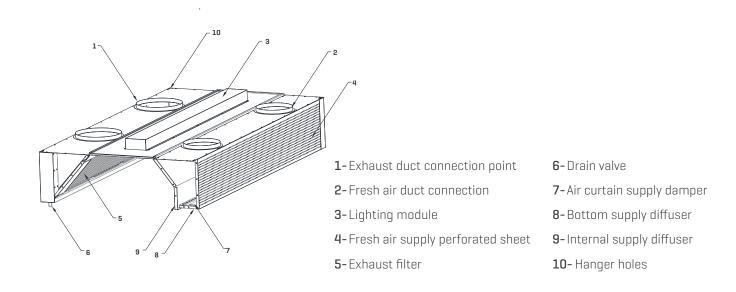




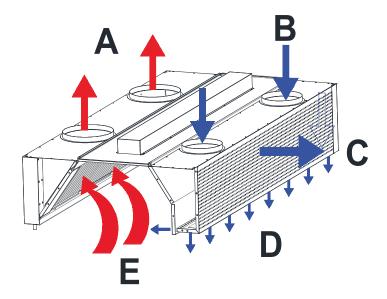
| LENGTH<br>100dL <del>1</del> 500 | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1 | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|----------------------------------|--------------|---------------|------|----|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001500                         |              | 400/600       | ø315 | -  | 750×150×85              | 2                                | 2                                   | -                                     |
| 15001700                         | 17002000     | 400/600       | ø315 | -  | 1250x150x85             | 2                                | 2                                   | -                                     |
| 17002000                         | 1/002000     | 400/600       | ø315 | -  | 1250x150x85             | 2                                | 4                                   | -                                     |
| 20002600                         |              | 400/600       | ø315 | -  | 1750×150×85             | 2                                | 4                                   | -                                     |

# 3-HYH HIGH PERFORMANCE KITCHEN HOOD

High performance kitchen hoods, which provide energy savings of around 30-40%, pay for themselves within 1 year after the first investment in many projects. They also provide hygienic and quality environments in the cooking and show sections of kitchens and restaurants.

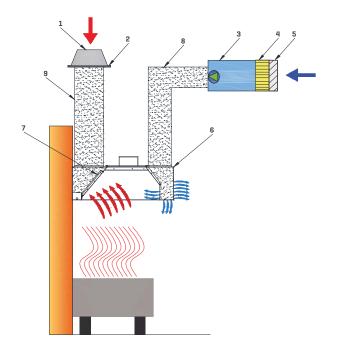



Unlike the classical type hood, the high performance hood supply fresh air over itself to the space and downwards to form an air curtain. In this way, less conditioned air is thrown out and some of the fresh air needed by the place is met.


### General Features of High Performance Kitchen Hoods

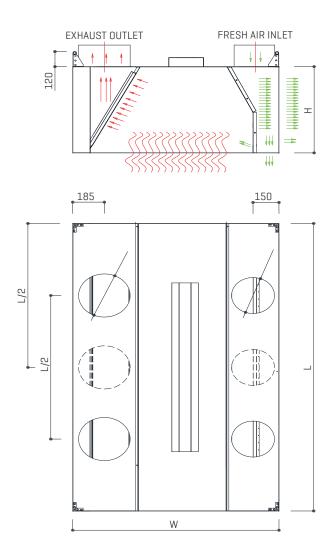
- Production as modular in every dimension
- Flame retardant cyclone type filter
- € 30% 40% reduction in exhaust air flow compared to conventional hood
- The fresh air side of the hood is insulated against internal condensation

### Yüksek Performanslı Davlumbaz Elemanları



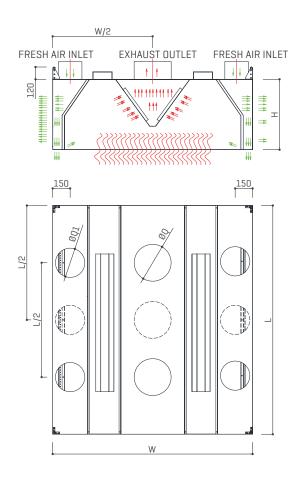

# **WORKING PRINCIPLE OF HIGH PERFORMANCE KITCHEN HOOD**




- A-Exhaust air
- **B-**Fresh air
- **C-**Fresh air is supply from the front surface towards the room with a homogeneous and low air velocity, both wrapping the hood and supporting the fresh air requirement of the space.
- **D-** Fresh air is supply from the bottom of the hood vertically to the floor, preventing the pollutant air from the cooking units escaping into the space by forming an air curtain and directing it towards the exhaust side.
- **E-** Fresh air is supply towards the filter, creating a pushing force on the pollutant air coming out of the cooking units and providing a better grip on the exhaust. Thanks to the fresh air, the conditioned air around the hood cannot be directed towards the hood and as a result, energy savings are achieved.

## Yüksek performanslı davlumbaz uygulaması asagıdaki sekilde gösterilmistir.




- 1- Aspirator
- 2- Aspirator Filter
- 3- Ventilator
- **4-** Dust Filter (F7)
- **5-** Coarse Filter (G4)
- 6- Kitchen Hood
- 7- Kitchen Hood Filter
- 8- Fresh Air Line
- 9- Egzoz Air Hattı

# **HIGH PERFORMANCE HOOD SELECTION (WALL MOUNTED)**



| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1    | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|-------|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001500      |              | 400/600       | ø315 | ø 250 | 750x150x85              | 1                                | 1                                   | 1                                     |
| 15001700      | 10002100     | 400/600       | ø315 | ø 250 | 1250x150x85             | 1                                | 1                                   | 1                                     |
| 17002000      | 10002100     | 400/600       | ø315 | ø 250 | 1250x150x85             | 1                                | 2                                   | 2                                     |
| 20002600      |              | 400/600       | ø315 | ø 250 | 1750x150x85             | 1                                | 2                                   | 2                                     |

# **ISLAND TYPE**



| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1    | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|-------|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001500      |              | 400/600       | ø315 | ø 250 | 750x150x85              | 2                                | 2                                   | 2                                     |
| 15001700      | 17002800     | 400/600       | ø315 | ø 250 | 1250x150x85             | 2                                | 2                                   | 2                                     |
| 17002000      | 1/002800     | 400/600       | ø315 | ø 250 | 1250x150x85             | 2                                | 4                                   | 4                                     |
| 20002900      |              | 400/600       | ø315 | ø 250 | 1750x150x85             | 2                                | 4                                   | 4                                     |

### 4-HWW HIGH PERFORMANCE KITCHEN HOOD WITH WATER WASH

The high performance kitchen hood with water wash, developed with the TÜBITAK project in 2012, also includes all the features of the high performance kitchen hood.

With the washing installation in the exhaust line, filters, condensation pan and the line through which oily smoke passes are completely washed, preventing many problems such as the fire hazard that is frequently encountered in kitchens and not washing the filters.

The hood has a washing facility to wash the exhaust side and the back of the filters. All washing installation elements and connections used are leakproof. Panels and electrical components with IP55 protection class are used for the automation system.

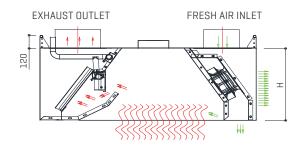


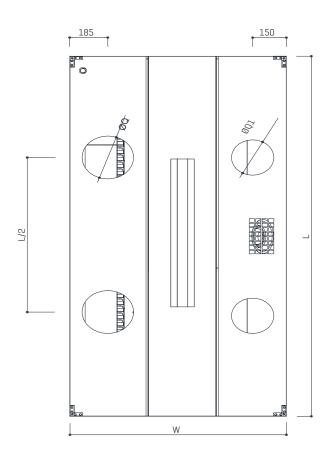
# GENERAL FEATURES OF HIGH PERFORMANCE KITCHEN HOODS WITH WATER WASH

- Realizing fresh air supply over itself with double-skin design
- © 30-40% lower exhaust flow requirement compared to conventional hoods
- Curinterrupted hygiene and safety in kitchens with washable filter and condensation pan
- Automatically controlled 7 days and 24 hours programmable detergent washing function
- Flame retardant cyclone type filter
- Production as modular in every dimension

### **OPERATION PRINCIPLE**

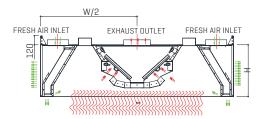
The hood, which is controlled by the automation system, can be programmed and can be washed for the desired time and duration. In the system with short, medium and long programs, the washing steps are as follows:

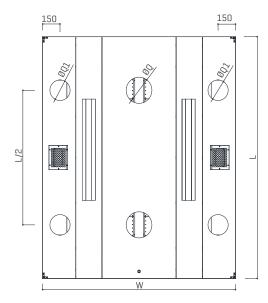

- **1-**Pre-wash: The oil accumulated on the exhaust side of the hood is softened with hot water.
- **2-Washing with detergent:** The washing liquid and water are mixed with the dosing pump and sent to the hoods and washing is carried out.
- **3-**Rinsing: After washing, the remaining detergent and dissolved oil in the hood are washed and discharged.


Note: The desired special program can also be created by the user.



High Performance Kitchen Hood with Water Wash Top View


# SELECTION OF HIGH PERFORMANCE KITCHEN HOOD WITH WATER WASH






| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q     | Q1    | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|-------|-------|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001500      |              | 400/600       | ø 315 | ø 250 | 750x150x85              | 1                                | 1                                   | 1                                     |
| 15001700      | 1700 2000    | 400/600       | ø 315 | ø 250 | 1250x150x85             | 1                                | 1                                   | 1                                     |
| 17002000      | 17002800     | 400/600       | ø 315 | ø 250 | 1250x150x85             | 1                                | 2                                   | 4                                     |
| 20002900      |              | 400/600       | ø 315 | ø 250 | 1750×150×85             | 1                                | 2                                   | 2                                     |

# **ISLAND TYPE**



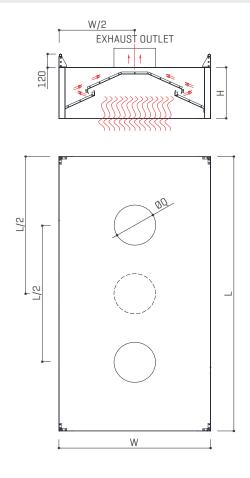


| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1    | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|-------|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001500      |              | 600           | ø315 | ø 250 | 750x150x85              | 2                                | 2                                   | 2                                     |
| 15001700      | 2200 2000    | 600           | ø315 | ø 250 | 1250x150x85             | 2                                | 2                                   | 2                                     |
| 17002000      | 22002800     | 600           | ø315 | ø 250 | 1250x150x85             | 2                                | 4                                   | 4                                     |
| 20002900      |              | 600           | ø315 | ø 250 | 1750x150x85             | 2                                | 4                                   | 4                                     |

# **HDS HIGH PERFORMANCE CONDENSING KITCHEN HOOD**

High performance condensing kitchen hoods are designed to be used in places where water vapor is concentrated (laundry, dishwashing room and tea stoves). In order to capture the water vapor at the maximum level, the inner walls of the hood are covered with condensation pans. The exhaust air coming with the dense amount of steam hits the condensation pans and the water vapor turns into water particles. These particles are collected and accumulated in condensation pans. The accumulated water is discharged through the valves in the condensation pans.

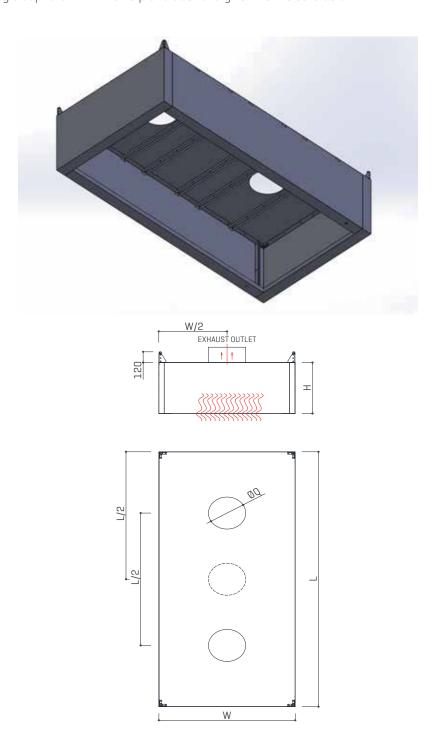



**HDS High Performance Condensing Kitchen Hood** 

Condensing hood is produced from AISI 304 quality stainless sheet. The main elements are assembled with easy-to-assemble sealed connections. Where necessary, sealing elements and welded connections are used.

The hood has a condensation duct with rounded corners, free from burrs and covering the hood all around. There are two condensation pans in the hoods. This pan is produced as welded and sealed.

There are drainage valves on both sides to drain the collected water. The lower corners are produced as welded to prevent harmful water from dripping.


# SELECTION OF HDS HIGH PERFORMANCE CONDENSING KITCHEN HOOD



| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1 | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|----|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 10001700      | 10002100     | 400/600       | ø315 | -  | -                       | -                                | 1                                   | -                                     |
| 17002950      | 10002100     | 400/600       | ø315 | -  | -                       | -                                | 2                                   | -                                     |

# HDX CLASSIC KITCHEN HOOD WITHOUT FILTER

This type of kitchen hoods are used in places where there is no oil outlet, only for the purpose of removing the air in the environment. Absolutely no filterless hood should be used on a cooking counter. It is suitable to be used in the dishwasher, tea room or cold preparation sections. The body and duct connection elements of classical type hoods are produced from 100% AISI 304 stainless steel, as in other hoods. Classic type hoods without filter draw the exhaust air from the environment with a single aspirator with the help of a duct and give it to the outside air.



| LENGTH<br>(L) | WIDTH<br>(W) | HEIGHT<br>(H) | Q    | Q1 | LIGHTING<br>MODULE SIZE | NUMBER OF<br>LIGHTING<br>MODULES | NUMBER OF<br>EXHAUST<br>CONNECTIONS | NUMBER OF<br>FRESH AIR<br>CONNECTIONS |
|---------------|--------------|---------------|------|----|-------------------------|----------------------------------|-------------------------------------|---------------------------------------|
| 5001700       | 5002100      | 400/600       | ø315 | -  | -                       | -                                | 1                                   | -                                     |
| 17002950      | 3002100      | 400/600       | ø315 | -  | -                       | -                                | 2                                   | -                                     |

#### High Performance Kitchen Hood With UV Lamp (HYH-UV)

Depending on the customer's request, a UV lamp can be added to the high performance kitchen hood. In this model, the filters and the section where the UV lamp is located are manufactured in a sealed structure to prevent UV rays from leaking. The hoods are delivered with the necessary electrical and automation infrastructure for the operation of the UV lamp.

HYH-UV model hoods are used in kitchens where there is intense oil and odor output, but where chimney problems are experienced. The ultraviolet rays and ozone gas created by the UV lamp break down the oil and odor molecules coming from the hood and prevent their passage to the exhaust duct. In this way, the exhaust ducts stay clean for longer and duct maintenance costs can be kept at a minimum. It also alleviates the load of filtered aspirators (air filtration units) to be used in the system.

In HYH-UV model hoods, V-UV type lamps producing rays with a wavelength of 185 nm are used. The light produced at this wavelength deforms the structure of organic molecules and neutralizes them, and also increases the filtration effect by producing ozone [03] gas.

### **HYY/Console Type Kitchen Hood**

Console type kitchen hoods, also known as Köfteci hoods, are produced as double-skin and, on the one hand, they remove the exhaust fumes formed under the hood, on the other hand, they give fresh air to the space.

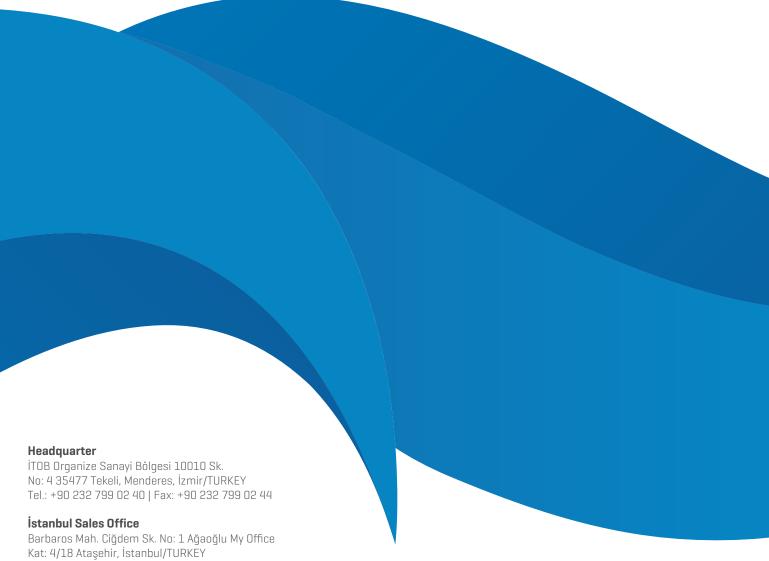
Console type high performance hoods are the hoods with high suction power preferred in fast food kitchens, grilling, frying and cooking areas of kitchens or narrow and small but high density kitchens. Thanks to its special design, it reduces the heat emitted in the cooking appliances. Due to this feature, it is a product that increases energy savings in air-conditioned kitchens.





www.davlumbazsecim.com

Our kitchen hood selection program, prepared by our software engineers with the support of TUBITAK in 2012, is the first product selection program in our sector written by a local company. The program calculates the hood exhaust flow rate according to the VDI 2052 standard. It prevents the exhaust flow rates calculated with wrong methods and enables the correct flow rates to be easily calculated.


#### www.mutfakhavalandirmasi.com

You can also contribute with your comments on our page where we share information about kitchen ventilation with our articles that we add periodically.

| NOTES |               |              |
|-------|---------------|--------------|
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       | iklimlendirme | HVAC SYSTEMS |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |
|       |               |              |







Tel.: +90 216 250 55 45 | Fax:+90 216 250 55 56

#### **Ankara Sales Office**

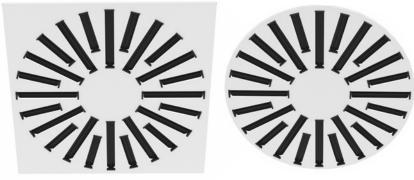
Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A Blok Kat:11 Ofis:1104 06520 Söğütözü, Yenimahalle, Ankara/TURKEY Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

#### **Antalya Sales Office**

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel.: +90 242 505 87 77

#### **Adana Sales Office**

Mimar Selim Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301
















OSB Adjustable Blade Swirl Diffuser - Type 2



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in Istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

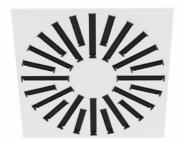
Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.












- © OSB Adjustable Blade Swirl Diffuser Type 2 effectively keeps the space comfort at the ideal level with the swirl effect it brings to the air. They can be used in distributor and collector systems.
- There are air supply options between 50 and 2750 m³/h air flow rates depending on the product dimensions.
- $\circ$  In applications with a temperature difference of  $\pm 14$   $\circ$ C in heating and cooling, blade positions can be adjusted in accordance with ambient conditions.
- The throw geometry remains stable regardless of the desired air flow and temperature difference in space ventilation.
- The air passage pattern is designed to create low pressure drop, low sound level and effective throw geometry. There are blades on the patterns that allow to adjust the throw directions.
- © Compatible with ready-made aluminum suspended ceiling systems and metal suspended ceiling systems.
- It can be produced in square or circular form according to architectural requirements and has a decorative structure.
- Prismatic type OSB\_P Adjustable Swirl Diffusers can be sold as assembled with optional "Hepa Filter Box", provided that the dimensions are specified for hepa in the catalog.
- lt has TSE ISO EN 14644, DIN 1946/4, DIN 24194 and DIN 25414 hygiene quality standards.

#### **PRODUCT OPTIONS**

Two product options are available. In both options, the wings are arranged in a circular form on the case.

OSB\_P



OSB D



#### **MATERIAL**

- Standard Galvanized manufacturing, optional stainless manufacturing.
- € There are ABS plastic blades that provide air direction inside the case.

#### **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard.
- © Optional
  - Different RAL color codes
  - Paintless production

#### **INSTALLATION**

#### Standard Installation Types

 Screwed
 (OSB\_P)

 Tile
 (OSB\_P)

 Clip-in
 (OSB\_P)

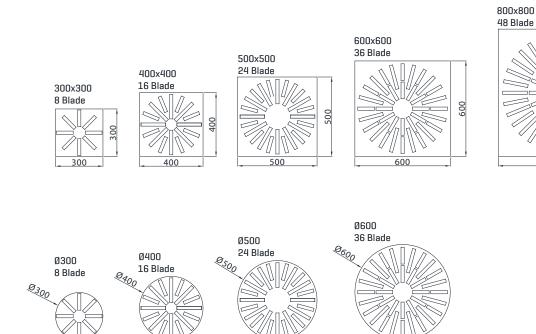
Center Bolted (OSB\_P ve OSB\_D)

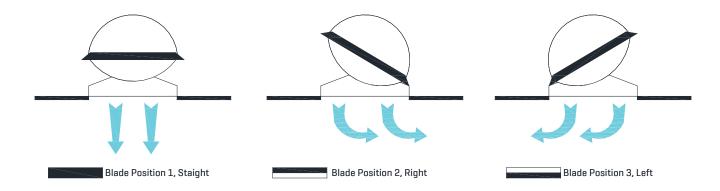
#### Installation with Hepa Filter Box

Screwed from the corners (OSB\_P)
Center Bolted (OSB\_P)

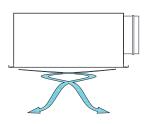


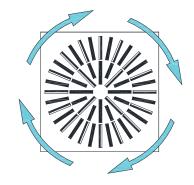
# **STANDARD SIZES**



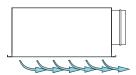


Table 1. Standard Sizes

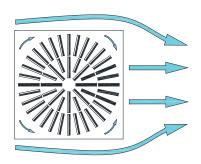
| Product Series                   | Product Dimension [mm] | Number of Wings |  |
|----------------------------------|------------------------|-----------------|--|
|                                  | 300x300                | 8               |  |
| nep p                            | 400x400                | 16              |  |
| OSB_P<br>Kare OSB Swirl Diffuser | 500x500                | 24              |  |
|                                  | 600x600                | 36              |  |
|                                  | 800x800                | 48              |  |
|                                  | Ø300                   | 8               |  |
| OSB_D                            | Ø400                   | 16              |  |
| Dairesel OSB Swirl Diffuser      | Ø500                   | 24              |  |
|                                  | Ø600                   | 36              |  |


800

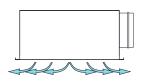

#### **BLADE ADJUSTMENTS FOR SPECIAL AIR THROW**

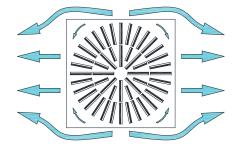
OSB Swirl diffuser has the ability to throw air that will meet the desired comfort conditions. Adjustment of each blade is done separately.





Recommended blade position for areas where high performance spreading and penetration properties are required:







Suggested blade position to ensure one-way air supply from the ceiling in the room:





Suggested blade position to provide air supply from ceiling in the room in two directions:



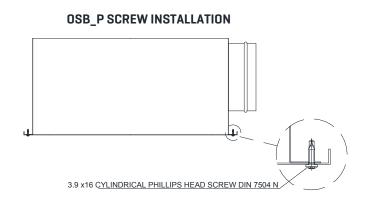


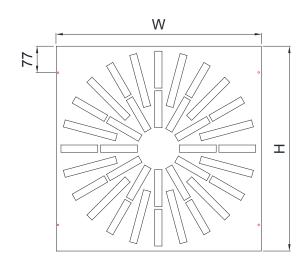


# **PERFORMANCE DATA**

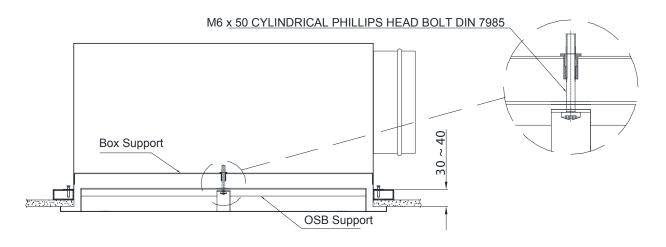
Table 2. Performance Data

|      |                              | Sizes [mm]     |                |                |                |                |  |
|------|------------------------------|----------------|----------------|----------------|----------------|----------------|--|
|      |                              | Ø300 / 300x300 | Ø400 / 400x400 | Ø500 / 500x500 | Ø600 / 600x600 | Ø800 / 800×800 |  |
|      | Pressure Drop [Pa]           | <1             | <1             | <1             | <1             | 1              |  |
| 50   | Sound Pressure Level [db(A)] | <15            | <15            | <15            | <15            | <15            |  |
|      | Throw Distance [m]           | 1              | 1              | <1             | <1             | <1             |  |
| 150  | Pressure Drop [Pa]           | 20             | 3              | 1              | <1             | 1              |  |
|      | Sound Pressure Level [db(A)] | 28             | <15            | <15            | <15            | <15            |  |
|      | Throw Distance [m]           | 2              | 2              | 1              | <1             | <1             |  |
| 200  | Pressure Drop [Pa]           | 33             | 5              | 2              | <1             | 1              |  |
|      | Sound Pressure Level [db(A)] | 35             | <15            | <15            | <15            | <15            |  |
|      | Throw Distance [m]           | 3              | 3              | 1              | 1              | <1             |  |
|      | Pressure Drop [Pa]           | 49             | 8              | 4              | 1              | 1              |  |
| 250  | Sound Pressure Level [db(A)] | 42             | 18             | <15            | <15            | <15            |  |
|      | Throw Distance [m]           | 4              | 3              | 1              | 1              | <1             |  |
|      | Pressure Drop [Pa]           | 75             | 11             | 6              | 2              | 1              |  |
| 300  | Sound Pressure Level [db(A)] | 48             | 23             | <15            | <15            | <15            |  |
|      | Throw Distance [m]           | 5              | 4              | 2              | 1              | <1             |  |
|      | Pressure Drop [Pa]           |                | 20             | 10             | 4              | 2              |  |
| 400  | Sound Pressure Level [db(A)] |                | 32             | 23             | <15            | <15            |  |
|      | Throw Distance [m]           |                | 5              | 2              | 1              | <1             |  |
|      | Pressure Drop [Pa]           |                | 32             | 16             | 6              | 3              |  |
| 500  | Sound Pressure Level [db(A)] |                | 39             | 30             | 17             | <15            |  |
|      | Throw Distance [m]           |                | 6              | 3              | 2              | 1              |  |
|      | Pressure Drop [Pa]           |                | 72             | 35             | 13             | 6              |  |
| 750  | Sound Pressure Level [db(A)] |                | 51             | 42             | 29             | 20             |  |
|      | Throw Distance [m]           |                | 8              | 4              | 2              | 1              |  |
|      | Pressure Drop [Pa]           |                |                | 63             | 23             | 12             |  |
| 1000 | Sound Pressure Level [db(A)] |                |                | 51             | 38             | 29             |  |
|      | Throw Distance [m]           |                |                | 5              | 3              | 2              |  |
|      | Pressure Drop [Pa]           |                |                | 98             | 36             | 18             |  |
| 1250 | Sound Pressure Level [db(A)] |                |                | 58             | 45             | 36             |  |
|      | Throw Distance [m]           |                |                | 7              | 4              | 2              |  |
|      | Pressure Drop [Pa]           |                |                |                | 52             | 27             |  |
| 1500 | Sound Pressure Level [db(A)] |                |                |                | 50             | 42             |  |
|      | Throw Distance [m]           |                |                |                | 5              | 3              |  |
| 4750 | Pressure Drop [Pa]           |                |                |                | 70             | 36             |  |
| 1750 | Sound Pressure Level [db(A)] |                |                |                | 55             | 46             |  |
|      | Throw Distance [m]           |                |                |                | 5              | 3<br>48        |  |
| 0000 | Pressure Drop [Pa]           |                |                |                | 91             |                |  |
| 2000 | Sound Pressure Level [db(A)] |                |                |                | 59             | 50<br>4        |  |
|      | Throw Distance [m]           |                |                |                | 6              | 60             |  |
| 2250 | Pressure Drop [Pa]           |                |                |                |                | 54             |  |
| 2230 | Sound Pressure Level [db(A)] |                |                |                |                | 4              |  |
|      | Throw Distance [m]           |                |                |                |                | 74             |  |
| 2500 | Pressure Drop [Pa]           |                |                |                |                | 57             |  |
| 2500 | Sound Pressure Level [db(A)] |                |                |                |                | 5/             |  |
|      | Throw Distance [m]           |                |                |                |                |                |  |
| 2750 | Pressure Drop [Pa]           |                |                |                |                | 90             |  |
| 2750 | Sound Pressure Level [db(A)] |                |                |                |                | 60             |  |
|      | Throw Distance [m]           |                | Ļ              | ļ              | <u> </u>       | 5              |  |

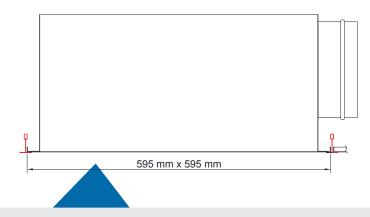

- € The data is obtained when the blades are in the flat position, the heating mode temperature difference is 8K.
- Throw distance: It is the vertical distance of the air in the comfort zone leaving the air diffuser equipment at a speed of 0.25 m/s.


#### THROW DISTANCE CORRECTION TABLE

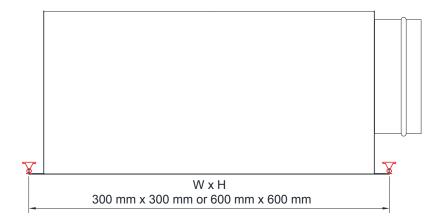
**Table 3.** Throw Distance Correction Table


| Heating Mode ( <b>\Delta</b> T) | 4    | 6    | 8    | 10   | 12   |
|---------------------------------|------|------|------|------|------|
| Throw Range Multiplier          | 1.07 | 1.02 | 1    | 0.90 | 0.83 |
| Cooling Mode (AT)               | 4    | 6    | 8    | 10   | 12   |
| Throw Range Multiplier          | 1.31 | 1.36 | 1.42 | 1.48 | 1.54 |

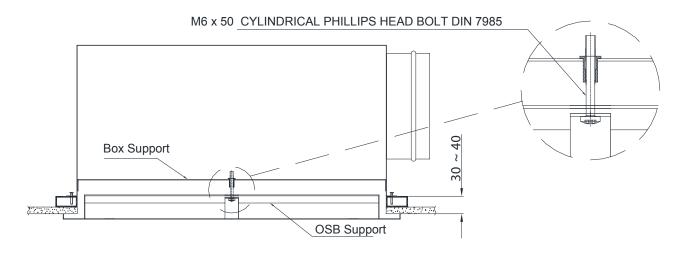
# **INSTALLATION TYPES**



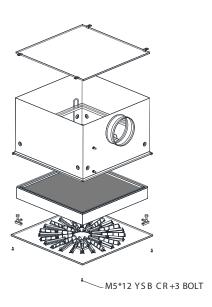




# OSB\_P CENTER BOLTED INSTALLATION

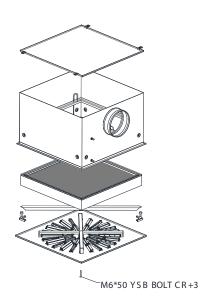



# OSB\_P TILE INSTALLATION




# **OSB\_P CLIP-IN INSTALLATION**




# OSB\_D CENTER BOLTED INSTALLATION



#### **GFP - INSTALLATION FROM HEPA BOX CORNERS**



#### **GFP - HEPA BOX CENTER BOLTED INSTALLATION**



**Note:** The drawing above is valid for GFP – Standard Hepa Box. GFP, GFB and GFD catalogs should be consulted for detailed hepa box product selection.

#### **BOX SIZES**

Standard box dimensions for OSB\_P.

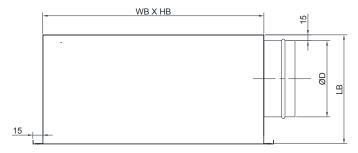



Table 4. Standard Box Sizes for OSB\_P

| OSB_P | Box Throat Diameter<br>(ØD) [mm] | Box Height<br>(LB)[mm] | Box Width<br>(WB) [mm] |     |
|-------|----------------------------------|------------------------|------------------------|-----|
| 300   | 200                              | 275                    | 270                    | 270 |
| 400   | 200                              | 275                    | 370                    | 370 |
| 500   | 250                              | 325                    | 470                    | 470 |
| 600   | 300                              | 375                    | 570                    | 570 |
| 800   | 350                              | 425                    | 770                    | 770 |

Standard box Sizes for OSB\_D are given below.

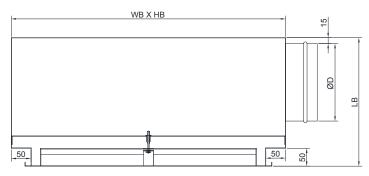



Table 5. Standard Box Sizes for OSB\_D

| OSB_D | Box Throat Diameter [ØD] [mm] | Box Height | Box Width<br>(WB) [mm] | Box Length [HB][mm] |
|-------|-------------------------------|------------|------------------------|---------------------|
| 300   | 200                           | 325        | 400                    | 400                 |
| 400   | 200                           | 325        | 500                    | 500                 |
| 500   | 250                           | 375        | 600                    | 600                 |
| 600   | 300                           | 425        | 700                    | 700                 |

#### **PRODUCT SELECTION**

**Example:** The air flow rate distributed in the space is 4000 m<sup>3</sup>/h and the cooling temperature difference is determined as -8 K. 10 prismatic swirl diffusers will be used. Make your product selection.

**Solution:** Supply flow rate for a diffuser  $4000/10 = 400 \text{ m}^3/\text{h}$ 

From the performance data table (Table 2), the product corresponding to the appropriate pressure drop, sound pressure level and throw distance at 400m<sup>3</sup>/h air flow is selected.

For example, the pressure drop that will occur in a 400 mm x 400 mm product will be 20 Pa, the sound pressure level will be 32 dB[A] and the throw distance will be 5 m.

#### **Throw Distance Correction Chart**

In the previous example, the throw distance was found to be 5 m for the heating mode 8K. For cooling mode -8 K, refer to the Throw Distance Correction Table (Table 4). The multiplier is 1.42.

Corrected throw distance =  $5 \text{ m} \times 1,42 = 7.1 \text{ m}$ 

# OSB\_P ORDER CODE

You can place your prismatic swirl diffuser orders according to the coding format below.

OSB\_P.<A>.<B>.<C>.<D>

| Α | Raw Material Type |                                             |  |
|---|-------------------|---------------------------------------------|--|
|   | GAL               | Galvanized                                  |  |
|   | PAS               | Stainless Steel                             |  |
| В | Installation Type |                                             |  |
|   | VD                | Screwed                                     |  |
|   | GC                | Center Bolted                               |  |
|   | KR                | Tile                                        |  |
|   | KL                | Clip - in                                   |  |
|   | KM                | Center Bolted (Hepa Box)                    |  |
|   | GK                | Center Bolted + Clip - in (Hepa Box)        |  |
| C | Size [mm]         |                                             |  |
|   | 300-08            | 300 x 300 - 8 blade                         |  |
|   | 400-16            | 400 x 400 - 16 blade                        |  |
|   | 500-24            | 500 x 500 - 24 blade                        |  |
|   | 600-36            | 600 x 600 - 36 blade                        |  |
|   | 825-48            | 825 x 825 - 48 blade                        |  |
|   | 355-08            | 355 x 355 - 8 blade - 305 x 305 (Hepa Box)  |  |
|   | 507-16            | 507 x 507 - 16 blade - 457 x 457 (Hepa Box) |  |
|   | 585-24            | 585 x 585 - 24 blade - 535 x 535 (Hepa Box) |  |
|   | 625-36            | 625 x 625 - 36 blade - 575 x 575 (Hepa Box) |  |
|   | 660-36            | 660 x 660 - 36 blade - 610 x 610 (Hepa Box) |  |
|   | 812-48            | 812 x 812 - 48 blade - 762 x 762 (Hepa Box) |  |
|   | 366-16            | 355 x 660 - 16 blade - 305 x 610 (Hepa Box) |  |
|   | 566-36            | 507 x 660 - 36 blade - 457 x 610 (Hepa Box) |  |
| D | Paint             |                                             |  |
|   | 00                | Unpainted                                   |  |
|   | S1                | Standard Painted - RAL 9010                 |  |
|   | S2                | Standard Painted - RAL 9016                 |  |
|   | XX                | Special Painted                             |  |

Sample Coding: OSB\_P.GAL.GC.600-36.XX

# OSB\_D ORDER CODE

You can place your circular swirl diffuser orders according to the coding format below.

OSB\_D.<A>.<B>.<C>.<D>

| Α | Raw Material Type |                             |  |  |
|---|-------------------|-----------------------------|--|--|
|   | GAL               | Galvanized                  |  |  |
|   | PAS               | Stainless Steel             |  |  |
| В | Installation Type |                             |  |  |
|   | GC                | Center Bolted               |  |  |
| С | Size [mm]         |                             |  |  |
|   | 300-08            | 300 mm - 8 blade            |  |  |
|   | 400-16            | 400 mm - 16 blade           |  |  |
|   | 500-24            | 500 mm - 24 blade           |  |  |
|   | 600-36            | 600 mm - 36 blade           |  |  |
| D | Paint             |                             |  |  |
|   | 00                | Unpainted                   |  |  |
|   | S1                | Standard Painted - RAL 9010 |  |  |
|   | S2                | Standard Painted - RAL 9016 |  |  |
|   | XX                | Special Painted             |  |  |

**Sample Coding:** OSB\_D.GAL.GC.600-36.S1

| NOTES |                      |             |   |
|-------|----------------------|-------------|---|
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       | <u>IKLIMLENDIRME</u> | HVAC SYSTEM | S |
|       |                      | 1           |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |





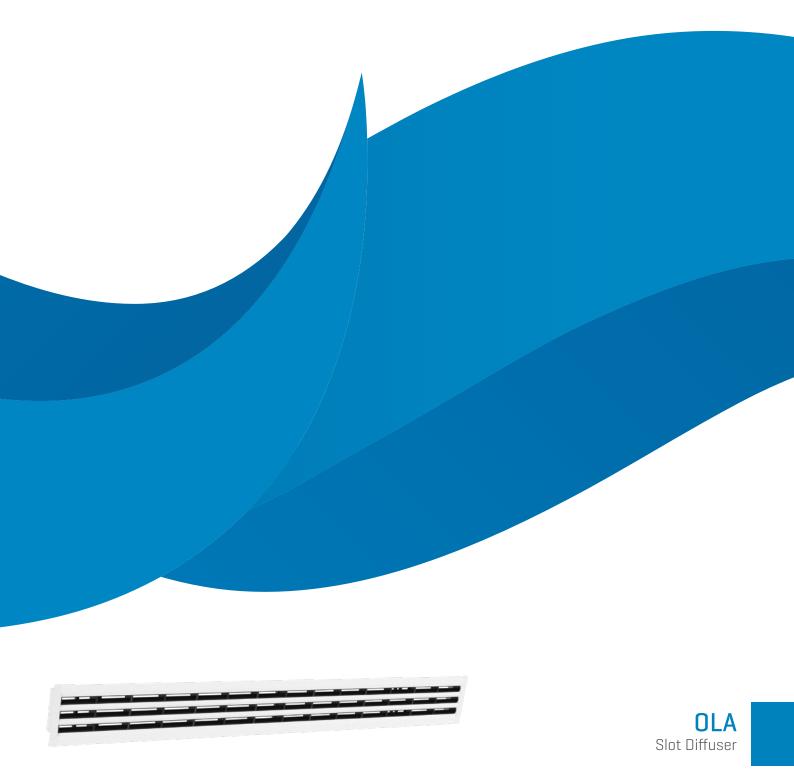


#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY


Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56















# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











- © OLA-Slot Diffuser, with its cylindrical shaped blades, is ideal for meeting comfort parameters in areas that are difficult to air-conditioning.
- € It can be produced modularly. In this way, it provides a thin-striped decorative appearance.
- Aerodynamic optimization has been done, so it saves energy with low pressure loss.
- They are used as feed or return diffusers in ceiling and wall applications. It is suitable for horizontal shot from the ceiling. Creates effective throw geometry in cooling applications with Coanda effect.

#### **MATERIAL**

- € Aluminum 6063 extrusion profile production.
- ABS plastic or optional aluminum blades that provide air direction inside the case.
- Slide damper that can be added into the slot diffuser for optional air flow adjustment.

#### **SURFACE COATING**

- € RAL 9010 or RAL 9016 electrostatic powder paint as standard.
- © Optional
  - Different RAL color codes
  - Unpainted manufacturing
  - Matt aluminum anodized finish

#### **ASSEMBLY**

- Standard Bridged assembly
- Screw mounting



# **STANDARD DIMENSIONS**

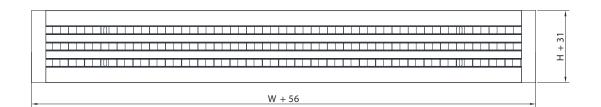







Table 1. Standard Dimensions

| -              | 0    |             | H (Height) [mm] |             |             |  |  |  |
|----------------|------|-------------|-----------------|-------------|-------------|--|--|--|
| Dimensions     |      | With 1 Slot | With 2 Slot     | With 3 Slot | With 4 Slot |  |  |  |
|                |      | 52          | 86              | 121         | 156         |  |  |  |
|                | 100  | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>✓</b>    |  |  |  |
|                | 150  | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>✓</b>    |  |  |  |
|                | 200  | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>✓</b>    |  |  |  |
|                | 250  | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>✓</b>    |  |  |  |
| Ξ              | 300  | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>~</b>    |  |  |  |
| 트              | 400  | <b>✓</b>    | <b>~</b>        | <b>~</b>    | <b>~</b>    |  |  |  |
| Æ              | 500  | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>✓</b>    |  |  |  |
| W [Width] [mm] | 750  | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>✓</b>    |  |  |  |
| M              | 1000 | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>✓</b>    |  |  |  |
|                | 1250 | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>✓</b>    |  |  |  |
|                | 1500 | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>✓</b>    |  |  |  |
|                | 1750 | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>✓</b>    |  |  |  |
|                | 2000 | <b>~</b>    | <b>✓</b>        | <b>~</b>    | <b>✓</b>    |  |  |  |
|                | 2300 | <b>✓</b>    | <b>✓</b>        | <b>✓</b>    | <b>✓</b>    |  |  |  |



# **PERFORMANCE DATA**

**Table 2.** Effective Area Table

|                         | -cc  |             | H (Height) [mm] |             |             |  |  |
|-------------------------|------|-------------|-----------------|-------------|-------------|--|--|
| Effective<br>Area [mm²] |      | With 1 Slot | With 2 Slot     | With 3 Slot | With 4 Slot |  |  |
|                         |      | 52          | 86              | 121         | 156         |  |  |
|                         | 100  | 0,0025      | 0,0041          | 0,0058      | 0.0075      |  |  |
|                         | 150  | 0,0037      | 0,0062          | 0,0087      | 0.0112      |  |  |
|                         | 200  | 0,0050      | 0,0083          | 0,0116      | 0.0150      |  |  |
| 근                       | 250  | 0,0062      | 0,0103          | 0,0145      | 0.0187      |  |  |
| N (Width) [mm]          | 300  | 0,0075      | 0,0124          | 0,0174      | 0.0225      |  |  |
| J[h                     | 400  | 0,0100      | 0,0165          | 0,0233      | 0.0300      |  |  |
| /idt                    | 500  | 0,0125      | 0,0207          | 0,0291      | 0.0375      |  |  |
| _ ≥                     | 750  | 0,0187      | 0,0310          | 0,0436      | 0.0562      |  |  |
| >                       | 1000 | 0,0250      | 0,0413          | 0,0582      | 0.0750      |  |  |
|                         | 1250 | 0,0312      | 0,0517          | 0,0727      | 0.0937      |  |  |
|                         | 1500 | 0,0375      | 0,0620          | 0,0872      | 0.1125      |  |  |
|                         | 1750 | 0,0437      | 0,0723          | 0,1018      | 0.1312      |  |  |
|                         | 2000 | 0,0500      | 0,0827          | 0,1163      | 0.1500      |  |  |
|                         | 2300 | 0,0575      | 0,0951          | 0,1338      | 0.1724      |  |  |



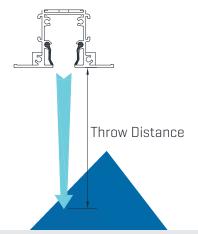

#### **SUPPLY DATA**

Table 3. Supply Data Table

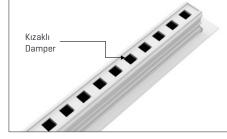
| Flow Rate |                                        |        |          |             |              | Effectiv  | e Velocity | / [m/ s] |        |        |                                                  |
|-----------|----------------------------------------|--------|----------|-------------|--------------|-----------|------------|----------|--------|--------|--------------------------------------------------|
| [m³/h]    |                                        | 0,5    | 1,0      | 1,5         | 2,0          | 2,5       | 3,0        | 3,5      | 4,0    | 4,5    | 5,0                                              |
| 50        | Effective Area [m²]                    | 0,0278 | 0,0139   | 0,0093      | 0,0069       | 0,0056    | 0,0046     | 0,0040   | 0,0035 | 0,0031 |                                                  |
|           | Pressure Drop [Pa]                     | <1     | 5        | 11          | 22           | 36        | 55         | 77       | 105    | 136    |                                                  |
| 50        | Throw Distance [m]                     | 0,8    | 1,4      | 1,9         | 2,4          | 2,8       | 3,2        | 3,6      | 3,9    | 4,3    |                                                  |
|           | Sound Pressure Level [dB(A)]           | <15    | <15      | <15         | <15          | 21        | 27         | 31       | 35     | 38     |                                                  |
|           | Effective Area [m²]                    | 0,056  | 0,028    | 0,0185      | 0,0139       | 0,0111    | 0,0093     | 0,0079   | 0,0069 | 0,0062 |                                                  |
| 100       | Pressure Drop [Pa]                     | <1     | 4        | 10          | 19           | 31        | 47         | 67       | 91     | 118    |                                                  |
| 100       | Throw Distance [m]                     | 1,1    | 1,9      | 2,6         | 3,2          | 3,8       | 4,3        | 4,9      | 5,4    | 5,8    |                                                  |
|           | Sound Pressure Level [dB(A)]           | <15    | <15      | <15         | 16           | 23        | 28         | 32       | 36     | 40     |                                                  |
|           | Effective Area [m²]                    | 0,1111 | 0,056    | 0,037       | 0,0278       | 0,0222    | 0,0185     | 0,0159   | 0,0139 | 0,0123 | 0,0111                                           |
| 200       | Pressure Drop [Pa]                     | <1     | 3        | 9           | 16           | 27        | 41         | 58       | 79     | 102    | 130                                              |
| 200       | Throw Distance [m]                     | 1,6    | 2,6      | 3,5         | 4,3          | 5,1       | 5,9        | 6,6      | 7,3    | 8,0    | 8,6                                              |
|           | Sound Pressure Level [dB(A)]           | <15    | <15      | <15         | 18           | 24        | 29         | 34       | 38     | 41     | 44                                               |
|           | Effective Area [m²]                    | 0,1667 | 0,0833   | 0,0556      | 0,0417       | 0,0333    | 0,0278     | 0,0238   | 0,0208 | 0,0185 |                                                  |
| 300       | Pressure Drop [Pa]                     | <1     | 3        | 8           | 15           | 25        | 38         | 53       | 72     | 94     |                                                  |
| 000       | Throw Distance [m]                     | 1,9    | 3,1      | 4,2         | 5,2          | 6,1       | 7,0        | 7,9      | 8,7    | 9,5    |                                                  |
|           | Sound Pressure Level [dB(A)]           | <15    | <15      | <15         | 19           | 25        | 30         | 35       | 39     | 42     |                                                  |
|           | Effective Area [m²]                    |        | 0,1111   | 0,0741      | 0,0556       | 0,0444    | 0,0370     | 0,0317   | 0,0278 |        |                                                  |
| 400       | Pressure Drop [Pa]                     |        | 3        | 7           | 14           | 24        | 36         | 50       | 68     |        |                                                  |
| .00       | Throw Distance [m]                     |        | 3,5      | 4,8         | 5,9          | 7,0       | 8,0        | 8,9      | 9,9    |        |                                                  |
|           | Sound Pressure Level [dB(A)]           |        | <15      | <15         | 19           | 26        | 31         | 35       | 39     |        |                                                  |
|           | Effective Area [m²]                    |        | 0,1389   | 0,0926      | 0,0694       | 0,0556    | 0,0463     | 0,0397   |        |        |                                                  |
| 500       | Pressure Drop [Pa]                     |        | 3        | 7           | 14           | 22        | 34         | 48       |        |        |                                                  |
|           | Throw Distance [m]                     |        | 3,9      | 5,3         | 6,5          | 7,7       | 8,8        | 9,9      |        |        |                                                  |
|           | Sound Pressure Level [dB(A)]           |        | <15      | <15         | 20           | 26        | 31         | 36       |        |        |                                                  |
|           | Effective Area [m²]                    | _      | 0,1667   | 0,1111      | 0,0833       | 0,0667    | 0,0556     |          |        |        |                                                  |
| 600       | Pressure Drop [Pa]                     | _      | 3        | 7           | 13           | 22        | 33         |          |        |        |                                                  |
|           | Throw Distance [m]                     |        | 4,2      | 5,7         | 7,1          | 8,3       | 9,5        |          |        |        |                                                  |
|           | Sound Pressure Level [dB(A)]           | -      | <15      | <15         | 20           | 26        | 32         |          |        |        |                                                  |
|           | Effective Area [m²]                    | _      | _        | 0,1296      | 0,0972       | 0,0778    |            |          |        |        |                                                  |
| 700       | Pressure Drop [Pa]                     | _      | _        | 7<br>6.1    | 13           | 21<br>8,9 |            |          |        |        |                                                  |
|           | Throw Distance [m]                     |        |          |             | 7,6          | 8,9<br>27 |            |          |        |        |                                                  |
|           | Sound Pressure Level [dB(A)]           | -      |          | <15         | 20<br>0.1111 | 0.0889    |            |          |        |        |                                                  |
|           | Effective Area [m²]                    | -      |          | 0,1481<br>6 | 12           | .,        |            |          |        |        |                                                  |
| 800       | Pressure Drop [Pa] Throw Distance [m]  | -      | _        | 6,5         | 8,0          | 20<br>9,4 |            |          |        |        |                                                  |
|           | Sound Pressure Level [dB(A)]           |        |          | 6,5<br><15  | 21           | 27        |            |          |        |        |                                                  |
|           |                                        | -      |          | 0,1667      | 0,1250       | 0.1000    |            |          |        |        |                                                  |
|           | Effective Area [m²] Pressure Drop [Pa] | -      | $\vdash$ | 0,1667      | 12           | 20        |            |          | -      |        | $\vdash$                                         |
| 900       | Throw Distance [m]                     |        | $\vdash$ | 6,8         | 8,4          | 9,9       |            |          |        |        | -                                                |
|           | Sound Pressure Level [dB[A]]           |        | $\vdash$ | <15         | 21           | 27        |            |          |        |        | -                                                |
|           | Effective Area [m²]                    |        | $\vdash$ |             | 0.1389       | 2/        |            |          |        |        | <del>                                     </del> |
|           | Pressure Drop [Pa]                     | -      | $\vdash$ | -           | 12           |           |            |          | -      |        | -                                                |
| 1000      | Throw Distance [m]                     | -      | $\vdash$ | -           | 8,8          |           | -          |          | -      |        | <b>-</b>                                         |
|           | Sound Pressure Level [dB[A]]           | -      | $\vdash$ | -           | 8,8<br>21    |           | -          |          | -      |        | <del>                                     </del> |
|           | Sound Pressure Level [aB(A)]           |        |          |             | 51           |           |            |          |        |        |                                                  |

Hızlı Seçim: Safe Selection Design Upper Limit High Pressure Drop

- Data were obtained with the wings in a straight position. If the shot is adjusted horizontally, the pressure drop and sound pressure level data in the table have acceptable variability.
- Throw distance: The vertical distance of the air in the comfort zone leaving the air distribution equipment at a speed of 0.25 m / s.



#### THROW DISTANCE CORRECTION TABLE


**Table 4.** Throw Distance Correction Table

| Heating Mode (AT)         | 4    | 6    | 8    | 10   | 12   |
|---------------------------|------|------|------|------|------|
| Throw Distance Correction | 1.07 | 1.02 | 1    | 0.90 | 0.83 |
| Cooling Mode (AT)         | 4    | 6    | 8    | 10   | 12   |
| Throw Distance Correction | 1.31 | 1.36 | 1.42 | 1.48 | 1.54 |

#### **DAMPER OPTION**

In the OLA slot diffuser, if the air flow rate adjustment is desired, a damper can be added inside the diffuser. Thanks to the slide-shaped plastic damper, the flow rate through the diffuser is adjusted.



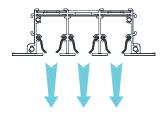


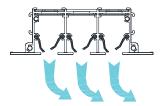


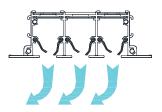
**Without Damper** 

Damper Opened

Damper Closed


#### **DAMPER CORRECTION TABLE**


Table 5. Damper Correction Table


| Damper Position | Pressure<br>Drop Correction | Sound Generation<br>[dB(A)] |
|-----------------|-----------------------------|-----------------------------|
| Opened          | 1,1                         | +1                          |
| %25 Closed      | 1,14                        | +4                          |
| %50 Closed      | 2,48                        | +14                         |
| %75 Closed      | 5,11                        | +29                         |

#### **AIR FLOW DIRECTION**

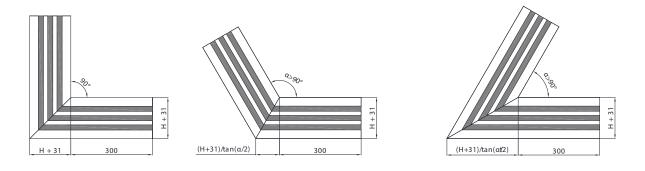
Sample application examples for air throw and air collector blade position are given below.








**Note:** The use of the OLA slot diffuser is suitable for variable flow systems and the air discharge directing characteristic remains constant between 100% and 25% flow rate.


#### **COVER OPTIONS**

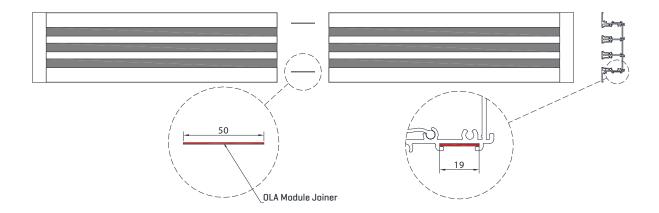
If specified in the order, the slot diffuser is produced in the following ways, with the slot cover option with a single cover or both sides without covers. If the cover option is not specified in the order, standard cover production is made.



#### **CORNER JOINING**

In order to ensure the continuity of OLA installation in wall-to-wall applications, a stylish appearance is provided with the corner joining system that allows different angles to pass.



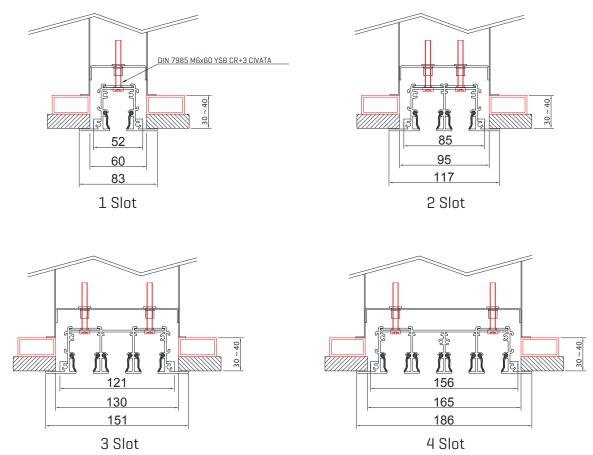

Standard corner joint length is 300 mm.

 $\alpha$ : Corner piece angle. The standard corner joint is a right angle (90 °). The desired angle dimensions must be specified in the order. Corner piece angle is minimum 45 °

#### **MODULE COMBINATION**

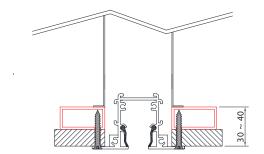
When the slot length (W) given in the OLA Slot Diffuser orders is over 2300 mm, the slot profiles are combined with the module joining piece in a modular way. In this way, the slot diffuser appears in one piece with its strength.

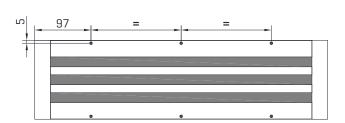
**Number of Modules** = Round Up (Order Size / 230)



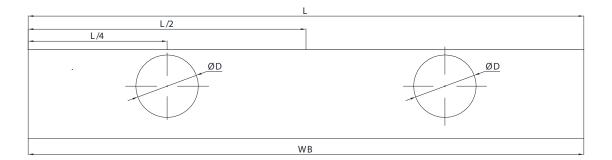

#### **ASSEMBLY**

#### **BRIDGE INSTALLATION**


Bridged assembly is made as standard. Decorative appearance is provided with bridged mounting.


For each slot module, there are 2 mounting plates on OLA and 2 mounting plates (bridge) on the box. The bolt is screwed into the mounting plate on the OLA, the nut is screwed into the mounting plate on the box and the assembly is completed by tightening the bolt with a phillips screwdriver.




#### **SCREW INSTALLATION**

Screw mounting is made to the screw holes on the sides of the slot diffuser profile. DIN 7504 P 3.9x38 self-drilling cross head screw is mounted. In screw mounting, there are 4 screw holes for a module when the width [W] dimension is 600 mm or less. In modules with a width of more than 600 mm, 2 screw holes are added in the middle of the module, 6 screws are used in total.





#### **BOX DIMENSIONS**



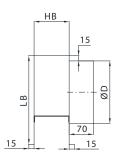



Table 5. Box Size Table

| Box Size Table |                       | Slot Length [mm] |                |                |                |                |                |                |                |                |  |
|----------------|-----------------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| Slot Sayısı    | Özellik               | 400              | 600            | 800            | 1000           | 1200           | 1400           | 1600           | 1800           | 2000           |  |
| 1              | Box Strait (ØD) [mm]  | Ø100 - 1 Piece   | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø150 - 2 Piece | Ø200 - 2 Piece | Ø200 - 2 Piece |  |
|                | Box Height (LB) [mm]  | 175              | 175            | 225            | 225            | 225            | 275            | 275            | 275            | 275            |  |
|                | Box 1. Size (WB) [mm] | 410              | 610            | 810            | 1010           | 1210           | 1410           | 1610           | 1810           | 2010           |  |
|                | Box 2. Size [HB] [mm] | 60               | 60             | 60             | 60             | 60             | 60             | 60             | 60             | 60             |  |
| 2              | Box Strait (ØD) [mm]  | Ø100 - 1 Piece   | Ø100 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø200 - 1 Piece | Ø200 - 2 Piece | Ø200 - 2 Piece | Ø200 - 2 Piece |  |
|                | Box Height (LB) [mm]  | 175              | 175            | 225            | 225            | 225            | 275            | 275            | 275            | 325            |  |
|                | Box 1. Size (WB) [mm] | 410              | 610            | 810            | 1010           | 1210           | 1410           | 1610           | 1810           | 2010           |  |
|                | Box 2. Size (HB) [mm] | 95               | 95             | 95             | 95             | 95             | 95             | 95             | 95             | 95             |  |
| 3              | Box Strait (ØD) [mm]  | Ø100 - 1 Piece   | Ø100 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø200 - 1 Piece | Ø200 - 2 Piece | Ø200 - 2 Piece | Ø250 - 2 Piece |  |
|                | Box Height (LB) [mm]  | 175              | 175            | 225            | 225            | 275            | 275            | 275            | 325            | 325            |  |
|                | Box 1. Size (WB) [mm] | 410              | 610            | 810            | 1010           | 1210           | 1410           | 1610           | 1810           | 2010           |  |
|                | Box 2. Size (HB) [mm] | 130              | 130            | 130            | 130            | 130            | 130            | 130            | 130            | 130            |  |
| 4              | Box Strait (ØD) [mm]  | Ø100 - 1 Piece   | Ø100 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø200 - 1 Piece | Ø200 - 1 Piece | Ø200 - 2 Piece | Ø250 - 2 Piece | Ø250 - 2 Piece |  |
|                | Box Height (LB) [mm]  | 175              | 175            | 225            | 225            | 275            | 275            | 275            | 325            | 325            |  |
|                | Box 1. Size (WB) [mm] | 410              | 610            | 810            | 1010           | 1210           | 1410           | 1610           | 1810           | 2010           |  |
|                | Box 2.Size (HB) [mm]  | 165              | 165            | 165            | 165            | 165            | 165            | 165            | 165            | 165            |  |

#### **PRODUCT SELECTION**

**Example:** The air flow distributed in the space is determined as 600 m<sup>3</sup> / h and the cooling temperature difference is -8 K. It will be used in the 4 meter slot diffuser feeding application. 3 meters throw distance is required. Make your product selection.

**Solution:** From the supply data table (Table 3), the effective areas corresponding to the appropriate pressure loss and flow rate values are selected. The method to be used for the desired lengths of performance data is made by calculating the number of modules. The result is reached by correcting the data found for 1 module.

- · Number of modules for 4 meters of slot diffuser: Roll Up (4000/2300) = 2 modules.
- $\cdot$  1 module length = 4000/2 [Module] = 2000 mm [Length to be used in calculation]
- · Required flow rate for 1 module = 600/2 [Module] = 300 m<sup>3</sup> / h [Flow Rate Used in Calculation]
- · From the effective area table (Table 2), the effective areas of 2000 mm wide slot diffusers are selected according to the number of slots. Accordingly, the effective area values of approximately 0.05 m² (with 1 slot), 0.0827 m² (with 2 slots), 0.1163 m² (with 3 slots) and 0.15 m² (with 4 slots) are obtained according to the number of slots.

Using the effective area values obtained from the supply data table (Table 3) and the required flow rate for 1 module, the appropriate effective area value is determined. The most suitable selection for 3 meters fthrow distance and 300 m<sup>3</sup> / h air flow rate;

3-slot slot diffuser, Effective area: 0.1163m<sup>2</sup>

Pressure Drop: 1.47 Pa Firing Distance: 2.4 m

Sound Pressure Level: <15 dB(A) Throw Distance Correction Table

2-module slot diffuser selection throw distance was found to be 2.4 m. For cooling mode -8 K, refer to the Throw Distance Correction Table (Table 4). The multiplier value is 1.42.

Corrected throw distance =  $2.4 \text{ m} \times 1.42 = 3.4 \text{ m}$ 



# PRODUCT ORDER CODE

You can place your orders according to the following coding format.

OLA.ALM. < A > . < B > . < C >. < D >. < E >

| Α | Туре                             |                                               |
|---|----------------------------------|-----------------------------------------------|
|   | 01                               | With Plastic Blade and Slide Damper           |
|   | 02                               | Without Plastic Blade, Without Sliding Damper |
|   | 03                               | Without Blade, With Slide Damper              |
|   | 04                               | Without Blade, Without Slide Damper           |
|   | 05                               | With Aluminum Blade and Slide Damper          |
|   | 06                               | With Aluminum Blade, Without Slide Damper     |
| В | Mounting Type                    |                                               |
|   | KP                               | Bridged                                       |
|   | VD                               | Screwed System                                |
| C | Slot Width ( W) [ mm]            |                                               |
|   | 0000                             | View from Standard Sizes                      |
| D | Height (H) [mm] & Number of Slot |                                               |
|   | 052-01                           | 52mm 1 Slot                                   |
|   | 086-02                           | 86mm 2 Slot                                   |
|   | 121-03                           | 121mm 3 Slot                                  |
|   | 165-04                           | 165mm 4 Slot                                  |
| E | Paint                            |                                               |
|   | 00                               | Unpainted                                     |
|   | S1                               | Standard Painted - RAL 9010                   |
|   | S2                               | Standard Painted - RAL 9016                   |
|   | XX                               | Special Painted                               |
|   | EK                               | Matt Anodized Coating                         |

**Sample Codding:** 0LA.ALM.02.KP.00600.063-02.S1

| NOTES |                             |
|-------|-----------------------------|
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       | B                           |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       | KLÍMLENDÍRME L HVAC SYSTEMS |
|       | \ <u></u>                   |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |
|       |                             |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY

Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56











VGZ CIRCULAR FIRE DAMPER



## Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

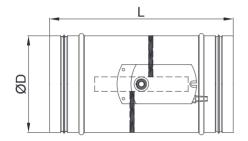
Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.

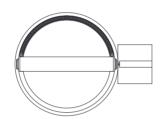












- Solution VGZ Circular Fire Damper is used to isolate other parts of the ventilation system from flame, smoke and heat in case of fire in one part of the system. It can be mounted in the direction of the air flow or in the opposite direction.
- The blade is in the open position as standard during operation,
- € It works with a fused or spring return servo motor with 24V AC/DC 230V AC supply voltage.

## **MATERIAL**

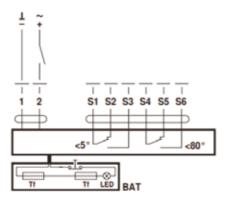
- © Galvanized case
- Fire resistant galvanized blade filled with rock wool
- Brass bush

## **DIMENSIONS**








Tablo 1. Dimensions

| Dimensions |         |       |  |  |  |  |
|------------|---------|-------|--|--|--|--|
| Product    | ØD [mm] | L[mm] |  |  |  |  |
| VGZ-200    | 200     | 380   |  |  |  |  |
| VGZ-250    | 250     | 380   |  |  |  |  |
| VGZ-280    | 280     | 350   |  |  |  |  |
| VGZ-300    | 300     | 400   |  |  |  |  |
| VGZ-315    | 315     | 400   |  |  |  |  |
| VGZ-355    | 355     | 400   |  |  |  |  |
| VGZ-400    | 400     | 450   |  |  |  |  |
| VGZ-450    | 450     | 500   |  |  |  |  |
| VGZ-500    | 500     | 600   |  |  |  |  |

Tablo 2. Quick Selection

| Quick Selection |            |                  |  |  |  |  |
|-----------------|------------|------------------|--|--|--|--|
| Product         | ØD [mm     | Flow Rate [m³/h] |  |  |  |  |
| riouuct         | וווווו] טש | Maximum          |  |  |  |  |
| VGZ-200         | 200        | 8640             |  |  |  |  |
| VGZ-250         | 250        | 10800            |  |  |  |  |
| VGZ-280         | 280        | 12096            |  |  |  |  |
| VGZ-300         | 300        | 12960            |  |  |  |  |
| VGZ-315         | 315        | 13608            |  |  |  |  |
| VGZ-355         | 355        | 15336            |  |  |  |  |
| VGZ-400         | 400        | 17280            |  |  |  |  |
| VGZ-450         | 450        | 19440            |  |  |  |  |
| VGZ-500         | 500        | 21600            |  |  |  |  |

## **ACTUATOR CONNECTON**



#### Cable colours:

1 = black

1 = Diag2 = red

S1 = violet

S2 = red

S3 = white

S4 = orange

S5 = pinkS6 = grey

Tf: Thermal fuse (see "Technical

data")

| NOTES |               |              |         |
|-------|---------------|--------------|---------|
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       | İKLİMLENDİRME | HVAC SYSTEMS | <u></u> |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |
|       |               |              |         |







## Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56











## FOUR TCR & FOUR TCRH

Tropical Rooftop & Heat-Pump Rooftop



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45,000 sqm. in which 25,000 sqm. indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 3 sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











- € 14 Different Models for FOUR-TCR & FOUR TCRH
- Rooftop Packaged Air Conditioners
- © Optional Only Cooling or Heat-Pump Systems
- © Different Range for Different Air Climates

## **Air Conditioning Solutions**

- € Eco-Friendly R410A Refrigerant Gas
- Advanced Microprocessor Control Options
- Easy Maintenance and Installation

## **Compactness with Well Qualified Air**

- © Optimal Energy Efficiency, Air Quality and Comfort
- Wide and Versatile Range
- Energy Saving Solutions for All Commercial Buildings







#### **GENERAL SPECIFICATIONS**

These are roof type [ROOFTOP] package air conditioners that can work only cooling or reversible with the direct expansion refrigerant system, cool the place air with the Cooling / DX battery in the summer and heat it in the winter. It provides the conditioning of the air inside the place by ducts, which will meet the fresh air requirement it needs and can perform all heating, cooling and ventilation processes in a compact unit. FOUR TCR is designed for climates that need cooling only [Tropical], and FOUR TCRH series is designed for areas that need heating and cooling. It is offered with many capacity options according to the size of the environment to be air-conditioned.

It has high energy efficiency and is budget friendly with fast and easy installation, low operating and initial investment cost. Its main areas of usage are that large commercial buildings, business centers, airports, restaurants, large stores, cinema and theatre halls, conference halls, industrial buildings and centers of logistic.



#### **COMPONENTS**



#### FOUR TCR & FOUR TCRH

- € High efficient and low noise centrifugal fans
- Compact design
- Full integrated control system
- Plug&Play

## **COMPRESSOR**

- High efficiency
- © Quite operation, low sound levels
- Fewer moving parts
- Compact and light design
- © Crank case heater



## **HEAT EXCHANGER COIL**

- Copper pipe-aluminum fin exchanger
- ♦ High temperature and humidity efficiency

#### **FILTER**

- Large filtering area for energy efficiency and long service period
- € High efficiency ISO Course filters

#### **CASE**

- Salvanized sheet with electrostatic powder paint
- Insulated with 19 mm rubber
- Easy maintainability and serviceability

## **OPERATING LIMITS**

## **OPTIONS**

- Economizer
- Bag filter chamber
- Electric heater
- Heating coil
- © Cooling coil
- Coil coating
- Electronic expansion valve
- © Dirty filter sensor
- © CO₂ sensor
- Enthalpy control
- © Condenser fan speed control
- Smoke detector

#### **AIR CONFIGURATION**



|         | Outdoor Air 1 | Temperature       | Indoor Air Temperature |          |  |
|---------|---------------|-------------------|------------------------|----------|--|
| COOLING | Dry Bulb      | Dry Bulb Wet Bulb |                        | Wet Bulb |  |
|         | °C            | °C                | °C                     | °C       |  |
| Minimum | 15            | 7                 | 18                     | 14       |  |
| Average | 35            | 24                | 27                     | 19       |  |
| Maximum | 52            | 27                | 36                     | 24       |  |

|         | Outdoor Air 7 | Temperature | Indoor Air Temperature |          |  |
|---------|---------------|-------------|------------------------|----------|--|
| HEATING | Dry Bulb      | Wet Bulb    | Dry Bulb               | Wet Bulb |  |
|         | °C            | °C          | °C                     | °C       |  |
| Minimum | -5            | 3           | 18                     | 14       |  |
| Average | 7             | 6           | 27                     | 19       |  |
| Maximum | 24            | 22          | 36                     | 24       |  |

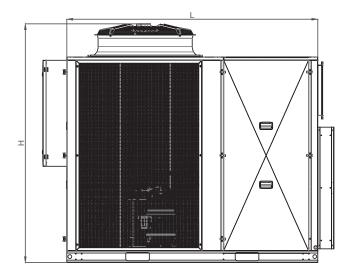
## **FOUR TCR Series Technical Data**

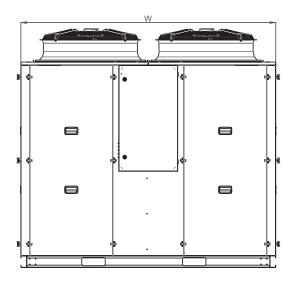
|                                  | 018 - 072                  |        |        |                |        |        |        |        |
|----------------------------------|----------------------------|--------|--------|----------------|--------|--------|--------|--------|
|                                  |                            | TCR-18 | TCR-23 | TCR-32         | TCR-37 | TCR-47 | TCR-64 | TCR-72 |
| Airflow Rate                     | m³/h                       | 2850   | 3600   | 4800           | 5650   | 7250   | 9400   | 10750  |
| (1)Total Cooling Capacity        |                            | 19     | 24     | 33             | 38     | 48     | 65     | 73     |
| (1)Sensible Cooling Capacity     |                            | 14     | 18     | 24             | 28     | 36     | 48     | 54     |
| (2)Total Cooling Capacity        |                            | 17     | 22     | 29             | 34     | 44     | 58     | 67     |
| (2)Sensible Cooling Capacity     | kW                         | 13     | 17     | 23             | 26     | 34     | 45     | 51     |
| Total Absorbed Power (High)      |                            | 7.1    | 8.6    | 12.8           | 14.1   | 16.7   | 24.6   | 26.3   |
| Fan Motor Absorbed Power         |                            | 0.8    | 1.1    | 1.5            | 1.5    | 2.2    | 3      | 3      |
| Total Compressor Absorbed Power  |                            | 4.8    | 5.9    | 7.7            | 9.5    | 11.6   | 15,4   | 17.5   |
| Compressor / Circuit Number      | pcs.                       | 1/1    | 1/1    | 1/1            | 2/2    | 2/2    | 2/2    | 2/2    |
| [3]Max. External Static Pressure | Pa                         | 524    | 538    | 621            | 504    | 594    | 596    | 486    |
| Energy                           | 380-400 V / 3 ph. / 50 Hz. |        |        |                |        |        |        |        |
| Refrigerant                      |                            |        |        | R <sup>2</sup> | 110A   |        |        |        |

|                                  |                            | 080 - 176 |        |         |         |         |         |         |
|----------------------------------|----------------------------|-----------|--------|---------|---------|---------|---------|---------|
|                                  |                            | TCR-80    | TCR-94 | TCR-108 | TCR-122 | TCR-138 | TCR-154 | TCR-176 |
| Airflow Rate                     | m³/h                       | 12200     | 14100  | 16500   | 18750   | 21150   | 23750   | 27100   |
| (1)Total Cooling Capacity        |                            | 81        | 95     | 109     | 123     | 139     | 155     | 177     |
| (1)Sensible Cooling Capacity     |                            | 60        | 70     | 82      | 92      | 104     | 116     | 133     |
| (2)Total Cooling Capacity        |                            | 75        | 86     | 99      | 113     | 129     | 142     | 159     |
| (2)Sensible Cooling Capacity     | kW                         | 60        | 66     | 77      | 87      | 98      | 109     | 125     |
| Total Absorbed Power (High)      |                            | 29.9      | 33.6   | 40.6    | 47.5    | 54.7    | 58.8    | 69      |
| Fan Motor Absorbed Power         |                            | 4         | 5.5    | 5.5     | 5.5     | 7.5     | 7.5     | 11      |
| Total Compressor Absorbed Power  |                            | 19.5      | 22.7   | 26.5    | 30.2    | 34.7    | 39.1    | 44.4    |
| Compressor / Circuit Number      | pcs.                       | 2/2       | 2/2    | 2/2     | 2/2     | 2/2     | 2/2     | 2/2     |
| (3)Max. External Static Pressure | Pa                         | 635       | 710    | 625     | 554     | 771     | 554     | 623     |
| Energy                           | 380-400 V / 3 ph. / 50 Hz. |           |        |         |         |         |         |         |
| Refrigerant                      |                            |           |        | R4      | R410A   |         |         |         |

## NOTES:

- (1) Capacities as per of EN 14511 @ 27/19 °C coil inlet and 35 °C ambient temperature.
- (2) Capacities @ 27/19 °C Coil inlet and 46 °C ambient temperature.
- [2] Maximum ESP at nominal airflow rate for high pressure class units.


## **FOUR TCRH Series Technical Data**


|                                     |                            | 018 - 072 |         |         |         |         |         |         |
|-------------------------------------|----------------------------|-----------|---------|---------|---------|---------|---------|---------|
|                                     |                            | TCRH-18   | TCRH-23 | TCRH-32 | TCRH-37 | TCRH-47 | TCRH-64 | TCRH-72 |
| Airflow Rate                        | m³/h                       | 2850      | 3600    | 4800    | 5650    | 7250    | 9400    | 10750   |
| (1)Total Cooling Capacity           |                            | 19        | 24      | 33      | 38      | 49      | 65      | 75      |
| [1]Sensible Cooling Capacity        |                            | 15        | 19      | 25      | 30      | 38      | 51      | 59      |
| (2)Total Heating Capacity           |                            | 20        | 25      | 33      | 39      | 50      | 66      | 77      |
| (2)Sensible HeatingCooling Capacity |                            | 15        | 19      | 25      | 30      | 38      | 50      | 58      |
| (3)Total Cooling Capacity           |                            | 17        | 22      | 29      | 35      | 44      | 58      | 67      |
| (3)Sensible Cooling Capacity        | 1347                       | 14        | 17      | 23      | 27      | 34      | 46      | 53      |
| (4)Total Heating Capacity           | kW                         | 15        | 19      | 25      | 30      | 37      | 49      | 57      |
| [4]Sensible Heating Capacity        |                            | 11        | 14      | 19      | 22      | 28      | 37      | 43      |
| Total Absorbed Power (High)         |                            | 7         | 8.5     | 12.7    | 14.2    | 16.6    | 24.7    | 26.4    |
| Fan Motor Absorbed Power            |                            | 0.8       | 1.1     | 1.5     | 1.5     | 2.2     | 3       | 3       |
| Total Compressor Absorbed Power     |                            | 4.8       | 5.9     | 7.7     | 9.5     | 11.6    | 15.4    | 17.5    |
| Compressor / Circuit Number         | pcs.                       | 1/1       | 1/1     | 1/1     | 2/2     | 2/2     | 2/2     | 2/2     |
| (5)Max. External Static Pressure    | Pa                         | 524       | 538     | 621     | 504     | 594     | 596     | 486     |
| Energy                              | 380-400 V / 3 ph. / 50 Hz. |           |         |         |         |         |         |         |
| Refrigerant                         |                            | R410A     |         |         |         |         |         |         |

|                                     |                            | 080 - 176 |         |                |          |          |          |          |
|-------------------------------------|----------------------------|-----------|---------|----------------|----------|----------|----------|----------|
|                                     |                            | TCRH-80   | TCRH-94 | TCRH-108       | TCRH-122 | TCRH-138 | TCRH-154 | TCRH-176 |
| Airflow Rate                        | m³/h                       | 12200     | 14100   | 16500          | 18750    | 21150    | 23750    | 27100    |
| (1)Total Cooling Capacity           |                            | 83        | 96      | 114            | 128      | 141      | 157      | 178      |
| (1)Sensible Cooling Capacity        |                            | 65        | 75      | 89             | 100      | 110      | 123      | 138      |
| (2)Total Heating Capacity           |                            | 85        | 99      | 117            | 131      | 144      | 161      | 182      |
| (2)Sensible HeatingCooling Capacity |                            | 64        | 75      | 88             | 98       | 108      | 121      | 137      |
| (3)Total Cooling Capacity           |                            | 74        | 87      | 103            | 115      | 126      | 141      | 160      |
| (3)Sensible Cooling Capacity        |                            | 58        | 68      | 80             | 89       | 99       | 110      | 124      |
| (4)Total Heating Capacity           | kW                         | 63        | 74      | 87             | 98       | 107      | 120      | 135      |
| (4)Sensible Heating Capacity        |                            | 48        | 55      | 65             | 73       | 80       | 90       | 101      |
| Total Absorbed Power (High)         |                            | 29.8      | 33.8    | 40.5           | 47.3     | 54.6     | 58.6     | 69.1     |
| Fan Motor Absorbed Power            |                            | 4         | 5.5     | 5.5            | 5.5      | 7.5      | 7.5      | 11       |
| Total Compressor Absorbed Power     |                            | 19.5      | 22.7    | 26.5           | 30.2     | 34.7     | 39.1     | 44.4     |
| Compressor / Circuit Number         | pcs.                       | 2/2       | 2/2     | 2/2            | 2/2      | 2/2      | 2/2      | 2/2      |
| (5)Max. External Static Pressure    | Pa                         | 635       | 710     | 625            | 554      | 771      | 554      | 623      |
| Energy                              | 380-400 V / 3 ph. / 50 Hz. |           |         |                |          |          |          |          |
| Refrigerant                         |                            |           |         | R <sup>4</sup> | 110A     |          |          |          |

- (1) Capacities @ 27/19 °C coil inlet and 35 °C ambient temperature. (2) Capacities @ 21/15,5 °C coil inlet and 7 °C ambient temperature. (3) Capacities @ 27/19 °C coil inlet and 46 °C ambient temperature.
- °C coil inlet and -5 °C ambient temperature. (4) Capa
- imum ESP at nominal airflow rate for high pressure class units.

## **DIMENSIONS**





| PRODUCT CODE        | PRODUCT NAME                             | L    | w    | Н    |
|---------------------|------------------------------------------|------|------|------|
| FOUR TCR / TCRH-018 | Tropical Rooftop/ Heat-Pump Rooftop-018  | 1846 | 1130 | 1442 |
| FOUR TCR / TCRH-023 | Tropical Rooftop / Heat-Pump Rooftop-023 | 1846 | 1130 | 1592 |
| FOUR TCR / TCRH-032 | Tropical Rooftop / Heat-Pump Rooftop-032 | 1926 | 1130 | 1708 |
| FOUR TCR / TCRH-037 | Tropical Rooftop / Heat-Pump Rooftop-037 | 2210 | 1300 | 1780 |
| FOUR TCR / TCRH-047 | Tropical Rooftop / Heat-Pump Rooftop-047 | 2360 | 1490 | 1820 |
| FOUR TCR / TCRH-064 | Tropical Rooftop / Heat-Pump Rooftop-064 | 2360 | 1860 | 1860 |
| FOUR TCR / TCRH-072 | Tropical Rooftop / Heat-Pump Rooftop-072 | 2700 | 1860 | 1960 |
| FOUR TCR / TCRH-080 | Tropical Rooftop / Heat-Pump Rooftop-080 | 2700 | 2020 | 1980 |
| FOUR TCR / TCRH-094 | Tropical Rooftop / Heat-Pump Rooftop-094 | 2950 | 2160 | 2070 |
| FOUR TCR / TCRH-108 | Tropical Rooftop / Heat-Pump Rooftop-108 | 3210 | 2160 | 2154 |
| FOUR TCR / TCRH-122 | Tropical Rooftop / Heat-Pump Rooftop-122 | 3350 | 2160 | 2364 |
| FOUR TCR / TCRH-138 | Tropical Rooftop / Heat-Pump Rooftop-138 | 3500 | 2170 | 2400 |
| FOUR TCR / TCRH-154 | Tropical Rooftop / Heat-Pump Rooftop-154 | 3500 | 2280 | 2400 |
| FOUR TCR / TCRH-176 | Tropical Rooftop / Heat-Pump Rooftop-176 | 3900 | 2280 | 2500 |

## NOTE:

<sup>\*</sup>All dimensions are in mm.

<sup>\*\*</sup>All dimensions are approximative.

#### **HEATING COIL**



- Coils are Eurovent certified.
- © Coils are made of copper pipes and aluminum fins.
- The cassette material is galvanized or stainless steel.
- The coils were tested at a pressure of at least 20 bar. On request, 30 bars can be tested under pressure.
- The collectors used in the coils are copper pipes.
- In hot and cold water coils, the water inlet is from the bottom and the water outlet is at the top.
- Air and water flows are counter-flowing to increase the heat transfer between them.
- © Under the cooling coil, a condensate pan with a double slope is placed and the accumulated water is discharged through the drain pipe. In the case of a Drip Holder, a high-performance drill holder made of PVC material that can with stand up to 90° C is used.

### **ELECTRIC HEATER**



Rectangular electric heaters have two thermostats as standard.

The first thermostat is set to 70° C, the air in the electric heater cuts off the electric current when it reaches 70° C, allowing the device to restart automatically when the temperature drops.

The second thermostat used for safety purposes is activated at 110° C and cuts off the electric current.

The thermostat must be reset manually from the red button in order for the appliance to operate again.

| MODELS            | AIR FLOW | DIMENSIONS | ΔT=5 | ΔT=10 |
|-------------------|----------|------------|------|-------|
|                   |          |            | kW   | kW    |
| FOUR TCR/TCRH-18  | 2800     | 800*572    | 6    | 9     |
| FOUR TCR/TCRH-23  | 3600     | 800*572    | 6    | 12    |
| FOUR TCR/TCRH-32  | 4750     | 800*762    | 8    | 16    |
| FOUR TCR/TCRH-37  | 5600     | 970*762    | 9    | 20    |
| FOUR TCR/TCRH-47  | 7200     | 1160*762   | 12   | 24    |
| FOUR TCR/TCRH-64  | 9300     | 1520*826   | 15   | 33    |
| FOUR TCR/TCRH-72  | 10800    | 1520*889   | 18   | 36    |
| FOUR TCR/TCRH-80  | 12100    | 1680*889   | 20   | 42    |
| FOUR TCR/TCRH-94  | 14000    | 1680*1016  | 25   | 48    |
| FOUR TCR/TCRH-108 | 16600    | 1730*1143  | 27   | 57    |
| FOUR TCR/TCRH-122 | 18800    | 1730*1334  | 33   | 63    |
| FOUR TCR/TCRH-138 | 21200    | 1870*1397  | 36   | 72    |
| FOUR TCR/TCRH-154 | 23700    | 1980*1397  | 42   | 81    |
| FOUR TCR/TCRH-176 | 27000    | 1980*1651  | 48   | 93    |

| NOTES |                              |
|-------|------------------------------|
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       | IKLIMLENDIRME   HVAC SYSTEMS |
|       | 1                            |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |

| NOTES                        |  |
|------------------------------|--|
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
| IKEIMLENUIRME   HVAU-5451EM5 |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56











# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











© DMO - Perforated Grill provides homogeneous air distribution with its decorative appearance, used in supply and suction lines in ventilation systems.



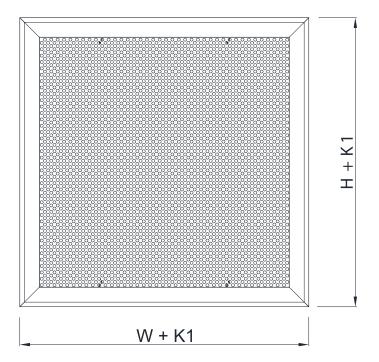
#### **MATERIAL**

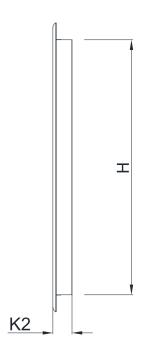
The frame is made of 6063 extruded aluminum, the perforated part is made of galvanized sheet. It can also be produced from optional AISI 304 quality stainless steel.

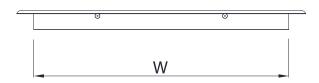
#### **SURFACE COATING**

- RAL 9010 or RAL 9016 Electrostatic powder paint as standard
- © Optional
  - Different RAL color codes
  - Matt aluminum anodized finish for a matt and metallic look in the aluminum frame

\*"DOGU HVAC" reserves the right to introduce changes of parameters and sizes in the process of improvement of the devices.


- Unpainted manufacturing
- Stainless product


## **MOUNTING OPTIONS**


- Screw System
- Without Mounting Hole
- Clip-in
- Suspended Ceiling



## **STANDARD DIMENSIONS**







|                 | K1 (mm) | K2 (mm) |
|-----------------|---------|---------|
| 31 mm Frame     | 54      | 30      |
| Clip-in Frame   | 60      | 30      |
| Stainless Frame | 58      | 30      |

**Table 1.** Standard Dimensions

| W [mm]             | 200 - 300 - 400 - 500 - 600 - 700 - 800 - 900 - 1000 - 1100 - 1200 |
|--------------------|--------------------------------------------------------------------|
| (Width)            | 1300 - 1400 - 1500 - 1600 - 1800 - 2000                            |
| H [mm]<br>(Height) | 100 - 200 - 300 - 400 - 500 - 600 - 700 - 800 - 900 - 1000         |



## **PERFORMANCE DATA**

## **EFFECTIVE AREA TABLE**

Table 2. Effective Area Table

| Effective      |      |       |       |       |       | H (Heig | ght)[mm] |       |       |       |       |
|----------------|------|-------|-------|-------|-------|---------|----------|-------|-------|-------|-------|
| Area           | [m²] | 100   | 200   | 300   | 400   | 500     | 600      | 700   | 800   | 900   | 1000  |
|                | 200  | 0.003 | 0.006 | 0.008 | 0.011 | 0.014   | 0.017    | 0.020 | 0.022 | 0.025 | 0.028 |
|                | 300  | 0.004 | 0.008 | 0.013 | 0.017 | 0.021   | 0.025    | 0.029 | 0.034 | 0.038 | 0.042 |
|                | 400  | 0.006 | 0.011 | 0.017 | 0.022 | 0.028   | 0.034    | 0.039 | 0.045 | 0.050 | 0.056 |
|                | 500  | 0.007 | 0.014 | 0.021 | 0.028 | 0.035   | 0.042    | 0.049 | 0.056 | 0.063 | 0.070 |
|                | 600  | 0.008 | 0.017 | 0.025 | 0.034 | 0.042   | 0.050    | 0.059 | 0.067 | 0.076 | 0.084 |
|                | 700  | 0.010 | 0.020 | 0.029 | 0.039 | 0.049   | 0.059    | 0.069 | 0.078 | 0.088 | 0.098 |
|                | 800  | 0.011 | 0.022 | 0.034 | 0.045 | 0.056   | 0.067    | 0.078 | 0.090 | 0.101 | 0.112 |
| W [Width] [mm] | 900  | 0.013 | 0.025 | 0.038 | 0.050 | 0.063   | 0.076    | 0.088 | 0.101 | 0.113 | 0.126 |
| - E            | 1000 | 0.014 | 0.028 | 0.042 | 0.056 | 0.070   | 0.084    | 0.098 | 0.112 | 0.126 | 0.140 |
| 븀              | 1100 | 0.015 | 0.031 | 0.046 | 0.062 | 0.077   | 0.092    | 0.108 | 0.123 | 0.139 | 0.154 |
| Ž              | 1200 | 0.017 | 0.034 | 0.050 | 0.067 | 0.084   | 0.101    | 0.118 | 0.134 | 0.151 | 0.168 |
| >              | 1300 | 0.018 | 0.036 | 0.055 | 0.073 | 0.091   | 0.109    | 0.127 | 0.146 | 0.164 | 0.182 |
|                | 1400 | 0.020 | 0.039 | 0.059 | 0.078 | 0.098   | 0.118    | 0.137 | 0.157 | 0.176 | 0.196 |
|                | 1500 | 0.021 | 0.042 | 0.063 | 0.084 | 0.105   | 0.126    | 0.147 | 0.168 | 0.189 | 0.210 |
|                | 1600 | 0.022 | 0.045 | 0.067 | 0.090 | 0.112   | 0.134    | 0.157 | 0.179 | 0.202 | 0.224 |
|                | 1700 | 0.024 | 0.048 | 0.071 | 0.095 | 0.119   | 0.143    | 0.167 | 0.190 | 0.214 | 0.238 |
|                | 1800 | 0.025 | 0.050 | 0.076 | 0.101 | 0.126   | 0.151    | 0.176 | 0.202 | 0.227 | 0.252 |
|                | 2000 | 0.028 | 0.056 | 0.084 | 0.112 | 0.140   | 0.168    | 0.196 | 0.224 | 0.252 | 0.280 |



## **SUPPLY AIR DATA**

Table 3. Supply Air Data

| Flow Rate |                                                  |               |                |                |                |                |                | Effective       | Velocity        | / (m/s)         |                 |                 |                 |                 |                 |                 |                 |
|-----------|--------------------------------------------------|---------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| (m3/h)    |                                                  | 0.5           | 1.0            | 1.5            | 2.0            | 2.5            | 3.0            | 3.5             | 4.0             | 4.5             | 5.0             | 6.0             | 7.0             | 8.0             | 9.0             | 10.0            | 12.5            |
|           | Effective Area [m²]                              | 0.02778       | 0.01389        | 0.00926        | 0.00694        | 0.00556        | 0.00463        | 0.00397         | 0.00347         | 0.00309         | 0.00278         | 0.00231         | 0.00198         | 0.00174         | 0.00154         |                 |                 |
| 50        | Pressure Drop [Pa]                               | <1            | <1             | <1             | <1             | 3,0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            |                 |                 |
|           | Sound Power Level [dB(A)]                        | <15           | <15            | <15            | <15            | <15            | <15            | <15             | <15             | <15             | <15             | 19.1            | 23.5            | 27.3            | 30.7            |                 |                 |
|           | Effective Area [m²]                              | 0.05556       | 0.02778        | 0.01852        | 0.01389        | 0.01111        | 0.00926        | 0.00794         | 0.00694         | 0.00617         | 0.00556         | 0.00463         | 0.00397         | 0.00347         | 0.00309         | 0.00278         | 0.0022          |
| 100       | Pressure Drop [Pa]                               | <1            | <1             | <1             | 1.8            | 3,0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
|           | Sound Power Level [dB(A)]<br>Effective Area [m²] | <15           | <15            | <15            | <15            | <15            | <15            | <15             | <15             | <15             | 16.9            | 22.1            | 26.5            | 30.3            | 33.7            | 36.7            | 43.1            |
|           | Pressure Drop [Pa]                               | 0.11111<br><1 | 0.05556<br><1  | 0.03704<br><1  | 0.02778<br>1.8 | 0.02222<br>3,0 | 0.01852<br>4.4 | <1587<br>6.3    | 0.01389<br>8.4  | 0.01235<br>11.0 | 0.01111<br>13.9 | 0.00926<br>20.9 | 0.00794<br>29.4 | 0.00694<br>39.6 | 0.00617<br>51.5 | 0.00556<br>65.2 | 0.0044<br>107.3 |
| 200       | Sound Power Level [dB(A)]                        | <15           | <15            | <15            | <15            | <15            | <15            | <15             | <15             | 16.9            | 19.9            | 25.1            | 29.5            | 33.3            | 36.7            | 39.7            | 46.1            |
|           | Effective Area [m²]                              | 0.16667       | 0.08333        | 0.05556        | 0.04167        | 0.03333        | 0.02778        | 0.02381         | 0.02083         | 0.0182          | 0.01667         | 0.01389         | 0.0119          | 0.01042         | 0.00926         | 0.00833         | 0.0068          |
| 300       | Pressure Drop [Pa]                               | <1            | <1             | <1             | 1.8            | 3,0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
| 500       | Sound Power Level [dB(A)]                        | <15           | <15            | <15            | <15            | <15            | <15            | <15             | 15.3            | 18.6            | 21.7            | 26.9            | 31.3            | 35.1            | 38.4            | 41.4            | 47.8            |
|           | Effective Area [m²]                              | 0.22222       | 0.11111        | 0.07407        | 0.05556        | 0.04444        | 0.03704        | 0.03175         | 0.02778         | 0.02469         | 0.02222         | 0.01852         | 0.01587         | 0.01389         | 0.01235         | 0.01111         | 0.008           |
| 400       | Pressure Drop [Pa]                               | <1            | <1             | <1             | 1.8            | 3.0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
|           | Sound Power Level [dB(A)]                        | <15           | <15            | <15            | <15            | <15            | <15            | <15             | 16.5            | 19.9            | 22.9            | 28.1            | 32.5            | 36.3            | 39.7            | 42.7            | 49.1            |
|           | Effective Area [m²]                              | 0.27778       | 0.13889        | 0.09259        | 0.06944        | 0.05556        | 0.0463         | 0.03968         | 0.03472         | 0.03086         | 0.02778         | 0.02315         | 0.01984         | 0.01736         | 0.01543         | 0.01389         | 0.0111          |
| 500       | Pressure Drop [Pa]                               | <1            | <1             | <1             | 1.8            | 3.0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
|           | Sound Power Level [dB(A)]                        | <15           | <15            | <15            | <15            | <15            | <15            | <15             | 17.5            | 20.9            | 23.9            | 29.1            | 33.5            | 37.3            | 40.7            | 43.7            | 50.0            |
| 000       | Effective Area [m²] Pressure Drop [Pa]           |               | 0.16667<br><1  | 0.11111        | 0.08333        | 0.06667<br>3.0 | 0.05556<br>4.4 | 0.04762<br>6.3  | 0.04167<br>8.4  | 0.03704<br>11.0 | 0.03333<br>13.9 | 0.02778<br>20.9 | 0.02381<br>29.4 | 0.02083<br>39.6 | 0.01852<br>51.5 | 0.01667<br>65.2 | 0.0133<br>107.3 |
| 600       | Sound Power Level [dB(A)]                        |               | <15            | <15            | <15            | <15            | <15            | <15             | 18.3            | 21.7            | 24.7            | 20.9            | 34.3            | 39.6            | 41.5            | 44.5            | 50.8            |
|           | Effective Area [m²]                              |               | 0.19444        | 0.12963        | 0.9722         | 0.07778        | 0.06481        | 0.05556         | 0.04861         | 0.04321         | 0.03889         | 0.03241         | 0.02778         | 0.02431         | 0.0216          | 0.01944         | 0.0155          |
| 700       | Pressure Drop [Pa]                               |               | <1             | <1             | 1.8            | 3.0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
| , 00      | Sound Power Level [dB(A)]                        |               | <15            | <15            | <15            | <15            | <15            | 15.1            | 19.0            | 22.3            | 25.3            | 30.5            | 34.9            | 38.8            | 42.1            | 45.1            | 51.5            |
|           | Effective Area [m²]                              |               | 0.22222        | 0.14815        | 0.11111        | 0.08889        | 0.07407        | 0.06349         | 0.05556         | 0.04938         | 0.04444         | 0.03704         | 0.03175         | 0.02778         | 0.02469         | 0.02222         | 0.0177          |
| 800       | Pressure Drop [Pa]                               |               | <1             | <1             | 1.8            | 3.0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
|           | Sound Power Level [dB(A)]                        |               | <15            | <15            | <15            | <15            | <15            | 15.7            | 19.5            | 22.9            | 25.9            | 31.1            | 35.5            | 39.3            | 42.7            | 45.7            | 52.1            |
|           | Effective Area [m²]                              |               | 0.25           | 0.16667        | 0.125          | 0.1            | 0.08333        | 0.07143         | 0.0625          | 0.0556          | 0.05            | 0.04167         | 0.03571         | 0.03125         | 0.02778         | 0.025           | 0.02            |
| 900       | Pressure Drop [Pa]                               |               | <1             | <1             | 1.8            | 3.0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
|           | Sound Power Level [dB(A)]<br>Effective Area [m²] |               | <15<br>0.27778 | <15<br>0.18519 | <15<br>0.13889 | <15<br>0.111   | <15<br>0.09259 | 16.2            | 20.1<br>0.06944 | 23.4            | 26.4<br>0.05556 | 31.6<br>0.0463  | 36.0<br>0.03968 | 39.8<br>0.03472 | 43.2            | 46.2<br>0.02778 | 52.6            |
| 1000      | Pressure Drop [Pa]                               |               | <1             | <1             | 1.8            | 3.0            | 4.4            | 0.07937<br>6.3  | 8.4             | 0.06173<br>11.0 | 13.9            | 20.9            | 29.4            | 39.6            | 0.03086<br>51.5 | 65.2            | 0.0222<br>107.3 |
| 1000      | Sound Power Level [dB(A)]                        |               | <15            | <15            | <15            | <15            | <15            | 16.7            | 20.5            | 23.9            | 26.9            | 32.1            | 36.5            | 40.3            | 43.7            | 46.7            | 53.1            |
|           | Effective Area [m²]                              |               | -10            | 0.23148        | 0.17361        | 0.13889        | 0.11574        | 0.09921         | 0.08681         | 0.07716         | 0.06944         | 0.05787         | 0.0496          | 0.0434          | 0.03858         | 0.03472         | 0.0277          |
| 1250      | Pressure Drop [Pa]                               |               |                | <1             | 1.8            | 3.0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
| ILOO      | Sound Power Level [dB[A]]                        |               |                | <15            | <15            | <15            | <15            | 17.7            | 21.5            | 24.8            | 27.9            | 33.1            | 37.5            | 41.3            | 44.6            | 47.6            | 54.0            |
|           | Effective Area [m²]                              |               |                | 0.27778        | 0.20833        | 0.16667        | 0.13889        | 0.11905         | 0.10417         | 0.09259         | 0.08333         | 0.06944         | 0.05952         | 0.05208         | 0.0463          | 0.04167         | 0.0333          |
| 1500      | Pressure Drop [Pa]                               |               |                | <1             | 1.8            | 3.0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
|           | Sound Power Level [dB(A)]                        |               |                | <15            | <15            | <15            | <15            | 18.5            | 22.3            | 25.6            | 28.6            | 33.9            | 38.3            | 42.1            | 45.4            | 48.4            | 54.8            |
|           | Effective Area [m²]                              |               |                |                | 0.24306        | 0.19444        | 0.16204        | 0.13889         | 0.12153         | 0.10802         | 0.09722         | 0.08102         | 0.06944         | 0.0676          | 0.05401         | 0.04861         | 0.0388          |
| 1750      | Pressure Drop [Pa]                               |               |                |                | 1.8            | 3.0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
|           | Sound Power Level [dB(A)]                        |               |                |                | <15<br>0.27778 | <15<br>0.22222 | <15<br>0.18519 | 19.1<br>0.15873 | 22.9<br>0.13889 | 26.3            | 29.3            | 34.5<br>0.09259 | 38.9<br>0.07937 | 42.7<br>0.06944 | 46.1            | 49.1            | 55.5            |
| 2000      | Effective Area [m²] Pressure Drop [Pa]           |               |                |                | 1.8            | 3.0            | 4.4            | 6.3             | 8.4             | 0.12346<br>11.0 | 0.11111<br>13.9 | 20.9            | 29.4            | 39.6            | 0.06173<br>51.5 | 0.5556<br>65.2  | 0.044           |
| 2000      | Sound Power Level [dB[A]]                        |               |                |                | <15            | <15            | 15.3           | 19.7            | 23.5            | 26.9            | 29.9            | 35.1            | 39.5            | 43.3            | 46.7            | 49.7            | 56.1            |
|           | Effective Area [m²]                              |               |                |                | 1              | 0.27778        | 0.23148        | 0.19841         | 0.17361         | 0.15432         | 0.13889         | 0.11574         | 0.09921         | 0.08681         | 0.7716          | 0.06944         | 0.0555          |
| 2500      | Pressure Drop [Pa]                               |               |                |                |                | 3.0            | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
|           | Sound Power Level [dB(A)]                        |               |                |                |                | <15            | 16.3           | 20.7            | 24.5            | 27.9            | 30.9            | 36.1            | 40.5            | 44.3            | 47.6            | 50.7            | 57.0            |
|           | Effective Area [m²]                              |               |                |                |                |                | 0.27778        | 0.2381          | 0.20833         | 0.18519         | 0.1667          | 0.13889         | 0.11905         | 0.10417         | 0.9259          | 0.8333          | 0.666           |
| 3000      | Pressure Drop [Pa]                               |               |                |                |                |                | 4.4            | 6.3             | 8.4             | 11.0            | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
|           | Sound Power Level [dB(A)]                        |               |                |                |                |                | 17.1           | 21.5            | 25.3            | 28.6            | 31.7            | 36.9            | 41.3            | 45.1            | 48.4            | 51.4            | 57.8            |
| "         | Effective Area [m²]                              |               |                |                |                |                |                |                 | 0.27778         | 0.24691         | 0.22222         | 0.18519         | 0.15873         | 0.13889         | 0.12346         | 0.11111         | 0.888           |
| 4000      | Pressure Drop [Pa] Sound Power Level [dB(A)]     |               | -              | <u> </u>       | <u> </u>       |                | <u> </u>       |                 | 8.4             | 11.0            | 13.9            | 20.9            | 29.4<br>42.5    | 39.6            | 51.5            | 65.2            | 107.3           |
|           | Effective Area [m²]                              |               |                |                |                |                |                |                 | 26.5            | 29.9            | 32.9<br>0.27778 | 38.1<br>0.23148 | 0.19841         | 46.3<br>0.17361 | 49.7<br>0.15432 | 52.7<br>0.13889 | 59.1<br>0.1111  |
| 5000      | Pressure Drop [Pa]                               |               |                |                |                |                |                |                 |                 |                 | 13.9            | 20.9            | 29.4            | 39.6            | 51.5            | 65.2            | 107.3           |
| 0000      | Sound Power Level [dB[A]]                        |               |                |                |                |                |                |                 |                 |                 | 33.9            | 39.1            | 43.5            | 47.3            | 50.7            | 53.7            | 60.0            |
|           | Effective Area [m²]                              |               |                |                |                |                |                |                 |                 |                 | 23.0            | 55.1            | .5.0            | 0.26042         | 0.23148         | 0.20833         | 0.1666          |
| 7500      | Pressure Drop [Pa]                               |               |                |                |                |                |                |                 |                 |                 |                 |                 |                 | 39.6            | 51.5            | 65.2            | 107.3           |
|           | Sound Power Level [dB(A)]                        |               |                |                |                |                |                |                 |                 |                 |                 |                 |                 | 49.1            | 52.4            | 55.4            | 61.8            |
|           | Effective Area [m²]                              |               |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                 |                 | 0.27778         | 0.222           |
| 10000     | Pressure Drop [Pa]                               |               |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                 |                 | 65.2            | 107.3           |
|           | Sound Power Level [dB(A)]                        |               |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                 |                 | 56.7            | 63.1            |
| 10500     | Effective Area [m²]                              |               |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                 |                 |                 | 0.2777          |
| 12500     | Pressure Drop [Pa]                               |               |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                 |                 |                 | 107.3           |
|           | Sound Power Level [dB[A]]                        | ı             | I              | I              | I              | I              | I              | l               | I               | I               | ı               | I               | I               | I               |                 | I               | 64              |

**Note**: The data are obtained with the air distribution equipment where the room air temperature difference is T = 8 K. Throw Distance: It is the distance between the point where the air velocity is at 0.25 m / s and the air distribution equipment.



#### THROW DISTANCE CORRECTION TABLE

Table 4. Throw Distance Correction Table

| Heating Mode (△T)     | 4    | 6    | 8    | 10   | 12   |
|-----------------------|------|------|------|------|------|
| Throw Distance Factor | 1.07 | 1.02 | 1    | 0.90 | 0.83 |
| Cooling Mode (△T)     | 4    | 6    | 8    | 10   | 12   |
| Throw Distance Factor | 1.31 | 1.36 | 1.42 | 1.48 | 1.54 |

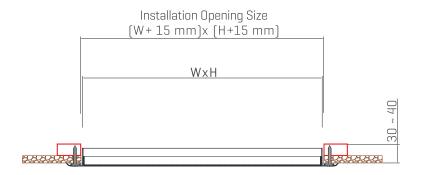
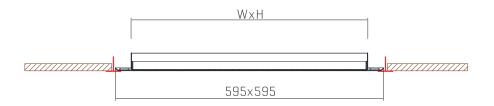

## **DAMPER PRESSURE DROP TABLE**

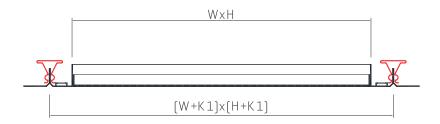
Table 5. Damper Pressure Correction Table


| Damper Position | Pressure Drop Multiplier | Additional Noise (dB(A)) |
|-----------------|--------------------------|--------------------------|
| Open            | 1,1                      | +1                       |
| 25% Closed      | 1,14                     | +4                       |
| 50% Closed      | 2,48                     | +14                      |
| 75% Closed      | 5,11                     | +29                      |

## **INSTALLATION OPTIONS**

## 1. SCREW SYSTEM




## 2. SUSPENDED CEILING

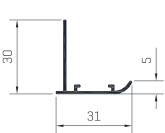


W and H sizes that can be selected according to the frame sizes specified in the product selection are shown in the table on the right.

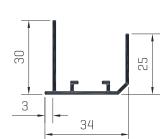
|                 | W (mm) | H (mm) |
|-----------------|--------|--------|
| 31 mm Frame     | 541    | 541    |
| Stainless Steel | 537    | 537    |

## 3. WITH CLIP-IN

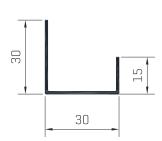



#### Note:

W and H sizes that can be selected according to the frame sizes specified in the product selection are shown in the table on the right.


|            | Clip-in Frame<br>K1 = 60 mm | W (mm) | H (mm) |
|------------|-----------------------------|--------|--------|
| Standard   | Option 1                    | 540    | 540    |
| Dimensions | Option 2                    | 240    | 240    |

## **FRAME TYPES**






Clip-in Frame



Stainless Frame



## **PRODUCT SELECTION**

**Example:** The supply air flow to the space has been determined as 1500 m<sup>3</sup>/h. 3 perforated grille will be used.

Solution: 1500/3=500 m³/h air flow rate is calculated for one grille.

For 500 m<sup>3</sup>/h air flow, the effective areas corresponding to the appropriate pressure loss and flow rate values are selected from the supply data table [Table 3].

For example, in an effective area of  $0.0556 \text{ m}^2$ , the effective velocity is 2.5 m/s, the pressure loss is 3 Pa, the throw distance is 5 m, and the sound power level is less than 15 dB [A].

The appropriate grille size is selected from the effective area table as 800 mm x 500 mm corresponding to the value of 0.056 m<sup>2</sup>.

#### **Damper Condition**

Damper Pressure Loss Table (Table 5) is referenced for the pressure loss caused by the use of damper. The correction factor for the 45° damper opening is 1.24.

Total pressure loss: 3x1.4=4.2 Pa.

## **PRODUCT ORDER CODES**

You can place your orders according to the following coding format.

## **ALUMINUM PRODUCT ORDER CODE**

DMO.< A > . < B > . < C > . < D > . < E > . < F >

| Α | Raw Material Type        |                                     |
|---|--------------------------|-------------------------------------|
|   | ALM                      | Aluminum                            |
| В | Frame Type               |                                     |
|   | 05                       | 31 mm                               |
|   | 09                       | Clip-in                             |
| С | Mounting Type            |                                     |
|   | VD                       | Screw System                        |
|   | MD                       | Without Mounting Hole               |
|   | KR                       | Tile                                |
|   | КМ                       | Assembled From Corners              |
|   | KL                       | Clip-in                             |
| D | Horizontal Size (W) (mm) |                                     |
|   | 0000                     | You can look at the standard sizes. |
| Е | Vertical Size (W) (mm)   |                                     |
|   | 0000                     | You can look at the standard sizes. |
| F | Paint                    |                                     |
|   | 00                       | Unpainted                           |
|   | S1                       | Standard Paint - RAL 9010           |
|   | S2                       | Standard Painted - RAL 9016         |
|   | XX                       | Special Painted                     |

**Sample Coding;** DMO.ALM.01.DZ.VD.0100.0600.S1

## STAINLESS PRODUCT ORDER CODE

DMO.PAS.32. < A > . < B > . < C >. 00

| Α | Mounting Type            |                                    |
|---|--------------------------|------------------------------------|
|   | VD                       | Screwed System                     |
|   | MD                       | Without Mounting Hole              |
|   | KR                       | Suspended Ceiling                  |
| В | Horizontal Size (W) (mm) |                                    |
|   | 0000                     | You can look at the standard sizes |
| С | Vertical Size (W) (mm)   |                                    |
|   | 0000                     | You can look at the standard sizes |

**Sample Coding;** DMO.PAS.32.DZ.VD.0100.0600.00



| NOTES |                              |
|-------|------------------------------|
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       | iklimlendirme i hvac systems |
|       | 1                            |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |

| NOTES |                              |  |
|-------|------------------------------|--|
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       | İKLİMLENDİRME   HVAC SYSTEMS |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |







### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477, Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

## **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1, Ağaoğlu My Office, Kat: 4/18, Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56













**DPC**Circular External Louvre



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











- © DPC Circular External Louvre is practical to clean as it is convenient for mounting in circular ducts with its circular design.
- lt is resistant to external environment thanks to its galvanized sheet coating.
- The fixed blade design of the product prevents the ingress of unwanted rain water from the outside environment.



# **MATERIAL**

© Galvanized sheet

# **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard
- © Optional
  - Different RAL color codes
  - Unpainted manufacturing

#### **MOUNTING OPTIONS**

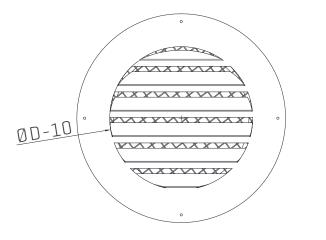
- Screw System
- Mounting Without Hole

# **ACCESSORIES**

- © Optional
  - 10x10 wire






10x10 wire

# **PRODUCT SELECTION**

After determining the desired product dimensions, characteristic performance data are checked from the selection table.

# **STANDARD DIMENSIONS**

The size limits to be given for the order, with the selected diameter size  $\emptyset D$ :



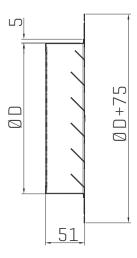
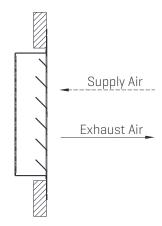



Table 1. Standard Dimensions


|              | 65 -  | - 95  | - | 100 | - | 115 | - | 125 | - | 140 | - | 150 | - | 155 | - | 160 | - | 170 |
|--------------|-------|-------|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|
|              | 180 - | - 185 | - | 190 | - | 195 | - | 200 | - | 210 | - | 225 | - | 240 | - | 245 | - | 250 |
| D (Diameter) | 260 - | - 270 | - | 280 | - | 290 | - | 295 | - | 300 | - | 315 | - | 330 | - | 340 | - | 350 |
| [mm]         | 355 - | - 370 | - | 380 | - | 385 | - | 390 | - | 400 | - | 440 | - | 450 | - | 460 | - | 480 |
|              | 490 - | - 500 | - | 510 | - | 540 | - | 550 | - | 580 | - | 590 | - | 600 | - | 620 | - | 630 |
|              | 690 - | - 700 | - | 710 | - | 750 | - | 800 | - | 880 | - | 900 |   |     |   |     |   |     |



# **PERFORMANCE DATA**

Performance data according to the fresh air supply into the space and the exhaust air from the space to the outside are given below.

Product selection is made according to the desired diameter and flow rate values.



#### **SUPPLY AIR DATA**

Table 2. Supply air data for sizes between Ø65 - Ø200

|     |                           |     |     |     |     |     |     | D (Dia | meter) | [mm] |     |     |     |     |     |     |
|-----|---------------------------|-----|-----|-----|-----|-----|-----|--------|--------|------|-----|-----|-----|-----|-----|-----|
| FI  | low Rate (m³ / h)         | 65  | 95  | 100 | 115 | 125 | 140 | 150    | 155    | 160  | 170 | 180 | 185 | 190 | 195 | 200 |
|     | Pressure Drop [Pa]        | 145 | 32  | 26  | 11  | 11  | 7   | 5      | 4      | 4    | 3   | 2   | 2   | 2   | 2   | 2   |
| 50  | Sound Power Level [dB(A)] | 39  | 19  | 16  | <15 | <15 | <15 | <15    | <15    | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 100 | Pressure Drop [Pa]        |     | 126 | 103 | 59  | 42  | 27  | 20     | 18     | 16   | 12  | 10  | 9   | 8   | 7   | 6   |
| 100 | Sound Power Level [dB(A)] |     | 40  | 37  | 30  | 26  | 20  | 16     | <15    | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 105 | Pressure Drop [Pa]        |     |     |     | 91  | 65  | 42  | 32     | 28     | 24   | 19  | 15  | 14  | 12  | 11  | 10  |
| 125 | Sound Power Level [dB(A)] |     |     |     | 37  | 32  | 26  | 23     | 21     | 19   | 16  | <15 | <15 | <15 | <15 | <15 |
| 150 | Pressure Drop [Pa]        |     |     |     | 131 | 94  | 60  | 45     | 40     | 35   | 27  | 22  | 20  | 18  | 16  | 14  |
| 150 | Sound Power Level [dB(A)] |     |     |     | 42  | 38  | 32  | 28     | 27     | 25   | 22  | 19  | 17  | 16  | <15 | <15 |
| 175 | Pressure Drop [Pa]        |     |     |     |     | 128 | 81  | 62     | 54     | 48   | 37  | 30  | 27  | 24  | 22  | 19  |
| 175 | Sound Power Level [dB(A)] |     |     |     |     | 43  | 37  | 33     | 31     | 30   | 26  | 23  | 22  | 21  | 19  | 18  |
| 000 | Pressure Drop [Pa]        |     |     |     |     |     | 106 | 80     | 71     | 62   | 49  | 39  | 35  | 31  | 28  | 25  |
| 200 | Sound Power Level [dB(A)] |     |     |     |     |     | 41  | 37     | 35     | 34   | 31  | 28  | 26  | 25  | 23  | 22  |
| 225 | Pressure Drop [Pa]        |     |     |     |     |     | 134 | 102    | 89     | 79   | 62  | 49  | 44  | 39  | 36  | 32  |
| 223 | Sound Power Level [dB(A)] |     |     |     |     |     | 44  | 41     | 39     | 37   | 34  | 31  | 30  | 28  | 27  | 26  |
| 250 | Pressure Drop [Pa]        |     |     |     |     |     |     | 125    | 110    | 97   | 76  | 60  | 54  | 49  | 44  | 40  |
| 230 | Sound Power Level [dB(A)] |     |     |     |     |     |     | 44     | 42     | 40   | 37  | 34  | 33  | 31  | 30  | 29  |
| 300 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |        | 139  | 109 | 87  | 78  | 70  | 63  | 57  |
| 300 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |        | 46   | 43  | 40  | 38  | 37  | 36  | 34  |
| 350 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |        |      | 149 | 118 | 106 | 95  | 86  | 77  |
| 330 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |        |      | 47  | 44  | 43  | 42  | 40  | 39  |
| 400 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |        |      |     |     | 138 | 124 | 112 | 101 |
| 400 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |        |      |     |     | 47  | 46  | 44  | 43  |
| 450 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |        |      |     |     |     |     | 141 | 128 |
| 450 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |        |      |     |     |     |     | 48  | 47  |

**Table 3.** Supply air data for sizes Ø210 - Ø350

| _    | laur Data (ma3 / la)      |     |     |     |     |     |     | D (Dia | ameter) | [mm] |     |     |     |     |     |     |
|------|---------------------------|-----|-----|-----|-----|-----|-----|--------|---------|------|-----|-----|-----|-----|-----|-----|
| F    | low Rate (m³ / h)         | 210 | 225 | 240 | 245 | 250 | 260 | 270    | 280     | 290  | 295 | 300 | 315 | 330 | 340 | 350 |
| 100  | Pressure Drop [Pa]        | 5   | 4   | 3   | 3   | 3   | 2   | 2      | 2       | 1    | 1   | 1   | 1   | 1   | 1   | 1   |
| 100  | Sound Power Level [dB(A)] | <15 | <15 | <15 | <15 | <15 | <15 | <15    | <15     | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 200  | Pressure Drop [Pa]        | 21  | 16  | 12  | 11  | 10  | 9   | 8      | 7       | 6    | 5   | 5   | 4   | 3   | 3   | 3   |
| 200  | Sound Power Level [dB(A)] | 19  | 16  | <15 | <15 | <15 | <15 | <15    | <15     | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 000  | Pressure Drop [Pa]        | 47  | 36  | 27  | 25  | 23  | 20  | 17     | 15      | 13   | 12  | 11  | 9   | 8   | 7   | 6   |
| 300  | Sound Power Level [dB(A)] | 32  | 28  | 25  | 24  | 23  | 21  | 19     | 17      | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| //00 | Pressure Drop [Pa]        | 83  | 63  | 49  | 45  | 41  | 35  | 30     | 26      | 23   | 21  | 20  | 16  | 14  | 12  | 11  |
| 400  | Sound Power Level [dB(A)] | 40  | 37  | 34  | 32  | 31  | 29  | 27     | 25      | 24   | 23  | 22  | 19  | 17  | 15  | <15 |
| F00  | Pressure Drop [Pa]        | 130 | 98  | 76  | 70  | 65  | 55  | 47     | 41      | 36   | 33  | 31  | 26  | 21  | 19  | 17  |
| 500  | Sound Power Level [dB(A)] | 47  | 44  | 40  | 39  | 38  | 36  | 34     | 32      | 30   | 30  | 29  | 26  | 24  | 22  | 21  |
| 000  | Pressure Drop [Pa]        |     | 141 | 109 | 101 | 93  | 79  | 68     | 59      | 51   | 48  | 45  | 37  | 31  | 27  | 24  |
| 600  | Sound Power Level [dB(A)] |     | 49  | 46  | 45  | 44  | 42  | 40     | 38      | 36   | 35  | 34  | 32  | 29  | 28  | 26  |
| 700  | Pressure Drop [Pa]        |     |     | 148 | 137 | 126 | 108 | 93     | 80      | 70   | 65  | 61  | 50  | 41  | 37  | 33  |
| 700  | Sound Power Level [dB(A)] |     |     | 50  | 49  | 48  | 46  | 44     | 42      | 41   | 40  | 39  | 36  | 34  | 32  | 31  |
| 800  | Pressure Drop [Pa]        |     |     |     |     |     | 141 | 121    | 105     | 91   | 85  | 79  | 65  | 54  | 48  | 43  |
| 800  | Sound Power Level [dB(A)] |     |     |     |     |     | 50  | 48     | 46      | 45   | 44  | 43  | 40  | 38  | 36  | 35  |
| 900  | Pressure Drop [Pa]        |     |     |     |     |     |     |        | 132     | 115  | 107 | 100 | 82  | 68  | 61  | 54  |
| 900  | Sound Power Level [dB(A)] |     |     |     |     |     |     |        | 50      | 48   | 47  | 46  | 44  | 41  | 40  | 38  |
| 1000 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |         | 142  | 132 | 124 | 102 | 84  | 75  | 67  |
| 1000 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |         | 51   | 51  | 50  | 47  | 45  | 43  | 42  |
| 1250 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |         |      |     |     |     | 132 | 117 | 104 |
| 1250 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |         |      |     |     |     | 51  | 50  | 48  |
| 1500 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |         |      |     |     |     |     |     | 150 |
| 1500 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |         |      |     |     |     |     |     | 54  |

**Table 4.** Supply air data for sizes between 0355 - 0550

|      | . D. C. 2/12              |     |     |     |     |     |     | D (Dia | meter) | [mm] |     |     |     |     |     |     |
|------|---------------------------|-----|-----|-----|-----|-----|-----|--------|--------|------|-----|-----|-----|-----|-----|-----|
| F    | low Rate (m³ / h)         | 355 | 370 | 380 | 385 | 390 | 400 | 440    | 450    | 460  | 480 | 490 | 500 | 510 | 540 | 550 |
| 050  | Pressure Drop [Pa]        | 4   | 3   | 3   | 3   | 3   | 2   | 2      | 2      | 1    | 1   | 1   | 1   | 1   | 1   | 1   |
| 250  | Sound Power Level [dB(A)] | <15 | <15 | <15 | <15 | <15 | <15 | <15    | <15    | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 500  | Pressure Drop [Pa]        | 16  | 13  | 12  | 11  | 11  | 10  | 7      | 6      | 6    | 5   | 4   | 4   | 4   | 3   | 3   |
| 500  | Sound Power Level [dB(A)] | 20  | 18  | 16  | 16  | <15 | <15 | <15    | <15    | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 750  | Pressure Drop [Pa]        | 36  | 30  | 27  | 26  | 24  | 22  | 15     | 14     | 13   | 11  | 10  | 9   | 8   | 7   | 6   |
| /50  | Sound Power Level [dB(A)] | 32  | 30  | 29  | 28  | 27  | 26  | 21     | 20     | 19   | 16  | 15  | <15 | <15 | <15 | <15 |
| 1000 | Pressure Drop [Pa]        | 63  | 53  | 48  | 46  | 43  | 39  | 27     | 24     | 22   | 19  | 17  | 16  | 15  | 12  | 11  |
| 1000 | Sound Power Level [dB(A)] | 41  | 39  | 37  | 37  | 36  | 35  | 30     | 28     | 27   | 25  | 24  | 23  | 22  | 19  | 18  |
| 1250 | Pressure Drop [Pa]        | 98  | 83  | 75  | 71  | 67  | 61  | 42     | 38     | 35   | 29  | 27  | 25  | 23  | 18  | 17  |
| 1230 | Sound Power Level [dB(A)] | 48  | 45  | 44  | 43  | 43  | 41  | 36     | 35     | 34   | 32  | 31  | 30  | 29  | 26  | 25  |
| 1500 | Pressure Drop [Pa]        | 141 | 120 | 108 | 102 | 97  | 88  | 60     | 55     | 50   | 42  | 39  | 36  | 33  | 26  | 24  |
| 1900 | Sound Power Level [dB(A)] | 53  | 51  | 50  | 49  | 48  | 47  | 42     | 41     | 40   | 37  | 36  | 35  | 34  | 31  | 30  |
| 1750 | Pressure Drop [Pa]        |     |     | 146 | 139 | 132 | 119 | 81     | 74     | 68   | 57  | 53  | 49  | 45  | 36  | 33  |
| 1/50 | Sound Power Level [dB(A)] |     |     | 54  | 54  | 53  | 52  | 47     | 45     | 44   | 42  | 41  | 40  | 39  | 36  | 35  |
| 2000 | Pressure Drop [Pa]        |     |     |     |     |     |     | 106    | 97     | 89   | 75  | 69  | 64  | 59  | 47  | 43  |
| 2000 | Sound Power Level [dB(A)] |     |     |     |     |     |     | 51     | 49     | 48   | 46  | 45  | 44  | 43  | 40  | 39  |
| 2250 | Pressure Drop [Pa]        |     |     |     |     |     |     | 134    | 123    | 112  | 95  | 87  | 80  | 74  | 59  | 55  |
| 2230 | Sound Power Level [dB(A)] |     |     |     |     |     |     | 54     | 53     | 52   | 50  | 49  | 48  | 47  | 44  | 43  |
| 2500 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |        | 139  | 117 | 108 | 99  | 92  | 73  | 68  |
| 2300 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |        | 55   | 53  | 52  | 51  | 50  | 47  | 46  |
| 3000 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |        |      |     |     | 143 | 132 | 105 | 97  |
| 3000 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |        |      |     |     | 51  | 55  | 52  | 51  |
| 3500 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |        |      |     |     |     |     | 142 | 132 |
| 3300 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |        |      |     |     |     |     | 57  | 56  |

**Table 5.** Supply air data for sizes from  $\emptyset 560$  to  $\emptyset 900$ 

| -     | au Data (m² / h)                             |     |     |     |     | D   | (Diame | ter) [mm | ]   |     |           |          |          |
|-------|----------------------------------------------|-----|-----|-----|-----|-----|--------|----------|-----|-----|-----------|----------|----------|
| l ri  | ow Rate (m³ / h)                             | 580 | 590 | 600 | 620 | 630 | 690    | 700      | 710 | 750 | 800       | 880      | 900      |
| F00   | Pressure Drop [Pa]                           | 2   | 2   | 2   | 2   | 2   | 1      | 1        | 1   | 1   | 1         | 0        | 0        |
| 500   | Sound Power Level [dB(A)]                    | <15 | <15 | <15 | <15 | <15 | <15    | <15      | <15 | <15 | <15       | <15      | <15      |
| 750   | Pressure Drop [Pa]                           | 5   | 5   | 4   | 4   | 4   | 2      | 2        | 2   | 2   | 1         | 1        | 1        |
| 750   | Sound Power Level [dB(A)]                    | <15 | <15 | <15 | <15 | <15 | <15    | <15      | <15 | <15 | <15       | <15      | <15      |
| 1000  | Pressure Drop [Pa]                           | 9   | 8   | 8   | 7   | 6   | 4      | 4        | 4   | 3   | 2         | 2        | 2        |
| 1000  | Sound Power Level [dB(A)]                    | 15  | <15 | <15 | <15 | <15 | <15    | <15      | <15 | <15 | <15       | <15      | <15      |
| 1500  | Pressure Drop [Pa]                           | 20  | 18  | 17  | 15  | 14  | 10     | 9        | 9   | 7   | 5         | 4        | 3        |
| 1900  | Sound Power Level [dB(A)]                    | 28  | 27  | 26  | 24  | 23  | 18     | 18       | 17  | <15 | <15       | <15      | <15      |
| 2000  | Pressure Drop [Pa]                           | 35  | 33  | 31  | 27  | 25  | 18     | 17       | 16  | 13  | 10        | 7        | 6        |
| 2000  | Sound Power Level [dB(A)]                    | 36  | 35  | 34  | 33  | 32  | 27     | 26       | 26  | 23  | 19        | <15      | <15      |
| 2500  | Pressure Drop [Pa]                           | 55  | 51  | 48  | 42  | 39  | 27     | 26       | 24  | 20  | 15        | 10       | 9        |
| 2300  | Sound Power Level [dB(A)]                    | 43  | 42  | 41  | 40  | 39  | 34     | 33       | 32  | 30  | 26        | 21       | 20       |
| 3000  | Pressure Drop [Pa]                           | 79  | 74  | 69  | 60  | 57  | 39     | 37       | 35  | 28  | 22        | 15       | 14       |
| 3000  | Sound Power Level [dB(A)]                    | 49  | 48  | 47  | 45  | 44  | 39     | 39       | 38  | 35  | 32        | 27       | 26       |
| 3500  | Pressure Drop [Pa]                           | 107 | 100 | 93  | 82  | 77  | 53     | 50       | 48  | 38  | 30        | 20       | 18       |
| 3300  | Sound Power Level [dB(A)]                    | 53  | 52  | 51  | 50  | 49  | 44     | 43       | 43  | 40  | 36        | 31       | 30       |
| 4000  | Pressure Drop [Pa]                           | 140 | 130 | 122 | 107 | 100 | 70     | 66       | 62  | 50  | 39        | 26       | 24       |
| 1000  | Sound Power Level [dB(A)]                    | 57  | 56  | 55  | 54  | 53  | 48     | 47       | 47  | 44  | 40        | 35       | 34       |
| 4500  | Pressure Drop [Pa]                           |     |     |     | 135 | 127 | 88     | 83       | 79  | 63  | 49        | 33       | 30       |
| 1000  | Sound Power Level [dB(A)]                    |     |     |     | 57  | 57  | 52     | 51       | 50  | 47  | 44        | 39       | 38       |
| 5000  | Pressure Drop [Pa]                           |     |     |     |     |     | 109    | 103      | 97  | 78  | 60        | 41<br>42 | 38<br>41 |
|       | Sound Power Level [dB(A)]                    |     |     |     |     |     | 55     | 54       | 53  | 51  | 47        | 42<br>59 | 54       |
| 6000  | Pressure Drop [Pa]                           |     |     |     |     |     |        | 147      | 139 | 112 | 86        | 48       | 47       |
|       | Sound Power Level [dB(A)] Pressure Drop [Pa] |     |     |     |     |     |        | 60       | 59  | 56  | 53        | 80       | 73       |
| 7000  | Sound Power Level [dB(A)]                    |     |     |     |     |     |        |          |     |     | 117<br>57 | 52       | 51       |
|       | Pressure Drop [Pa]                           |     |     |     |     |     |        |          |     |     | 5/        | 105      | 96       |
| 8000  | Sound Power Level [dB(A)]                    |     |     |     |     |     |        |          |     |     |           | 56       | 55       |
|       | Pressure Drop [Pa]                           |     |     |     |     |     |        |          |     |     |           | 132      | 121      |
| 9000  | Sound Power Level [dB(A)]                    |     |     |     |     |     |        |          |     |     |           | 60       | 59       |
|       | Pressure Drop [Pa]                           |     |     |     |     |     |        |          |     |     |           | UU       | 149      |
| 10000 | Sound Power Level [dB[A]]                    |     |     |     |     |     |        |          |     |     |           |          | 62       |
|       | Journa Fower Level [ub[A]]                   |     |     |     |     |     |        |          |     |     |           |          | 62       |

# **EXHAUST AIR DATA**

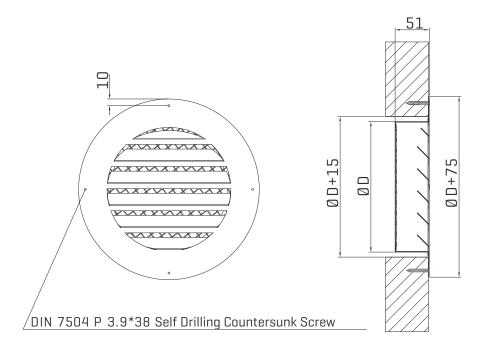
**Table 6.** Exhaust air data for sizes from Ø65 to Ø200

| _    | low Data (m3 / h)         |     |     |     |     |     |     | D (Dia | ameter) | [mm] |     |     |     |     |     |     |
|------|---------------------------|-----|-----|-----|-----|-----|-----|--------|---------|------|-----|-----|-----|-----|-----|-----|
|      | low Rate (m³ / h)         | 65  | 95  | 100 | 115 | 125 | 140 | 150    | 155     | 160  | 170 | 180 | 185 | 190 | 195 | 200 |
|      | Pressure Drop [Pa]        | 105 | 22  | 17  | 10  | 7   | 4   | 3      | 3       | 2    | 2   | 1   | 1   | 1   | 1   | 1   |
| 50   | Sound Power Level [dB(A)] | 35  | <15 | <15 | <15 | <15 | <15 | <15    | <15     | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 100  | Pressure Drop [Pa]        |     | 91  | 73  | 41  | 29  | 18  | 13     | 12      | 10   | 8   | 6   | 6   | 5   | 5   | 4   |
| 100  | Sound Power Level [dB(A)] |     | 36  | 34  | 26  | 21  | 15  | <15    | <15     | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 125  | Pressure Drop [Pa]        |     | 144 | 116 | 65  | 46  | 29  | 21     | 19      | 16   | 13  | 10  | 9   | 8   | 7   | 6   |
| 125  | Sound Power Level [dB(A)] |     | 43  | 40  | 33  | 28  | 22  | 19     | 17      | 15   | <15 | <15 | <15 | <15 | <15 | <15 |
| 150  | Pressure Drop [Pa]        |     |     |     | 95  | 67  | 42  | 31     | 27      | 24   | 19  | 15  | 13  | 12  | 10  | 9   |
| 150  | Sound Power Level [dB(A)] |     |     |     | 39  | 34  | 28  | 24     | 23      | 21   | 18  | <15 | <15 | <15 | <15 | <15 |
| 175  | Pressure Drop [Pa]        |     |     |     | 130 | 92  | 57  | 43     | 38      | 33   | 26  | 20  | 18  | 16  | 14  | 13  |
| 175  | Sound Power Level [dB(A)] |     |     |     | 43  | 39  | 33  | 29     | 27      | 26   | 22  | 19  | 18  | 16  | <15 | <15 |
| 000  | Pressure Drop [Pa]        |     |     |     |     | 121 | 76  | 57     | 50      | 43   | 34  | 27  | 24  | 21  | 19  | 17  |
| 200  | Sound Power Level [dB(A)] |     |     |     |     | 43  | 37  | 33     | 31      | 30   | 27  | 23  | 22  | 20  | 19  | 18  |
| 225  | Pressure Drop [Pa]        |     |     |     |     |     | 97  | 72     | 63      | 55   | 43  | 34  | 30  | 27  | 24  | 22  |
| 223  | Sound Power Level [dB(A)] |     |     |     |     |     | 41  | 37     | 35      | 33   | 30  | 27  | 26  | 24  | 23  | 21  |
| 250  | Pressure Drop [Pa]        |     |     |     |     |     | 120 | 90     | 79      | 69   | 54  | 42  | 38  | 34  | 30  | 27  |
| 230  | Sound Power Level [dB(A)] |     |     |     |     |     | 44  | 40     | 38      | 37   | 33  | 30  | 29  | 27  | 26  | 25  |
| 300  | Pressure Drop [Pa]        |     |     |     |     |     |     | 132    | 115     | 101  | 78  | 62  | 55  | 49  | 44  | 40  |
| 300  | Sound Power Level [dB(A)] |     |     |     |     |     |     | 46     | 44      | 42   | 39  | 36  | 35  | 33  | 32  | 30  |
| 350  | Pressure Drop [Pa]        |     |     |     |     |     |     |        |         | 139  | 108 | 85  | 76  | 68  | 61  | 55  |
| 330  | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |         | 47   | 44  | 41  | 39  | 38  | 37  | 35  |
| //00 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |         |      | 142 | 112 | 100 | 89  | 80  | 72  |
| 400  | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |         |      | 48  | 45  | 44  | 42  | 41  | 39  |
| //50 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |         |      |     | 143 | 127 | 114 | 102 | 92  |
| 450  | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |         |      |     | 49  | 47  | 46  | 44  | 43  |

**Table 7.** Exhaust air data for sizes from  $\emptyset 210$  to  $\emptyset 350$ 

| -    | D-+- (0 /l-)              |     |     |     |     |     |     | D (Dia | meter) | [mm] |     |     |     |     |     |     |
|------|---------------------------|-----|-----|-----|-----|-----|-----|--------|--------|------|-----|-----|-----|-----|-----|-----|
| FIG  | ow Rate (m3 / h)          | 210 | 225 | 240 | 245 | 250 | 260 | 270    | 280    | 290  | 295 | 300 | 315 | 330 | 340 | 350 |
| 100  | Pressure Drop [Pa]        | 3   | 2   | 2   | 2   | 2   | 1   | 1      | 1      | 1    | 1   | 1   | 1   | 1   | 0   | 0   |
| 100  | Sound Power Level [dB(A)] | <15 | <15 | <15 | <15 | <15 | <15 | <15    | <15    | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 000  | Pressure Drop [Pa]        | 14  | 10  | 8   | 7   | 7   | 6   | 5      | 4      | 4    | 3   | 3   | 3   | 2   | 2   | 2   |
| 200  | Sound Power Level [dB(A)] | 15  | <15 | <15 | <15 | <15 | <15 | <15    | <15    | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 000  | Pressure Drop [Pa]        | 32  | 24  | 19  | 17  | 16  | 13  | 11     | 10     | 8    | 8   | 7   | 6   | 5   | 4   | 4   |
| 300  | Sound Power Level [dB(A)] | 28  | 24  | 21  | 19  | 18  | 16  | <15    | <15    | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| //00 | Pressure Drop [Pa]        | 59  | 44  | 34  | 31  | 28  | 24  | 21     | 18     | 15   | 14  | 13  | 11  | 9   | 8   | 7   |
| 400  | Sound Power Level [dB(A)] | 37  | 33  | 30  | 28  | 27  | 25  | 23     | 21     | 19   | 18  | 17  | <15 | <15 | <15 | <15 |
| 500  | Pressure Drop [Pa]        | 93  | 70  | 54  | 49  | 45  | 38  | 33     | 28     | 24   | 23  | 21  | 17  | 14  | 13  | 11  |
| 500  | Sound Power Level [dB(A)] | 44  | 40  | 36  | 35  | 34  | 32  | 30     | 28     | 26   | 25  | 24  | 22  | 19  | 18  | 16  |
| 600  | Pressure Drop [Pa]        | 136 | 102 | 78  | 72  | 66  | 56  | 48     | 41     | 35   | 33  | 31  | 25  | 21  | 18  | 16  |
| 600  | Sound Power Level [dB(A)] | 49  | 46  | 42  | 41  | 40  | 38  | 36     | 34     | 32   | 31  | 30  | 27  | 25  | 23  | 22  |
| 700  | Pressure Drop [Pa]        |     | 141 | 108 | 99  | 91  | 77  | 66     | 57     | 49   | 45  | 42  | 35  | 29  | 25  | 22  |
| 700  | Sound Power Level [dB(A)] |     | 50  | 47  | 46  | 45  | 43  | 41     | 39     | 37   | 36  | 35  | 32  | 30  | 28  | 27  |
| 800  | Pressure Drop [Pa]        |     |     | 142 | 130 | 120 | 102 | 87     | 75     | 64   | 60  | 56  | 46  | 38  | 33  | 29  |
| 800  | Sound Power Level [dB(A)] |     |     | 51  | 50  | 49  | 47  | 45     | 43     | 41   | 40  | 39  | 36  | 34  | 32  | 31  |
| 900  | Pressure Drop [Pa]        |     |     |     |     |     | 130 | 111    | 95     | 82   | 77  | 71  | 58  | 48  | 42  | 38  |
| 300  | Sound Power Level [dB(A)] |     |     |     |     |     | 50  | 48     | 46     | 45   | 44  | 43  | 40  | 38  | 36  | 34  |
| 1000 | Pressure Drop [Pa]        |     |     |     |     |     |     | 138    | 119    | 102  | 95  | 89  | 73  | 60  | 53  | 47  |
| 1000 | Sound Power Level [dB(A)] |     |     |     |     |     |     | 52     | 50     | 48   | 47  | 46  | 43  | 41  | 39  | 38  |
| 1250 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |        |      |     | 141 | 115 | 95  | 84  | 74  |
| 1230 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |        |      |     | 53  | 50  | 48  | 46  | 45  |
| 1500 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |        |      |     |     |     | 139 | 122 | 108 |
| 1900 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |        |      |     |     |     | 54  | 52  | 50  |

**Table 8.** Exhaust air data for sizes Ø355 - Ø550


|      | I D-t- (2 / I-)           |     |     |     |     |     |     | D (Dia | meter) | [mm] |     |     |     |     |     |     |
|------|---------------------------|-----|-----|-----|-----|-----|-----|--------|--------|------|-----|-----|-----|-----|-----|-----|
| F    | low Rate (m³ / h)         | 355 | 370 | 380 | 385 | 390 | 400 | 440    | 450    | 460  | 480 | 490 | 500 | 510 | 540 | 550 |
| 050  | Pressure Drop [Pa]        | 2   | 2   | 2   | 2   | 2   | 2   | 1      | 1      | 1    | 1   | 1   | 1   | 1   | 0   | 0   |
| 250  | Sound Power Level [dB(A)] | <15 | <15 | <15 | <15 | <15 | <15 | <15    | <15    | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 500  | Pressure Drop [Pa]        | 10  | 9   | 8   | 7   | 7   | 6   | 4      | 4      | 4    | 3   | 3   | 3   | 2   | 2   | 2   |
| 500  | Sound Power Level [dB(A)] | 15  | <15 | <15 | <15 | <15 | <15 | <15    | <15    | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 750  | Pressure Drop [Pa]        | 24  | 20  | 18  | 17  | 16  | 15  | 10     | 9      | 8    | 7   | 6   | 6   | 5   | 4   | 4   |
| /50  | Sound Power Level [dB(A)] | 28  | 26  | 24  | 24  | 23  | 22  | 16     | <15    | <15  | <15 | <15 | <15 | <15 | <15 | <15 |
| 1000 | Pressure Drop [Pa]        | 44  | 37  | 33  | 31  | 30  | 27  | 18     | 16     | 15   | 13  | 11  | 11  | 10  | 8   | 7   |
| 1000 | Sound Power Level [dB(A)] | 37  | 35  | 33  | 33  | 32  | 31  | 25     | 24     | 23   | 21  | 20  | 18  | 17  | <15 | <15 |
| 1250 | Pressure Drop [Pa]        | 70  | 59  | 53  | 50  | 47  | 43  | 29     | 26     | 24   | 20  | 18  | 17  | 15  | 12  | 11  |
| 1230 | Sound Power Level [dB(A)] | 44  | 42  | 40  | 40  | 39  | 37  | 32     | 31     | 30   | 28  | 27  | 25  | 24  | 21  | 20  |
| 1500 | Pressure Drop [Pa]        | 102 | 86  | 77  | 73  | 69  | 62  | 42     | 38     | 35   | 29  | 27  | 24  | 23  | 18  | 16  |
| 1900 | Sound Power Level [dB(A)] | 50  | 47  | 46  | 45  | 45  | 43  | 38     | 37     | 36   | 33  | 32  | 31  | 30  | 27  | 26  |
| 1750 | Pressure Drop [Pa]        | 141 | 118 | 106 | 100 | 95  | 86  | 57     | 52     | 48   | 40  | 37  | 34  | 31  | 24  | 23  |
| 1/50 | Sound Power Level [dB(A)] | 54  | 52  | 51  | 50  | 49  | 48  | 43     | 42     | 40   | 38  | 37  | 36  | 35  | 32  | 31  |
| 2000 | Pressure Drop [Pa]        |     |     | 140 | 132 | 125 | 113 | 76     | 69     | 63   | 53  | 48  | 44  | 41  | 32  | 30  |
| 2000 | Sound Power Level [dB(A)] |     |     | 55  | 54  | 54  | 52  | 47     | 46     | 45   | 42  | 41  | 40  | 39  | 36  | 35  |
| 2250 | Pressure Drop [Pa]        |     |     |     |     |     | 144 | 97     | 88     | 80   | 67  | 62  | 57  | 52  | 41  | 38  |
| 2230 | Sound Power Level [dB(A)] |     |     |     |     |     | 56  | 51     | 49     | 48   | 46  | 45  | 44  | 43  | 40  | 39  |
| 2500 | Pressure Drop [Pa]        |     |     |     |     |     |     | 120    | 110    | 100  | 84  | 77  | 71  | 65  | 51  | 47  |
| 2500 | Sound Power Level [dB(A)] |     |     |     |     |     |     | 54     | 53     | 52   | 49  | 48  | 47  | 46  | 43  | 42  |
| 3000 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |        | 146  | 122 | 112 | 103 | 95  | 75  | 69  |
| 3000 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |        | 57   | 55  | 54  | 53  | 52  | 49  | 48  |
| 3500 | Pressure Drop [Pa]        |     |     |     |     |     |     |        |        |      |     |     | 142 | 131 | 103 | 95  |
| 3300 | Sound Power Level [dB(A)] |     |     |     |     |     |     |        |        |      |     |     | 58  | 56  | 53  | 52  |

**Table 9.** Exhaust air data for sizes from Ø560 to Ø900

| -     | D-+- (2 / l-)             |     |     |     |     | D   | (Diame | ter) [mm | ]   |     |     |     |     |
|-------|---------------------------|-----|-----|-----|-----|-----|--------|----------|-----|-----|-----|-----|-----|
| 1     | ow Rate (m³ / h)          | 580 | 590 | 600 | 620 | 630 | 690    | 700      | 710 | 750 | 800 | 880 | 900 |
| 500   | Pressure Drop [Pa]        | 1   | 1   | 1   | 1   | 1   | 1      | 1        | 1   | 0   | 0   | 0   | 0   |
| 500   | Sound Power Level [dB(A)] | <15 | <15 | <15 | <15 | <15 | <15    | <15      | <15 | <15 | <15 | <15 | <15 |
| 750   | Pressure Drop [Pa]        | 3   | 3   | 3   | 2   | 2   | 2      | 1        | 1   | 1   | 1   | 1   | 1   |
| 750   | Sound Power Level [dB(A)] | <15 | <15 | <15 | <15 | <15 | <15    | <15      | <15 | <15 | <15 | <15 | <15 |
| 1000  | Pressure Drop [Pa]        | 6   | 5   | 5   | 4   | 4   | 3      | 3        | 2   | 2   | 1   | 1   | 1   |
| 1000  | Sound Power Level [dB(A)] | <15 | <15 | <15 | <15 | <15 | <15    | <15      | <15 | <15 | <15 | <15 | <15 |
| 1500  | Pressure Drop [Pa]        | 13  | 12  | 11  | 10  | 9   | 6      | 6        | 6   | 5   | 3   | 2   | 2   |
| 1300  | Sound Power Level [dB(A)] | 23  | 22  | 21  | 20  | 19  | <15    | <15      | <15 | <15 | <15 | <15 | <15 |
| 2000  | Pressure Drop [Pa]        | 24  | 22  | 21  | 18  | 17  | 12     | 11       | 10  | 8   | 6   | 4   | 4   |
| 2000  | Sound Power Level [dB(A)] | 32  | 31  | 30  | 28  | 28  | 23     | 22       | 21  | 18  | <15 | <15 | <15 |
| 2500  | Pressure Drop [Pa]        | 38  | 35  | 33  | 29  | 27  | 18     | 17       | 16  | 13  | 10  | 7   | 6   |
| 2300  | Sound Power Level [dB(A)] | 39  | 38  | 37  | 35  | 35  | 30     | 29       | 28  | 25  | 22  | 17  | 15  |
| 3000  | Pressure Drop [Pa]        | 56  | 52  | 48  | 42  | 39  | 27     | 25       | 24  | 19  | 15  | 10  | 9   |
| 3000  | Sound Power Level [dB(A)] | 45  | 44  | 43  | 41  | 40  | 35     | 35       | 34  | 31  | 27  | 22  | 21  |
| 3500  | Pressure Drop [Pa]        | 76  | 71  | 66  | 58  | 54  | 37     | 35       | 33  | 26  | 20  | 13  | 12  |
| 3300  | Sound Power Level [dB(A)] | 50  | 49  | 48  | 46  | 45  | 40     | 39       | 39  | 36  | 32  | 27  | 26  |
| 4000  | Pressure Drop [Pa]        | 101 | 94  | 88  | 76  | 71  | 49     | 46       | 43  | 35  | 26  | 18  | 16  |
| 4000  | Sound Power Level [dB(A)] | 54  | 53  | 52  | 50  | 49  | 44     | 44       | 43  | 40  | 36  | 31  | 30  |
| 4500  | Pressure Drop [Pa]        | 129 | 120 | 112 | 98  | 91  | 62     | 59       | 55  | 44  | 34  | 23  | 21  |
| 4500  | Sound Power Level [dB(A)] | 57  | 56  | 56  | 54  | 53  | 48     | 47       | 46  | 44  | 40  | 35  | 34  |
| 5000  | Pressure Drop [Pa]        |     | 149 | 139 | 121 | 114 | 78     | 73       | 69  | 55  | 42  | 28  | 26  |
| 5000  | Sound Power Level [dB(A)] |     | 60  | 59  | 57  | 56  | 51     | 51       | 50  | 47  | 43  | 38  | 37  |
| 6000  | Pressure Drop [Pa]        |     |     |     |     |     | 113    | 107      | 101 | 80  | 61  | 41  | 37  |
| 6000  | Sound Power Level [dB(A)] |     |     |     |     |     | 57     | 56       | 55  | 52  | 49  | 44  | 43  |
| 7000  | Pressure Drop [Pa]        |     |     |     |     |     |        | 147      | 139 | 110 | 84  | 57  | 52  |
| /000  | Sound Power Level [dB(A)] |     |     |     |     |     |        | 61       | 60  | 57  | 54  | 49  | 47  |
| 8000  | Pressure Drop [Pa]        |     |     |     |     |     |        |          |     | 145 | 111 | 75  | 68  |
| 8000  | Sound Power Level [dB(A)] |     |     |     |     |     |        |          |     | 61  | 58  | 53  | 52  |
| 0000  | Pressure Drop [Pa]        |     |     |     |     |     |        |          |     |     | 142 | 95  | 87  |
| 9000  | Sound Power Level [dB(A)] |     |     |     |     |     |        |          |     |     | 62  | 57  | 55  |
| 10000 | Pressure Drop [Pa]        |     |     |     |     |     |        |          |     |     |     | 119 | 108 |
| 10000 | Sound Power Level [dB(A)] |     |     |     |     |     |        |          |     |     |     | 60  | 59  |

#### **INSTALLATION**

#### **SCREW SYSTEM**



# **PRODUCT SELECTION**

**Example:** In case the flow rate of the air to be exhausted is 1000 m³/h, the pressure drop created by the circular external louvere should be less than 30 Pa and the sound pressure level should be less than 36 dB [A]. Choose the circular external louvre.

**Solution:** The diameters that provide 1000 m<sup>3</sup>/h air flow are checked from the tables under the exhaust air data heading. In Table 7, the pressure drop is 30 Pa and the sound pressure level is 32 dB [A] for the diameter size Ø390 mm. Accordingly, the product selection is made as the appropriate size Ø390 mm.

# **PRODUCT ORDER CODES**

You can place your orders according to the following coding format.

DPC.<A>.<B>.<C>.<D>.<E>

| Α | Raw Material Type  |                             |
|---|--------------------|-----------------------------|
|   | GAL                | Galvanized                  |
| В | Mounting Type      |                             |
|   | VD                 | Screw System                |
|   | MD                 | Without Mounting Hole       |
| С | Accessory          |                             |
|   | 00                 | Without Accessories         |
|   | 10                 | 10x10 Wire                  |
| D | Diameter (ØD) [mm] |                             |
|   | 000                | View from Standard Sizes    |
| E | Paint              |                             |
|   | 00                 | Unpainted                   |
|   | S1                 | Standard Painted - RAL 9010 |
|   | S2                 | Standard Painted - RAL 9016 |
|   | XX                 | Special Painted             |

Sample Coding; DPC.GAL.VD.10.315.S1

| IKLIMLENDIRME   HVAC SYSTEMS | NOTES |          |                 |    |
|------------------------------|-------|----------|-----------------|----|
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       | <u> </u> | 1E   HVAC SYSTE | MS |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |
|                              |       |          |                 |    |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477, Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### Istanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1, Ağaoğlu My Office, Kat: 4/18, Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56









# **VGC**MULTI BLADE DUCT TYPE SMOKE DAMPER







# Venues Breathe with Dogu HVAC Systems

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution&Management&Movement Systems(HVAC Components) and constantly enhancing to provide an integrated solutions for well-being. DOGU HVAC's core business products which are subsumed under 3 major groups as HVAC Units, HVAC Components and Kitchen Ventilation all are manufactured in compliance with EU Standards. Particularly HVAC Units are entitled under the "FOURSEASONS" brand name for both domestic and foreign markets. DOGU HVAC's headquarter, based in Izmir/Turkey, operates in a large sized 25.000 sqm plant that enables us to manufacture 130 various types of products. Additionally DOGU HVAC has a powerful sales network with 3 sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 40 countries.

Thanks to our "Customer Satisfaction", "Zero-defect policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D department developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene (in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standards), CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.













#### **VGC -MULTI BLADE DUCT TYPE SMOKE DAMPER**

- € Tested by accredited body in accordance with EN1366-10.
- Produced up to 1250x1250 mm.
- € Fire resistance class E90.(EN 13501-4)
- € Temperature class 600oC. (EN 13501-4)
- € Pressure class 500Pa. (EN 13501-4)
- ♠ ON/OFF position tracking by damper electric actuator. (Belimo BLE)
- © Class 2 in accordance with EN 1751.

#### **WORKING PRINCIPALS**

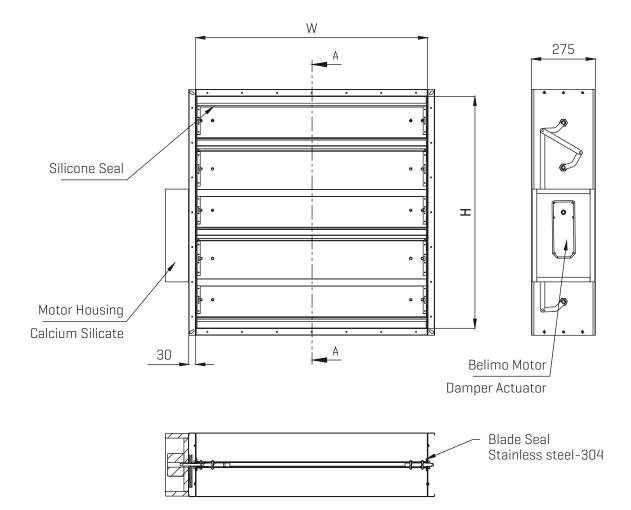
- **©VGC –Multi Blade Duct Type Smoke Dampers** are used to evacuate and control the smoke from the environment during the fire. They perform their tasks according to the fire scenario, which enables blades open or close by the actuator. VGC resists fire 90 minutes under 500 Pa and  $600^{\circ}$ C conditions. Its performance was tested by EN1366-10 testing procedure and certified in accordance with EN 13501-  $4 E_{600} 90 (h_o i \rightarrow 0) S500 C_{300} AA Single$
- Actuator needs 60 seconds in order to change its on-off position. If electricity is cut off, blades keep their current position.

  Actuator cables must be fire resistant in order to ensure the fire scenario works properly.
- € VGC Multi Blade Duct Type Smoke Damper is open when it does not detect smoke.
- Since they have guarantee for 10.000 on/off processes, they can be used for daily ventilation purposes

# **SELECTION**

# 1. Effective Area

| W/H<br>(m²) | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 1000 | 1100 | 1200 | 1250 |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 200         | 0,03 | 0,03 | 0,06 | 0,06 | 0,10 | 0,10 | 0,13 | 0,13 | 0,17 | 0,17 | 0,20 | 0,20 |
| 250         | 0,03 | 0,03 | 0,07 | 0,07 | 0,12 | 0,12 | 0,17 | 0,17 | 0,21 | 0,21 | 0,25 | 0,25 |
| 300         | 0,04 | 0,04 | 0,09 | 0,09 | 0,15 | 0,15 | 0,20 | 0,20 | 0,25 | 0,25 | 0,30 | 0,30 |
| 350         | 0,05 | 0,05 | 0,10 | 0,10 | 0,17 | 0,17 | 0,23 | 0,23 | 0,29 | 0,29 | 0,35 | 0,35 |
| 400         | 0,06 | 0,06 | 0,12 | 0,12 | 0,20 | 0,20 | 0,27 | 0,27 | 0,34 | 0,34 | 0,41 | 0,41 |
| 450         | 0,06 | 0,06 | 0,13 | 0,13 | 0,22 | 0,22 | 0,30 | 0,30 | 0,38 | 0,38 | 0,46 | 0,46 |
| 500         | 0,07 | 0,07 | 0,15 | 0,15 | 0,24 | 0,24 | 0,33 | 0,33 | 0,42 | 0,42 | 0,51 | 0,51 |
| 550         | 0,08 | 0,08 | 0,16 | 0,16 | 0,27 | 0,27 | 0,37 | 0,37 | 0,46 | 0,46 | 0,56 | 0,56 |
| 600         | 0,08 | 0,08 | 0,18 | 0,18 | 0,29 | 0,29 | 0,40 | 0,40 | 0,50 | 0,50 | 0,61 | 0,61 |
| 650         | 0,09 | 0,09 | 0,19 | 0,19 | 0,32 | 0,32 | 0,43 | 0,43 | 0,55 | 0,55 | 0,66 | 0,66 |
| 700         | 0,10 | 0,10 | 0,20 | 0,20 | 0,34 | 0,34 | 0,46 | 0,46 | 0,59 | 0,59 | 0,71 | 0,71 |
| 750         | 0,10 | 0,10 | 0,22 | 0,22 | 0,37 | 0,37 | 0,50 | 0,50 | 0,63 | 0,63 | 0,76 | 0,76 |
| 800         | 0,11 | 0,11 | 0,23 | 0,23 | 0,39 | 0,39 | 0,53 | 0,53 | 0,67 | 0,67 | 0,81 | 0,81 |
| 850         | 0,12 | 0,12 | 0,25 | 0,25 | 0,42 | 0,42 | 0,56 | 0,56 | 0,71 | 0,71 | 0,86 | 0,86 |
| 900         | 0,13 | 0,13 | 0,26 | 0,26 | 0,44 | 0,44 | 0,60 | 0,60 | 0,76 | 0,76 | 0,91 | 0,91 |
| 950         | 0,13 | 0,13 | 0,28 | 0,28 | 0,46 | 0,46 | 0,63 | 0,63 | 0,80 | 0,80 | 0,96 | 0,96 |
| 1000        | 0,14 | 0,14 | 0,29 | 0,29 | 0,49 | 0,49 | 0,66 | 0,66 | 0,84 | 0,84 | 1,01 | 1,01 |
| 1050        | 0,15 | 0,15 | 0,31 | 0,31 | 0,51 | 0,51 | 0,70 | 0,70 | 0,88 | 0,88 | 1,06 | 1,06 |
| 1100        | 0,15 | 0,15 | 0,32 | 0,32 | 0,54 | 0,54 | 0,73 | 0,73 | 0,92 | 0,92 | 1,12 | 1,12 |
| 1150        | 0,16 | 0,16 | 0,34 | 0,34 | 0,56 | 0,56 | 0,76 | 0,76 | 0,96 | 0,96 | 1,17 | 1,17 |
| 1200        | 0,17 | 0,17 | 0,35 | 0,35 | 0,59 | 0,59 | 0,80 | 0,80 | 1,01 | 1,01 | 1,22 | 1,22 |
| 1250        | 0,17 | 0,17 | 0,37 | 0,37 | 0,61 | 0,61 | 0,83 | 0,83 | 1,05 | 1,05 | 1,27 | 1,27 |


# 2. Damper Weight

| W/H<br>(m²) | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  | 1000 | 1100 | 1200 | 1250 |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 200         | 14,1 | 15,3 | 16,9 | 18,1 | 19,7 | 20,9 | 22,6 | 23,7 | 25,4 | 26,6 | 28,2 | 28,8 |
| 250         | 14,7 | 15,9 | 17,6 | 18,8 | 20,5 | 21,8 | 23,5 | 24,7 | 26,4 | 27,6 | 28,3 | 29,9 |
| 300         | 15,3 | 16,5 | 18,3 | 19,6 | 21,3 | 22,6 | 24,4 | 25,7 | 27,4 | 28,7 | 29,5 | 31,1 |
| 350         | 15,8 | 17,1 | 19,0 | 20,3 | 22,1 | 23,4 | 25,3 | 26,6 | 28,5 | 29,8 | 30,6 | 32,3 |
| 400         | 16,4 | 17,7 | 19,7 | 21,0 | 22,9 | 24,3 | 26,2 | 27,6 | 29,5 | 30,8 | 31,8 | 33,5 |
| 450         | 16,9 | 18,3 | 20,3 | 21,7 | 23,7 | 25,1 | 27,1 | 28,5 | 30,5 | 31,9 | 32,9 | 34,6 |
| 500         | 17,5 | 18,9 | 21,0 | 22,4 | 24,5 | 26,0 | 28,0 | 29,5 | 31,6 | 33,0 | 34,0 | 35,8 |
| 550         | 18,1 | 19,5 | 21,7 | 23,2 | 25,3 | 26,8 | 29,0 | 30,4 | 32,6 | 34,1 | 35,2 | 37,0 |
| 600         | 18,6 | 20,1 | 22,4 | 23,9 | 26,1 | 27,6 | 29,9 | 31,4 | 33,6 | 35,1 | 36,3 | 38,1 |
| 650         | 19,2 | 20,7 | 23,1 | 24,6 | 26,9 | 28,5 | 30,8 | 32,3 | 34,7 | 36,2 | 37,5 | 39,3 |
| 700         | 19,8 | 21,3 | 23,7 | 25,3 | 27,7 | 29,3 | 31,7 | 33,3 | 35,7 | 37,3 | 38,6 | 40,5 |
| 750         | 20,3 | 21,9 | 24,4 | 26,0 | 28,5 | 30,1 | 32,6 | 34,2 | 36,7 | 38,4 | 39,8 | 41,6 |
| 800         | 20,9 | 22,5 | 25,1 | 26,8 | 29,3 | 31,0 | 33,5 | 35,2 | 37,7 | 39,4 | 40,9 | 42,8 |
| 850         | 21,4 | 23,2 | 25,8 | 27,5 | 30,1 | 31,8 | 34,4 | 36,2 | 38,8 | 40,5 | 42,1 | 44,0 |
| 900         | 22,0 | 23,8 | 26,5 | 28,2 | 30,9 | 32,7 | 35,4 | 37,1 | 39,8 | 41,6 | 43,2 | 45,1 |
| 950         | 22,6 | 24,4 | 27,1 | 28,9 | 31,7 | 33,5 | 36,3 | 38,1 | 40,8 | 42,6 | 44,4 | 46,3 |
| 1000        | 23,1 | 25,0 | 27,8 | 29,6 | 32,5 | 34,3 | 37,2 | 39,0 | 41,9 | 43,7 | 45,4 | 47,5 |
| 1050        | 23,7 | 25,6 | 28,5 | 30,4 | 33,3 | 35,2 | 38,1 | 40,0 | 42,9 | 44,8 | 46,7 | 48,6 |
| 1100        | 24,3 | 26,2 | 29,2 | 31,1 | 34,1 | 36,0 | 39,0 | 40,9 | 43,9 | 45,9 | 47,8 | 49,8 |
| 1150        | 24,8 | 26,8 | 29,9 | 31,8 | 34,9 | 36,8 | 39,9 | 41,9 | 45,0 | 46,9 | 49,0 | 51,0 |
| 1200        | 25,4 | 27,4 | 30,5 | 32,5 | 35,7 | 37,7 | 40,8 | 42,8 | 46,0 | 48,0 | 50,1 | 52,2 |
| 1250        | 25,9 | 28,0 | 31,2 | 33,3 | 36,5 | 38,5 | 41,8 | 43,8 | 47,0 | 49,1 | 51,3 | 53,3 |

# 3. Sound Power Level and Pressure Loss

|          | V(m/o)                                                                                                                                                     |                   |      |                   |     | h                 |                   |                   |                   |                   |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|-------------------|-----|-------------------|-------------------|-------------------|-------------------|-------------------|
|          | V(m/s)  2 m/s  3 m/s  4 m/s  5 m/s  6 m/s  7 m/s  8 m/s  9 m/s  10 m/s  2 m/s  3 m/s  4 m/s  5 m/s  5 m/s  9 m/s  9 m/s  9 m/s  9 m/s  9 m/s  9 m/s  9 m/s | 200               | 300  | 400               | 500 | 600               | 700               | 800               | 900               | 1000              |
|          | 2 m/s                                                                                                                                                      | <sup>&lt;</sup> 5 | 15   | <sup>&lt;</sup> 5 | 5   | <sup>&lt;</sup>        | 3 m/s                                                                                                                                                      | <sup>&lt;</sup> 5 | 25   | <sup>&lt;</sup> 5 | 8   | <sup>&lt;</sup> 5 | 6                 | <sup>&lt;</sup> 5 | <sup>&lt;</sup> 5 | <sup>&lt;</sup> 5 |
|          | 4 m/s                                                                                                                                                      | 6                 | 39   | 5                 | 10  | <sup>&lt;</sup> 5 | 8                 | <sup>&lt;</sup> 5 | 5                 | <sup>&lt;</sup> 5 |
| Pressure | 5 m/s                                                                                                                                                      | 10                | 60   | 7                 | 16  | 5                 | 13                | 5                 | 12                | <sup>&lt;</sup> 5 |
| Loss     | 6 m/s                                                                                                                                                      | 15                | 85   | 10                | 23  | 8                 | 19                | 8                 | 17                | 7                 |
| (Pa)     | 7 m/s                                                                                                                                                      | 19                | >100 | 14                | 30  | 12                | 27                | 12                | 25                | 11                |
|          | 8 m/s                                                                                                                                                      | 25                | >100 | 18                | 40  | 15                | 33                | 15                | 30                | 14                |
|          | 9 m/s                                                                                                                                                      | 31                | >100 | 23                | 51  | 20                | 42                | 20                | 39                | 19                |
|          | 10 m/s                                                                                                                                                     | 39                | >100 | 27                | 63  | 24                | 51                | 24                | 49                | 22                |
|          | 2 m/s                                                                                                                                                      | 41                | 46   | 41                | 44  | 41                | 42                | 41                | 42                | 41                |
|          | 3 m/s                                                                                                                                                      | 49                | 55   | 49                | 53  | 49                | 51                | 49                | 51                | 49                |
|          | 4 m/s                                                                                                                                                      | 56                | 62   | 56                | 60  | 56                | 58                | 56                | 58                | 56                |
| Sound    | 5 m/s                                                                                                                                                      | 62                | 68   | 62                | 65  | 62                | 65                | 62                | 65                | 62                |
| Power    | 6 m/s                                                                                                                                                      | 66                | 72   | 66                | 70  | 66                | 68                | 66                | 68                | 66                |
| revel    | 7 m/s                                                                                                                                                      | 70                | 76   | 70                | 73  | 70                | 72                | 70                | 72                | 70                |
| (dB)     | 8 m/s                                                                                                                                                      | 73                | 79   | 73                | 77  | 73                | 76                | 73                | 76                | 73                |
|          | 9 m/s                                                                                                                                                      | 75                | 81   | 75                | 79  | 75                | 76                | 75                | 76                | 75                |
|          | 10 m/s                                                                                                                                                     | 77                | 82   | 77                | 80  | 77                | 76                | 77                | 76                | 77                |

# **DIMENSIONS**



| Н               | 200≤<400 | 400≤<600 | 600≤≤800 | 800≤<1000 | 1000≤′1200 | 1200≤ <b>°</b> 1250 |
|-----------------|----------|----------|----------|-----------|------------|---------------------|
| Kanat<br>Sayısı | 1        | 2        | 3        | 4         | 5          | 6                   |

#### MATERIAL AND SURFACE COATING

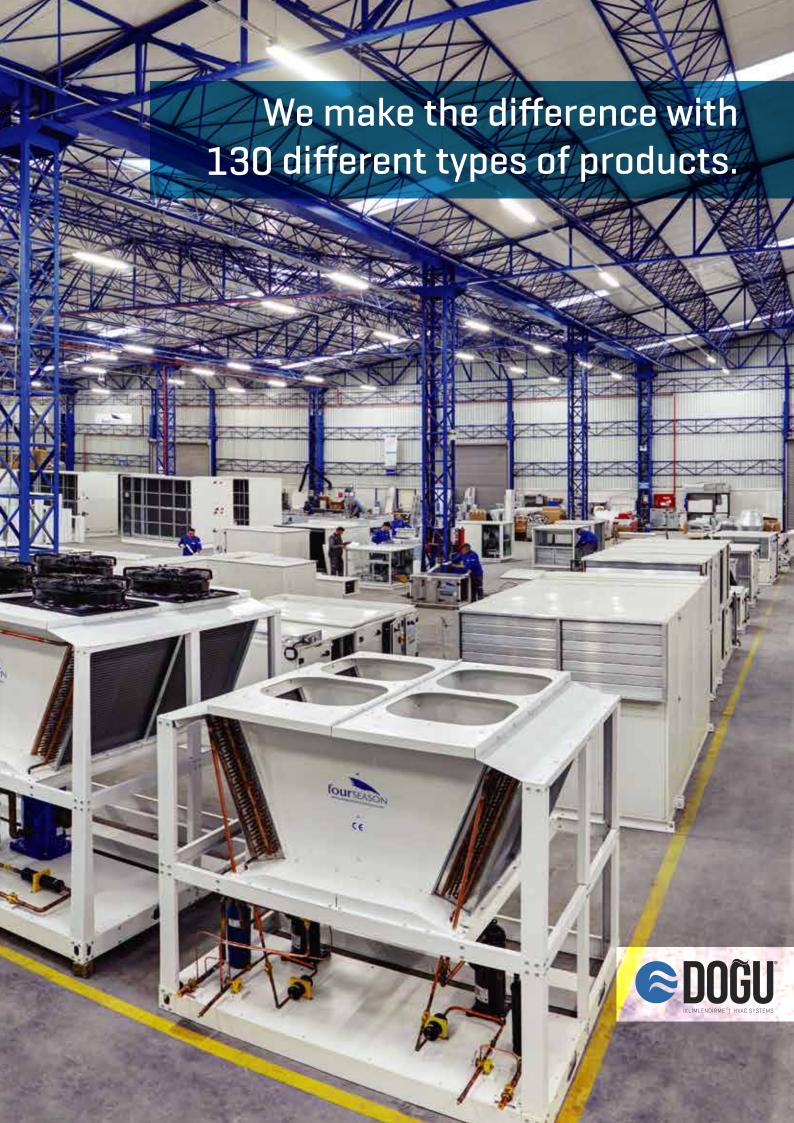
| Name of Items       | Material Type                       |
|---------------------|-------------------------------------|
| Frame               | 1,50 mm Galvanized Sheet Steel      |
| Sealed Damper Blade | 1,20 mm Galvanized Sheet Steel      |
| Blade Bearings      | Brass Rod - Ø30 mm                  |
| Blade Inside        | 50 kg/m³ Rock Wool                  |
| Blade Seal          | 1,00 mm Stainless Sheet Steel - 304 |
| Joint Mechanism     | 4 mm Stainless Sheet Steel - 304    |
| Seal                | Fire Resistant Seal-EN 1366/10      |
| Motor Housing       | Calcium Silicate                    |

Frame and blades of **VGC-Multi Blade Duct Type Smoke Damper** is manufactured from galvanized sheet steel without any welding process. Therefore it has a high corrosion resistance. Silicone based fire resistant gasket is mounted at the end of the blades. There is a 304 grade stainless steel sealing sheet between frame and blades. Damper blades are equipped with 50kg/m3 density rock wool.

The blade shaft is manufactured from automat material and then galvanized and gets high corrosion resistance. Bearings are made of brass. Since these two materials are compatible, they do not require lubrication for many years andmaintain their first day performance.

The joint mechanism ensures that the blades work in the opposite direction. It is made of 4mm304 grade stainless steel. The union of joint mechanism parts is made with 304 grade stainless steel rods.

Damper actuator is located inside the box made of Ca-Si (Calcium silicate)


| NOTES |                              |  |
|-------|------------------------------|--|
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       | İKLİMLENDİRME I HVAC SYSTEMS |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |
|       |                              |  |

| NOTES |                |         |            |     |
|-------|----------------|---------|------------|-----|
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            | (R) |
|       |                | V o V   |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       | <u>iklimle</u> | ENDIRME | HVAC SYSTE | EMS |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |
|       |                |         |            |     |

| NOTES |                                |
|-------|--------------------------------|
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       | iki iwi Endidwe I IIwa ovotewo |
|       | IKLIMLENDIRME   HVAC SYSTEMS   |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |
|       |                                |

| NOTES                        |  |
|------------------------------|--|
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
| İKLİMLENDİRME L HVAC SYSTEMS |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### Istanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56

















# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











- € DMP Egg Crate Grille is a suction grille with egg crate mesh structure.
- lt has a low pressure drop value since its effective area is higher than other grilles. For this reason, it can be used as a suction grille in ventilation systems.

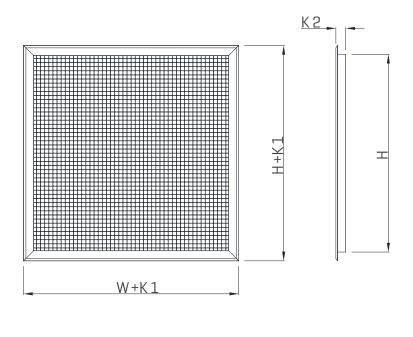


# **MATERIAL**

- € The frame is made of aluminum 6063 extrusion profile.
- € Egg crates manufactured from aluminum 1050 sheet metal.

# **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard.
- © Optional
  - -Different RAL color codes
  - -Unpainted manufacturing


# **INSTALLATION OPTIONS**

- Screw System
- Suspended Ceiling
- Clip-In Ceiling
- With Latch
- € Long Clip
- Subframe Short Clip
- With Damper

# **ACCESSORIES**

- © Optional
  - ZKD Opposed Blade Air Adjustment Damper (Production from aluminum 6063 extrusion profile)
  - Fiber Filter
  - Polyurethane Filter
  - Neck Reducer

# **STANDARD DIMENSIONS**



|               | K1 (mm) | K2 (mm) |
|---------------|---------|---------|
| 22 mm Frame   | 35.6    | 30      |
| 31 mm Frame   | 54      | 30      |
| Clip-In Frame | 59.2    | 30      |

| W (mm)<br>(Width)  | 50<br>1200 | -<br>- | 100<br>1300 | -<br>- | 200<br>1400 | - | 400<br>1500 | -<br>- | 500<br>1600 | - | 600<br>1800 | - | 700<br>2000 | - | 800 | - | 900 | - | 1000 | - | 1100 |
|--------------------|------------|--------|-------------|--------|-------------|---|-------------|--------|-------------|---|-------------|---|-------------|---|-----|---|-----|---|------|---|------|
| H (mm)<br>(Height) | 50         | -      | 100         | -      | 200         | - | 400         | -      | 600         | - | 800         | - | 1000        |   |     |   |     |   |      |   |      |

W

# **PERFORMANCE DATA**

**Table 1.** Effective Area

| Eff           | ective  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|---------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Are           | as (m²) | 50     | 100    | 200    | 250    | 300    | 350    | 400    | 450    | 500    | 550    | 600    | 650    | 700    | 750    | 800    | 850    | 900    | 950    | 1000   |
|               | 50      | 0.0022 | 0.0045 | 0.0091 | 0.0114 | 0.0137 | 0.0160 | 0.0183 | 0.0206 | 0.0229 | 0.0252 | 0.0275 | 0.0298 | 0.0321 | 0.0344 | 0.0367 | 0.0390 | 0.0413 | 0.0436 | 0.0459 |
|               | 100     | 0.0045 | 0.0091 | 0.0183 | 0.0229 | 0.0275 | 0.0321 | 0.0367 | 0.0413 | 0.0459 | 0.0505 | 0.0551 | 0.0597 | 0.0643 | 0.0689 | 0.0735 | 0.0781 | 0.0827 | 0.0873 | 0.0919 |
|               | 200     | 0.0091 | 0.0183 | 0.0367 | 0.0459 | 0.0551 | 0.0643 | 0.0735 | 0.0827 | 0.0919 | 0.1011 | 0.1103 | 0.1194 | 0.1286 | 0.1378 | 0.1470 | 0.1562 | 0.1654 | 0.1746 | 0.1838 |
|               | 250     | 0.0114 | 0.0229 | 0.0459 | 0.0574 | 0.0689 | 0.0804 | 0.0919 | 0.1034 | 0.1149 | 0.1263 | 0.1378 | 0.1493 | 0.1608 | 0.1723 | 0.1838 | 0.1953 | 0.2068 | 0.2183 | 0.2298 |
|               | 300     |        | l      | 1      | 1      | l      | 0.0965 | l      | l      |        |        | l      | l      |        | l      | l      | l      |        | l      |        |
|               | 350     | 0.0160 |        |        |        |        | 0.1126 |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               | 400     | 0.0183 |        |        |        |        | 0.1286 |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               | 450     |        |        |        |        |        | 0.1447 |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               | 500     |        |        |        |        |        | 0.1608 |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               | 550     | 0.0252 | 0.0505 | 0.1011 | 0.1263 | 0.1516 | 0.1769 | 0.2022 | 0.2275 | 0.2527 | 0.2780 | 0.3033 | 0.3286 | 0.3538 | 0.3791 | 0.4044 | 0.4297 | 0.4550 | 0.4802 | 0.5055 |
|               | 600     | 0.0275 | 0.0551 | 0.1103 | 0.1378 | 0.1654 | 0.1930 | 0.2206 | 0.2481 | 0.2757 | 0.3033 | 0.3309 | 0.3584 | 0.3860 | 0.4136 | 0.4412 | 0.4687 | 0.4963 | 0.5239 | 0.5515 |
| W Width [mm]  | 650     |        |        |        |        |        | 0.2091 |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 별             | 700     |        | l      | 1      | 1      | l      | 0.2252 | l      | l      |        |        | l      | l      |        | l      | l      | l      |        | l      | l 1    |
| \ <b>&gt;</b> | 750     |        |        |        |        |        | 0.2412 |        |        |        |        |        |        |        |        |        |        |        |        |        |
| >             | 800     |        | l      | 1      | 1      | l      | 0.2573 | l      | l      |        |        | l      | l      |        | l      | l      | l      |        | l      |        |
|               | 850     |        |        |        |        |        | 0.2734 |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               | 900     |        |        |        |        |        | 0.2895 |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               | 950     |        |        |        |        |        | 0.3056 |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               | 1000    |        |        |        |        |        | 0.3217 |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               | 1100    |        |        |        |        |        | 0.3538 |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               | 1200    | 0.0551 |        | 1      |        |        | 0.3860 |        |        |        |        |        |        |        | l      | l .    |        |        | l      | l 1    |
|               | 1500    |        |        |        |        |        | 0.4825 |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               | 1750    |        |        |        |        |        | 0.5630 |        |        |        |        |        |        |        |        |        |        |        |        |        |
|               | 2000    | 0.0919 | 0.1838 | 0.3676 | 0.4596 | 0.5515 | 0.6434 | 0.7353 | 0.8272 | 0.9192 | 1.0111 | 1.1030 | 1.1949 | 1.2868 | 1.3788 | 1.4707 | 1.5626 | 1.6545 | 1.7464 | 1.8384 |

**Table 2.** Performance Data

|                  |                                                |                                                  |               |               |               |               |               | Effective     | e Speed       | (m/s)                                            |              |              |              |              |                                                  |                                                  |
|------------------|------------------------------------------------|--------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------------------------------------------|--------------|--------------|--------------|--------------|--------------------------------------------------|--------------------------------------------------|
| Flow Rate (m³/h) |                                                | 0.5                                              | 1.0           | 1.5           | 2.0           | 2.5           | 3.0           | 3.5           | 4.0           | 4.5                                              | 5.0          | 6.0          | 7.0          | 8.0          | 9.0                                              | 10.0                                             |
|                  | Effective Area [m²]                            | 0.0278                                           | 0.0139        | 0.0093        | 0.0069        | 0.0056        | 0.0046        | 0.004         | 0.0035        | 0.0031                                           | 0.0028       | 0.0023       |              |              |                                                  |                                                  |
| 50               | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 6             | 9             | 12            | 15            | 19                                               | 24           | 34           |              |              |                                                  |                                                  |
|                  | Throw Distance [m]                             | 1                                                | 2             | 2             | 3             | 3             | 3             | 4             | 4             | 4                                                | 5            | 5            |              |              |                                                  |                                                  |
|                  | Sound Power Level [dB(A)]  Effective Area [m²] | <15<br>0.0556                                    | <15<br>0.0278 | <15<br>0.0185 | <15<br>0.0139 | <15<br>0.0111 | <15<br>0.0093 | <15<br>0.0079 | <15<br>0.0069 | 17<br>0.0062                                     | 20<br>0.0056 | 25<br>0.0046 | 0.004        | 0.0035       | 0.0031                                           | 0.0028                                           |
|                  | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 6             | 9             | 12            | 15            | 19                                               | 24           | 34           | 46           | 61           | 77                                               | 95                                               |
| 100              | Throw Distance [m]                             | 1                                                | 2             | 3             | 3             | 4             | 4             | 5             | 5             | 5                                                | 6            | 6            | 7            | 8            | 8                                                | 9                                                |
|                  | Sound Power Level [dB(A)]                      | <15                                              | <15           | <15           | <15           | <15           | <15           | <15           | 17            | 20                                               | 23           | 27           | 31           | 35           | 38                                               | 41                                               |
|                  | Effective Area [m²]                            | 0.1111                                           | 0.0556        | 0.037         | 0.0278        | 0.0222        | 0.0185        | 0.0159        | 0.0139        | 0.0123                                           | 0.0111       | 0.0093       | 0.0079       | 0.0069       | 0.0062                                           | 0.0056                                           |
| 200              | Pressure Drop [Pa]                             | <1                                               | 11            | 2             | 4             | 6             | 8             | 11            | 15            | 19                                               | 23           | 34           | 46           | 60           | 76                                               | 94                                               |
|                  | Throw Distance [m] Sound Power Level [dB[A]]   | 2                                                | 3             | 3             | 4             | 5             | 5             | 6             | 6             | 7                                                | 7            | 8            | 9 34         | 10           | 11                                               | 11<br>44                                         |
|                  | Effective Area [m²]                            | <15<br>0.1667                                    | <15<br>0.0833 | <15<br>0.0556 | <15<br>0.0417 | <15<br>0.0333 | <15<br>0.0278 | 16<br>0.0238  | 20 0.0208     | 23<br>0.0185                                     | 26<br>0.0167 | 30<br>0.0139 | 0.0119       | 38<br>0.0104 | 41<br>0.0093                                     | 0.0083                                           |
|                  | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 6             | 8             | 11            | 15            | 19                                               | 23           | 34           | 46           | 60           | 76                                               | 94                                               |
| 300              | Throw Distance [m]                             | 2                                                | 3             | 4             | 5             | 5             | 6             | 7             | 7             | 8                                                | 8            | 9            | 10           | 11           | 12                                               | 13                                               |
|                  | Sound Power Level [dB(A)]                      | <15                                              | <15           | <15           | <15           | <15           | <15           | 18            | 21            | 25                                               | 27           | 32           | 36           | 40           | 43                                               | 45                                               |
|                  | Effective Area [m²]                            | 0.2222                                           | 0.1111        | 0.0741        | 0.0556        | 0.0444        | 0.037         | 0.0317        | 0.0278        | 0.0247                                           | 0.0222       | 0.0185       | 0.0159       | 0.0139       | 0.0123                                           | 0.0111                                           |
| 400              | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 6             | 8             | 11            | 15            | 19                                               | 23           | 33           | 46           | 60           | 75                                               | 93                                               |
| .50              | Throw Distance [m]                             | 2                                                | 3<br><15      | -15           | -15           | 6             | 6<br>1E       | 7             | 8             | 8                                                | 9            | 10           | 11           | 12           | 13<br>44                                         | 14<br>47                                         |
|                  | Sound Power Level [dB(A)] Effective Area [m²]  | <15<br>0.2778                                    | 0.1389        | <15<br>0.0926 | <15<br>0.0694 | <15<br>0.0556 | 15<br>0.0463  | 19<br>0.0397  | 23<br>0.0347  | 26<br>0.0309                                     | 29<br>0.0278 | 33<br>0.0231 | 37<br>0.0198 | 41<br>0.0174 | 0.0154                                           | 4/                                               |
|                  | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 6             | 8             | 11            | 15            | 19                                               | 23           | 33           | 45           | 59           | 75                                               |                                                  |
| 500              | Throw Distance [m]                             | 2                                                | 3             | 4             | 5             | 6             | 7             | 8             | 8             | 9                                                | 10           | 11           | 12           | 13           | 14                                               |                                                  |
|                  | Sound Power Level [dB[A]]                      | <15                                              | <15           | <15           | <15           | <15           | 16            | 20            | 24            | 27                                               | 29           | 34           | 38           | 42           | 45                                               |                                                  |
|                  | Effective Area [m²]                            | 0.3333                                           | 0.1667        | 0.1111        | 0.0833        | 0.0667        | 0.0556        | 0.0476        | 0.0417        | 0.037                                            | 0.0333       | 0.0278       | 0.0238       | 0.0208       |                                                  |                                                  |
| 600              | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 6             | 8             | 11            | 15            | 19                                               | 23           | 33           | 45           | 59           |                                                  |                                                  |
| 000              | Throw Distance [m]                             | 2                                                | 4             | 5             | 6             | 7             | 7             | 8             | 9             | 10                                               | 10.4         | 12           | 13           | 14<br>42     |                                                  |                                                  |
|                  | Sound Power Level [dB(A)] Effective Area [m²]  | <15<br>0.3889                                    | <15<br>0.1944 | <15<br>0.1296 | <15<br>0.0972 | <15<br>0.0778 | 17<br>0.0648  | 21<br>0.0556  | 0.0486        | 27<br>0.0432                                     | 30<br>0.0389 | 35<br>0.0324 | 39<br>0.0278 | 0.0243       |                                                  |                                                  |
|                  | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 6             | 8             | 11            | 15            | 19                                               | 23           | 33           | 45           | 59           |                                                  |                                                  |
| 700              | Throw Distance [m]                             | 2                                                | 4             | 5             | 6             | 7             | 8             | 9             | 9             | 10                                               | 10.9         | 12           | 14           | 15           |                                                  |                                                  |
|                  | Sound Power Level [dB(A)]                      | <15                                              | <15           | <15           | <15           | <15           | 17            | 21            | 25            | 28                                               | 31           | 36           | 40           | 43           |                                                  |                                                  |
| 800              | Effective Area [m²]                            | 0.4444                                           | 0.2222        | 0.1481        | 0.1111        | 0.0889        | 0.0741        | 0.0635        | 0.0556        | 0.0494                                           | 0.0444       | 0.037        | 0.0317       |              |                                                  |                                                  |
|                  | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 6             | 8             | 11            | 15            | 19                                               | 23           | 33           | 45           |              |                                                  |                                                  |
|                  | Throw Distance [m]                             | 3                                                | 4             | 5             | 6             | 7             | 8             | 9             | 10            | 11                                               | 11.4         | 13           | 14           |              |                                                  |                                                  |
|                  | Sound Power Level [dB(A)]  Effective Area [m²] | <15<br>0.5                                       | <15<br>0.25   | <15<br>0.1667 | <15<br>0.125  | <15<br>0.1    | 18<br>0.0833  | 22<br>0.0714  | 26<br>0.0625  | 29<br>0.0556                                     | 31<br>0.05   | 36<br>0.0417 | 40<br>0.0357 |              |                                                  |                                                  |
|                  | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 6             | 8             | 11            | 15            | 19                                               | 23           | 33           | 45           |              |                                                  |                                                  |
| 900              | Throw Distance [m]                             | 3                                                | 4             | 5             | 7             | 8             | 9             | 9             | 10            | 11                                               | 11.9         | 13           | 15           |              |                                                  |                                                  |
|                  | Sound Power Level [dB(A)]                      | <15                                              | <15           | <15           | <15           | <15           | 19            | 23            | 26            | 29                                               | 32           | 37           | 41           |              |                                                  |                                                  |
|                  | Effective Area [m²]                            | 0.5556                                           | 0.2778        | 0.1852        | 0.1389        | 0.1111        | 0.0926        | 0.0794        | 0.0694        | 0.0617                                           | 0.0556       | 0.0463       |              |              |                                                  |                                                  |
| 1000             | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 6             | 8             | 11            | 15            | 19                                               | 23           | 33           |              |              |                                                  |                                                  |
| 1000             | Throw Distance [m]                             | 3                                                | 4             | 6             | 7             | 8             | 9             | 10            | 11            | 12                                               | 12.3         | 14           |              |              |                                                  |                                                  |
|                  | Sound Power Level [dB(A)] Effective Area [m²]  | <15<br>0.6944                                    | <15<br>0.3472 | <15<br>0.2315 | <15<br>0.1736 | <15<br>0.1389 | 19<br>0.1157  | 23<br>0.0992  | 27<br>0.0868  | 30                                               | 32           | 37           |              |              |                                                  |                                                  |
|                  | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 0.1309        | 8             | 11            | 15            | 0.0772<br>19                                     | 0.0694<br>23 | 0.0579       |              |              |                                                  |                                                  |
| 1250             | Throw Distance [m]                             | 3                                                | 5             | 6             | 7             | 8             | 9             | 11            | 11            | 12                                               | 13.2         | 33<br>15     |              |              |                                                  |                                                  |
|                  | Sound Power Level [dB(A)]                      | <15                                              | <15           | <15           | <15           | 15            | 20            | 24            | 27            | 31                                               | 33           | 38           |              |              |                                                  |                                                  |
|                  | Effective Area [m²]                            | 0.8333                                           | 0.4167        | 0.2778        | 0.2083        | 0.1667        | 0.1389        | 0.119         | 0.1042        | 0.0926                                           | 0.0833       |              |              |              |                                                  |                                                  |
| 1500             | Pressure Drop [Pa]                             | <1                                               | 1             | 2             | 4             | 6             | 8             | 11            | 15            | 18                                               | 23           |              |              |              |                                                  |                                                  |
| 1900             | Throw Distance [m]                             | 3                                                | 5             | 6             | 8             | 9             | 10            | 11            | 12            | 13.1                                             | 14.1         |              |              |              |                                                  |                                                  |
|                  | Sound Power Level [dB(A)]                      | <15<br>0.9722                                    | <15<br>0.4861 | <15<br>0.3241 | <15           | 0.10///       | 21            | 25<br>0.1389  | 28<br>0.1215  | 31                                               | 34           |              |              |              |                                                  |                                                  |
|                  | Effective Area [m²] Pressure Drop [Pa]         | <1                                               | 1 0.4861      | 2             | 0.2431<br>4   | 0.1944<br>6   | 0.162<br>8    | 0.1389        | 15            | 0.108<br>18                                      | 0.0972<br>23 |              |              |              |                                                  |                                                  |
| 1750             | Throw Distance [m]                             | 3                                                | 5             | 7             | 8             | 9             | 11            | 12            | 13            | 14                                               | 15           |              |              |              |                                                  |                                                  |
|                  | Sound Power Level [dB(A)]                      | <15                                              | <15           | <15           | <15           | 16            | 21            | 25            | 29            | 32                                               | 35           |              |              |              |                                                  |                                                  |
|                  | Effective Area [m²]                            |                                                  | 0.5556        | 0.3704        | 0.2778        | 0.2222        | 0.1852        | 0.1587        | 0.1389        | 0.1235                                           |              |              |              |              |                                                  |                                                  |
| 2000             | Pressure Drop [Pa]                             |                                                  | 1             | 2             | 4             | 6             | 8             | 11            | 15            | 18                                               |              |              |              |              |                                                  |                                                  |
| 2000             | Throw Distance [m]                             |                                                  | 5             | 7             | 8             | 10            | 11            | 12            | 13            | 15                                               |              |              |              |              |                                                  |                                                  |
|                  | Sound Power Level [dB(A)]                      |                                                  | <15           | <15           | <15           | 17            | 22            | 26            | 29            | 32                                               |              |              |              |              |                                                  |                                                  |
|                  | Effective Area [m²]                            |                                                  | 0.6944        | 0.463         | 0.3472        | 0.2778        | 0.2315        | 0.1984        | 0.1736        |                                                  |              |              |              |              |                                                  |                                                  |
| 2500             | Pressure Drop [Pa] Throw Distance [m]          | <del>                                     </del> | 1<br>6        | 8             | 9             | 6<br>11       | 8<br>12       | 11<br>13      | 14            | <del>                                     </del> | <del></del>  | <u> </u>     |              | $\vdash$     | <del>                                     </del> | <u> </u>                                         |
|                  | Sound Power Level [dB[A]]                      |                                                  | <15           | <15           | <15           | 18            | 23            | 27            | 30            |                                                  |              |              |              |              |                                                  |                                                  |
|                  | Effective Area [m²]                            |                                                  | 0.8333        | 0.5556        | 0.4167        | 0.3333        | 0.2778        | 0.2381        |               |                                                  |              |              |              |              |                                                  |                                                  |
| 0000             | Pressure Drop [Pa]                             |                                                  | 1             | 2             | 4             | 6             | 8             | 11            |               |                                                  |              |              |              |              |                                                  |                                                  |
| 3000             | Throw Distance [m]                             |                                                  | 6             | 8             | 10            | 11            | 13            | 14            |               |                                                  |              |              |              |              |                                                  |                                                  |
|                  | Sound Power Level [dB(A)]                      |                                                  | <15           | <15           | <15           | 19            | 24            | 28            |               |                                                  |              |              |              |              |                                                  |                                                  |
|                  | Effective Area [m²]                            |                                                  |               | 0.7407        | 0.5556        | 0.4444        | 0.3704        |               |               |                                                  |              |              |              |              |                                                  |                                                  |
| 4000             | Pressure Drop [Pa]                             | -                                                |               | 2             | 4             | 6             | 8             | <u> </u>      | -             | <u> </u>                                         |              |              |              | _            |                                                  | <del>                                     </del> |
|                  | Throw Distance [m] Sound Power Level [dB[A]]   | _                                                |               | 9<br><15      | -15           | 12<br>20      | 14            |               | -             | _                                                | <del></del>  |              |              | $\vdash$     | _                                                | <del></del>                                      |
|                  | OGUNU FOWER LEVER   UDIA                       | 1                                                | I             | /T2           | <15           | 20            | 25            |               |               |                                                  |              |              |              |              |                                                  |                                                  |

**Note**: The data are obtained when the temperature difference between the air distribution equipment and the ambient air is T=8 K.

Throw distance is the distance between the point where the air leaving the distribution equipment reaches to velocity of  $0.25 \, \text{m/s}$ , and the air distribution equipment.

Table 3. Throw Distance Correction

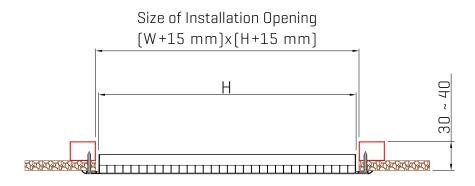
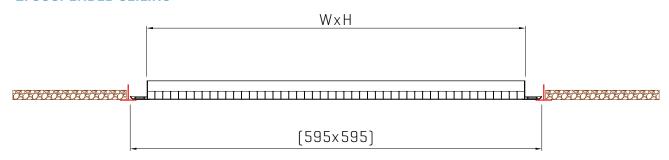

| Heating Mode (△T)     | 4    | 6    | 8    | 10   | 12   |
|-----------------------|------|------|------|------|------|
| Throw Distance Factor | 1.07 | 1.02 | 1    | 0.90 | 0.83 |
| Cooling Mode (△T)     | 4    | 6    | 8    | 10   | 12   |
| Throw Distance Factor | 1.31 | 1.36 | 1.42 | 1.48 | 1.54 |

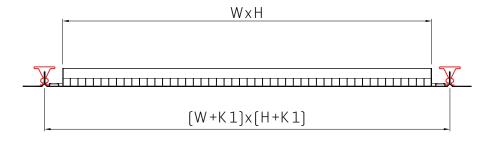
Table 4. Damper Pressure Correction


| Damper Location | Pressure Drop Factor | Sound Production (dB(A)) |
|-----------------|----------------------|--------------------------|
| Opened          | 1.1                  | +1                       |
| 25% Closed      | 1.14                 | +4                       |
| 50% Closed      | 2.48                 | +14                      |
| 75% Closed      | 5.11                 | +29                      |

#### **INSTALLATION**

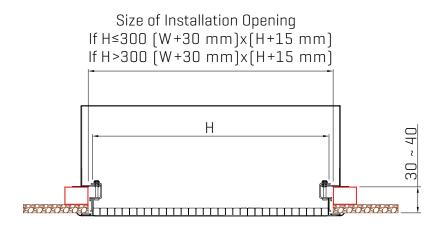
#### 1. SCREW SYSTEM



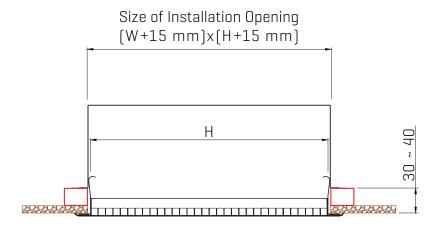

#### 2. SUSPENDED CEILING



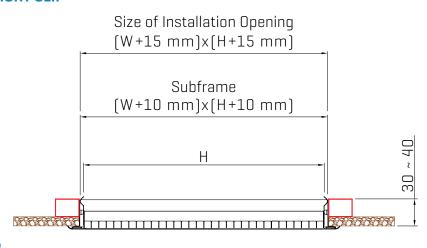
W and H sizes that can be selected according to the frame sizes specified in the product selection are shown in the table on the right.


|             | W (mm) | H (mm) |
|-------------|--------|--------|
| 22 mm Frame | 559    | 559    |
| 32 mm Frame | 541    | 541    |

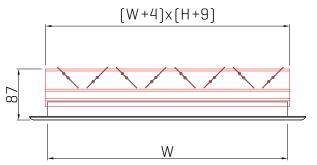
#### 3. CLIP-IN CEILING



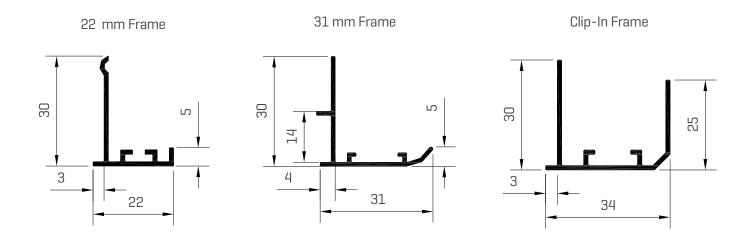

| Clip-In Frame<br>K1 = 59 mm | W (mm) | H (mm) |
|-----------------------------|--------|--------|
| 600x600                     | 541    | 541    |
| 300x300                     | 241    | 241    |


#### 4. WITH LATCH




#### **5. LONG CLIPS**




### **6. SUBFRAME SHORT CLIP**



#### 7. WITH DAMPER



#### **FRAME TYPES**



#### **MAXIMUM MODULE SIZE**

The standard size of a single piece product is in the limits of 50x50 to 2000x1000. If the order is placed over standard sizes, the grilles will be produced more than once in full pieces.

# **PRODUCT SELECTION**

**Example:** The air flow distributed in the space has been determined as 3000 m³/h. 3 Egg Crate Grille will be used for air extract. Make your product selection.

**Solution:** Flow rate for a grille, 3000/3 = 1000 m<sup>3</sup>/h

From the Performance Data Table (Table 2), the effective area corresponding to the appropriate pressure drop and flow rate values are selected.

For example, in 0.1389 m<sup>2</sup> effective area, the effective speed is 2 m/s, pressure loss is 4 Pa, and sound power level is less than 15 dB[A].

The appropriate grille size can be selected from the effective area table as 500 mm x 300 mm corresponding to 0.1389 m² value.

### Opposed Blade Damper Condition

The pressure drop and sound power level changes in the damper product. Damper Correction Table (Table 4) should be used. For example, the pressure multiplier for the damper product in the 50% closed position of the damper is 2.48 corresponding to the table and the sound generation to be added is  $+14 \, dB[A]$ .

Total static pressure drop: 4x2.48=9.9 Pa

Total sound power level is less than 29 dB(A).



# **PRODUCT ORDER CODES**

You can place your orders according to the following coding format.

DMP.< A > . < B > . < C > . < D > . < E > . < F > . < G > . < H >

| A | Raw Material Type             |                                           |
|---|-------------------------------|-------------------------------------------|
|   | ALM                           | Aluminum                                  |
| В | Case Type                     |                                           |
|   | 04                            | 22 mm                                     |
|   | 05                            | 31 mm                                     |
|   | 09                            | Clip-In Ceiling                           |
|   | 00                            | Without Frame                             |
| С | Damper                        |                                           |
|   | ZD                            | Opposed Blade Damper                      |
|   | DZ                            | Without Damper                            |
| D | Installation Type             |                                           |
|   | VD                            | Screw System                              |
|   | KR                            | Suspended Ceiling                         |
|   | KL                            | Clip-In Ceiling                           |
|   | MD                            | Without Mounting Hole                     |
|   | MN                            | With Latch                                |
|   | UK                            | Long Clips                                |
|   | КО                            | Subframe Short Clip                       |
|   | KK                            | Short Clip without Subframe               |
| E | Accessories                   |                                           |
|   | 00                            | Without Accessories                       |
|   | EF                            | Fiber Filter                              |
|   | PF                            | Polyurethane Filter                       |
|   | BD                            | Neck Reducer                              |
| F | Horizontal Dimension (W) (mm) |                                           |
|   | 0000                          | You can view it from standard dimensions. |
| G | Vertical Dimension (H) (mm)   |                                           |
|   | 0000                          | You can view it from standard dimensions. |
| Н | Paint                         |                                           |
|   | 00                            | Unpainted                                 |
|   | S1                            | Standard Painted - RAL 9010               |
|   | S2                            | Standard Painted - RAL 9016               |
|   | XX                            | Special Painted                           |

 $\textbf{Sample Coding;} \ \mathsf{DMP.ALM.24.ZD.KR.00.0500.0500.S1}$ 

| NOTES   |                       |
|---------|-----------------------|
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
| İKLİMLE | NDIRME   HVAC SYSTEMS |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |
|         |                       |

| NOTES |                             |  |
|-------|-----------------------------|--|
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       | IKLIMLENDIRME I HVAC SYSTEM |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |

| NOTES |                              |
|-------|------------------------------|
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       | IKLIMLENDIRME L HVAC SYSTEMS |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |
|       |                              |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477, Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

### Istanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1, Ağaoğlu My Office, Kat: 4/18, Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56













Laminar Flow Ceiling Systems (Horizontal Filter Type)



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in İstanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.



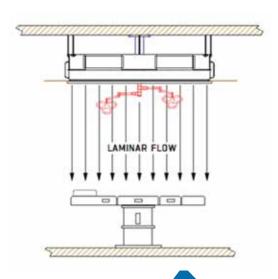




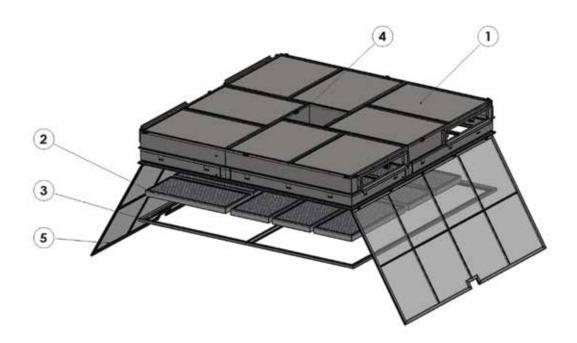







### **GLD - Laminar Flow Ceiling Systems**

- © GLD Laminar Flow Ceiling Systems with Horizontal Filter, are used in operating theaters, intensive care units and industrial facilities which are producing clean room standards.
- Every manufactured Laminar Flow Ceiling System is tested according to DIN 1946/4 and DIN 25414, and ensured to costumer with "100% Leak Proof Warranty".
- € H13/H14 class gel seal hepa filter is used in the system. Thanks to its gel seal structure, a high level of leak proofis provided between the filter and the main case. Thus, it provides protection against harmful particles that may spread into the environment.
- € H13/H14 class aluminum frame and gel seal filter has at tested in EN 1822 standards and it has at least 99.995% efficiency according to the related standard.


## **OPERATION**

GLD – Laminar Flow Ceiling Systems with Horizontal Filter creates turbulent airflow over the patient and operating room personnel and protects against bacteria, viruses and microbes by pushing the air. This reduces the risk of infection for the occupied zone.

In terms of comfort, the human body is adversely affected by constant velocity air flows higher than 0.18-0.40 m/s. If the velocity of air exceeds 0.18-0.40 m/s, no doubt, the high speed will be disturb the patient. Nonetheless, the medical team which are performing surgery should also be able to work comfortably. For long hour surgery conditions, the occupied zone needs to be have low velocity airflow and this conditions can be achieved with Laminar Flow Ceiling System.



#### MATERIALS AND COATING

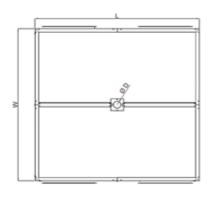


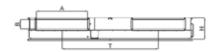
GLD – Laminar Flow Ceiling Systems with Horizontal Filter consists of main parts. These parts are Main Case, H14 Gel Seal Hepa Filter Set, Pendant Box, Laminarizer and Laminarizer Frame.

- 1- Main Case: Manufactured from AISI 304 stainless steel with V2A class, which convenient to DIN 1.4301 standard. Main case does not contain indentations, by this way it is easy to clean and becomes leak-proof. It is produced in a modular structure for ease of assembly and shipment. The casing has manometer terminals for the examination of pressure difference of HEPA filters.
- 2- HepaFilters: H14 class, and it has high flow rate and low initial pressure loss values. Filter case is made of anodic oxidation coated aluminum, for preventing the microorganism activity. To prevent damage to the filter during assembly, protection wire shall be provided on both sides of filter. Thanks to its gel seal structure, a high level of sealing is provided between the filter and the main case.
- **2-3-** Laminarizer Frame: It closes the gap between the laminarizer and the main case, gives the GLD an aesthetic appearance.
- **3-4-** Pendant Box: Located in the center of GLD, because of to hide the flange of the surgery lamp and for interfering if it needs.
- **5-** Laminarizer: The frame is made of stainless steel profile. Covered with special silk cloth made of non-decay and fire resistant micro nets which develops the laminar flow and it can be disinfected by wiping. The laminarizer is attached to the case with torque hinges and clips. Torque hinges system provides easeness for changing the filters.

#### Soft Wall




To decrease turbulence effect on the laminar flow zone edges, a soft wall that made of PET-G can be integrated on the entire circumference of the unit as an accessory.


# **QUICK SELECTION**

|                 |            | Dimension   | s           | v=0,23 m/s<br>Hepa Filter and with |                                               |                                     |  |
|-----------------|------------|-------------|-------------|------------------------------------|-----------------------------------------------|-------------------------------------|--|
| Product Code    | Width (mm) | Length (mm) | Height (mm) | Air Volume<br>(m³/h)               | Average<br>Sound<br>Pressure<br>Level<br>(dB) | Initlal<br>Pressure<br>Loss<br>[Pa] |  |
| GLD - 1400x2400 | 1400       | 2400        | 450         | 2600                               | 35                                            | 90                                  |  |
| GLD - 1600x2400 | 1600       | 2400        | 450         | 3200                               | 35                                            | 90                                  |  |
| GLD - 1800x2400 | 1800       | 2400        | 450         | 3600                               | 35                                            | 90                                  |  |
| GLD - 2400x2400 | 2400       | 2400        | 450         | 4800                               | 40                                            | 95                                  |  |
| GLD - 2400x3000 | 2400       | 3000        | 450         | 6000                               | 40                                            | 95                                  |  |
| GLD - 3000x3000 | 3000       | 3000        | 450         | 7500                               | 40                                            | 95                                  |  |
| GLD - 3200x3200 | 3200       | 3200        | 450         | 8500                               | 40                                            | 95                                  |  |
| GLD - 3800x3800 | 3800       | 3600        | 450         | 12000                              | 40                                            | 97                                  |  |

Note: Recommended final pressure loss level is maximum 250 Pa.

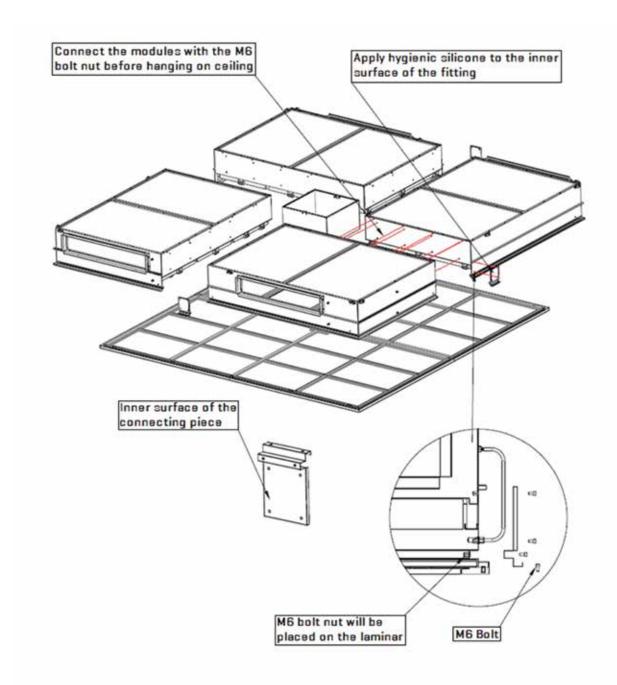
### **DIMENSIONS**





- **1-** If the dimensions are only 1400x2400 mm, it has 2 ducts placed by crossed on the long edge. Another dimensions of the module will have 4 ducts.
- **2-** "ØD" Pendant diameter will be given by the customer at the time of order.
- **3-** The number and size of the hepa filters are varying from different global dimensions. Changes can be seen from the table below.

|                 |      |      | Dimensio | ons (mm) |     |      | Filter Number                                        |
|-----------------|------|------|----------|----------|-----|------|------------------------------------------------------|
| Product Code    | w    | L    | н        | A        | В   | Т    | Quantity and Size<br>Dimensions of Filter            |
| GLD - 1400x2400 | 1400 | 2400 | 450      | 600      | 200 | -    | 850x465x80 / 2 - Pieces<br>720x350x80 / 6 - Pieces   |
| GLD - 1600x2400 | 1600 | 2400 | 450      | 600      | 200 | 1192 | 850x465x80 / 2 - Pieces<br>720x450x80 / 6 - Pieces   |
| GLD - 1800x2400 | 1800 | 2400 | 450      | 600      | 200 | 1192 | 850x465x80 / 2 - Pieces<br>720x550x80 / 6 - Pieces   |
| GLD - 2400x2400 | 2400 | 2400 | 450      | 600      | 200 | 1192 | 804x530x80 / 10 Pieces                               |
| GLD - 2400x3000 | 2400 | 3000 | 450      | 900      | 200 | 1446 | 1104x530x80 / 2 - Pieces<br>804x530x80 / 10 - Pieces |
| GLD - 3000x3000 | 3000 | 3000 | 450      | 1000     | 200 | 1778 | 1092x532x80/12 Pieces                                |
| GLD - 3200x3200 | 3200 | 3200 | 450      | 1000     | 200 | 1878 | 1192x565x80 / 12 Pieces                              |
| GLD - 3800x3800 | 3800 | 3800 | 450      | 1200     | 200 | 2180 | 1470x670x80 / 12 Pieces                              |

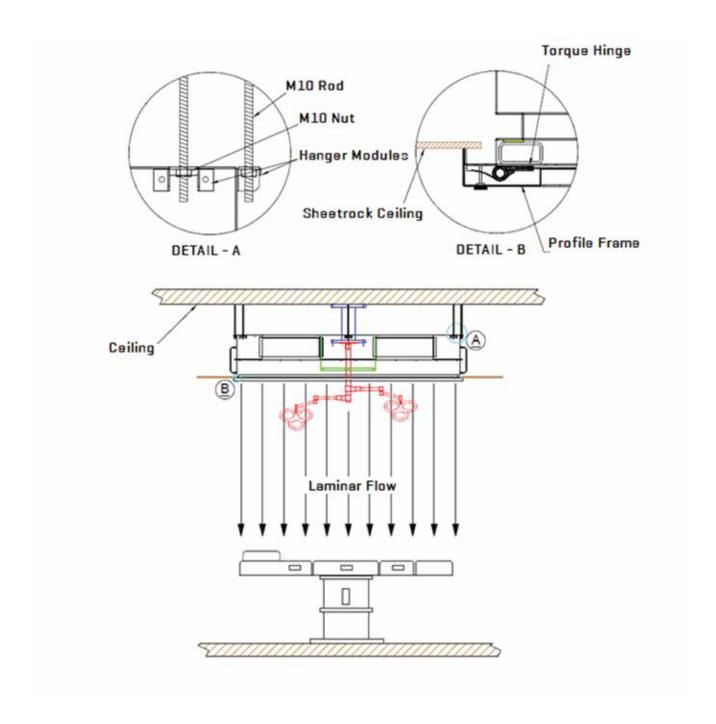

#### **ASSEMBLY**

**Stage 1:** Connect the modules with the M6 bolt nut before hanging on the ceiling. (There is gasket on the module joining surfaces.)

Stage 2: Apply hygienic silicone to the inner surface of the fitting.

**Stage 3:** Fix the modules connected with the M6 bolt nut to each other with the coupling piece. [2 and 4 laminar flow modules will combined in the same way.]

**Stage 4:** Before hanging on the ceiling, use the hygienic silicone between the assembled modules.




**Stage 5:** M10 rods that fixed on the ceiling, will be connected to the hanger module, which placed on the case, by M10 nuts with balancing operation.

**Stage 6:** Attach the laminarizer to the case with torque hinges and clips.

**Stage 7**: Connect the case with the profile frame which seated on the ceiling, by the fixing bolts.

Stage 8: Before testing, make sure that the ceiling zone is at negative pressure.



| NOTES                        |
|------------------------------|
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
| İKLİMLENDİRME L HVAC SYSTEMS |
| THE THE THE TOTAL STOTEMS    |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |
|                              |

| NOTES                       |          |
|-----------------------------|----------|
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
| İKLİMLENDİRME   HVAC SYSTEM | <u>S</u> |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |
|                             |          |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**


Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56













# FOUR-CFHR-S

Cross Flow Paper Heat Exchanger Type Energy Recovery Unit



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.













- 1- Bypass Damper (%100)
- 2- Extract Fan
- 3- Supply Fan
- 4- Paper Cross-Flow Heat Exchanger
- 5- Filters
- 6- Control Panel

#### **FOUR CFHR-S**

- © Double skin
- Low sound level

- € Fully integrated plug & play control system

## **Heat Exchanger**

- € High efficient paper cross flow heat exchanger
- Special application for anti-freeze protection

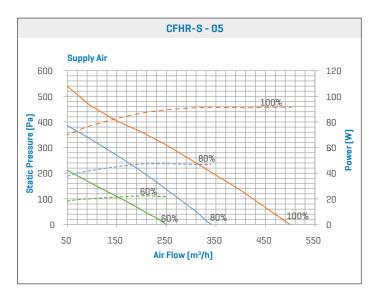
#### **Filters**

- Large filtering area for energy efficiency and long service period
- SISO ePM Coarse 55% filters, optional high efficiency ISO ePM1 55% filter

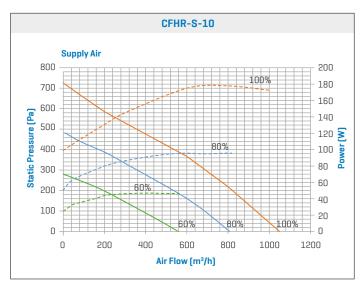
#### **Fans**

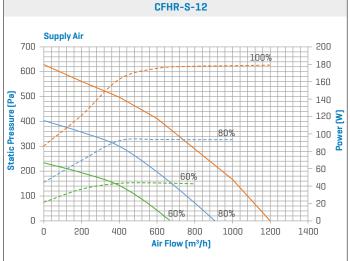
- ♠ New generation EC fans
- Low sound level
- € 10 years lifetime (40.000 hours)

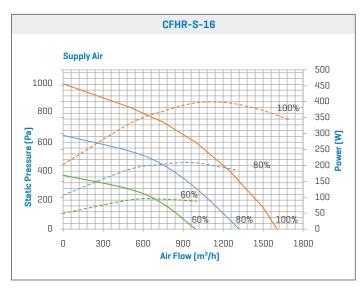
#### **Options:**

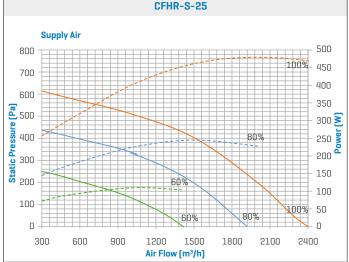

- Electrical Heater
- Attenuator
- Dampers
- € CO₂ and humidity sensor

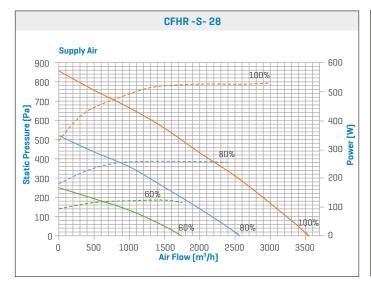

$$SPI = \frac{P_E(W)}{q_s(m^3)}$$


 $SFP = \frac{Psfm+Pefm [W]}{qmax [\underline{m}^3]}$ 

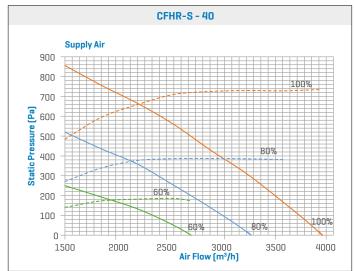

[According to EN 13779]

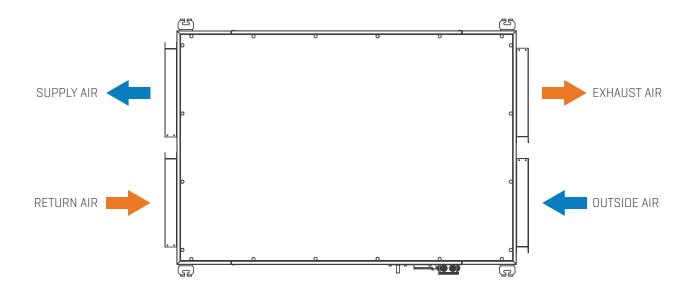

|           | SPI<br>(W / m³ / h ) | SFP<br>(W/m³/s) | EN 13779 SFP<br>CLASS |
|-----------|----------------------|-----------------|-----------------------|
| CFHR-S-05 | 0,166                | 597             | CLASS 2               |
| CFHR-S-07 | 0,164                | 1180            | CLASS 4               |
| CFHR-S-10 | 0,17                 | 1224            | CLASS 3               |
| CFHR-S-12 | 0,142                | 1020            | CLASS 3               |
| CFHR-S-16 | 0,24                 | 1732            | CLASS 4               |
| CFHR-S-25 | 0,188                | 1356            | CLASS 4               |
| CFHR-S-28 | 0,178                | 1280            | CLASS 4               |
| CFHR-S-33 | 0,15                 | 1090            | CLASS 3               |
| CFHR-S-40 | 0,1875               | 1350            | CLASS 4               |





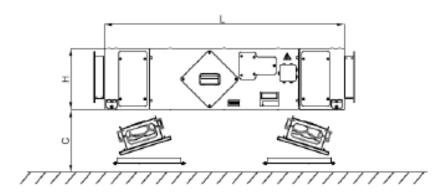



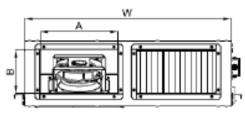


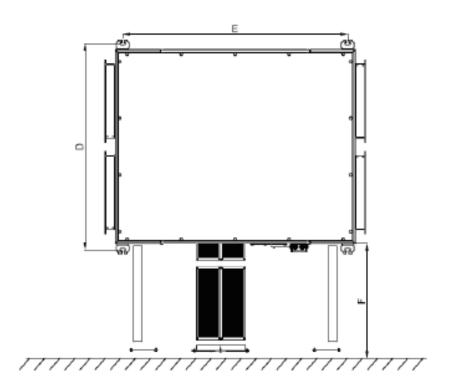








|             | Power (W)  |             | Voltage (V) | / Current (A) | RPM (1/min) |             |  |
|-------------|------------|-------------|-------------|---------------|-------------|-------------|--|
|             | Supply Fan | Extract Fan | Supply Fan  | Extract Fan   | Supply Fan  | Extract Fan |  |
| CFHR-S - 05 | 83         | 83          | 230/0,75    | 230/0,75      | 3200        | 3200        |  |
| CFHR-S - 07 | 119        | 119         | 230/0,9     | 230/0,9       | 3635        | 3635        |  |
| CFHR-S - 10 | 170        | 170         | 230/1,4     | 230/1,4       | 2860        | 2860        |  |
| CFHR-S - 12 | 170        | 170         | 230/1,4     | 230/1,4       | 2510        | 2510        |  |
| CFHR-S - 16 | 385        | 385         | 230/2,5     | 230/2,5       | 3400        | 3400        |  |
| CFHR-S - 25 | 470        | 470         | 230/3,1     | 230/3,1       | 2530        | 2530        |  |
| CFHR-S - 28 | 500        | 500         | 230/2,2     | 230/2,2       | 2700        | 2700        |  |
| CFHR-S - 33 | 500        | 500 230/2,2 |             | 230/2,2       | 1850        | 1850        |  |
| CFHR-S - 40 | 750        | 750         | 230/3,3     | 230/3,3       | 2100        | 2100        |  |


|                            | CFHR-S - 05 | CFHR-S - 07 | CFHR-S-10 | CFHR-S-12 | CFHR-S-16 | CFHR-S - 25 | CFHR-S - 28 | CFHR-S - 33 | CFHR-S - 40 |  |
|----------------------------|-------------|-------------|-----------|-----------|-----------|-------------|-------------|-------------|-------------|--|
| MAX. AIR FLOW<br>(m³/h)    | 500         | 700         | 1040      | 1200      | 1580      | 2400        | 2650        | 3450        | 4010        |  |
| Pext. (Pa)                 |             | 0           |           |           |           |             |             |             |             |  |
| NOMINAL AIR FLOW<br>(m³/h) | 390         | 510         | 845       | 1000      | 1440      | 2100        | 2200        | 3000        | 3510        |  |
| Pext. (Pa)                 |             | 150         |           |           |           |             |             |             |             |  |

| dB (A)          | CFHR-S-05 | CFHR-S-07 | CFHR-S-10 | CFHR-S-12 | CFHR-S-16 | CFHR-S-25 | CFHR-S-28 | CFHR-S-33 | CFHR-S-40 |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SOUND<br>LEVEL* | 32        | 33        | 37        | 34        | 34        | 42        | 45        | 44        | 47        |

<sup>\*</sup>Sound pressure level jasured 1,5 m away from the device.







| MODEL     | L     | W    | Н   | A   | В   | С   | D    | E    | F   | WEIGHT |
|-----------|-------|------|-----|-----|-----|-----|------|------|-----|--------|
| CFHR-S-05 | 1090  | 580  | 335 | 200 | 230 | 230 | 646  | 1010 | 450 | 80     |
| CFHR-S-07 | 1090  | 580  | 335 | 200 | 230 | 230 | 646  | 1010 | 450 | 90     |
| CFHR-S-10 | 1220  | 840  | 335 | 300 | 230 | 290 | 906  | 1140 | 450 | 130    |
| CFHR-S-12 | 1310  | 1060 | 335 | 400 | 230 | 300 | 1126 | 1460 | 550 | 165    |
| CFHR-S-16 | 1565  | 1320 | 375 | 450 | 250 | 340 | 1386 | 1480 | 600 | 195    |
| CFHR-S-25 | 1665  | 1650 | 375 | 600 | 250 | 350 | 1716 | 1580 | 600 | 270    |
| CFHR-S-28 | 1665  | 1950 | 375 | 800 | 250 | 350 | 2016 | 1580 | 600 | 310    |
| CFHR-S-33 | 19750 | 1950 | 460 | 800 | 300 | 430 | 2016 | 1670 | 600 | 345    |
| CFHR-S-40 | 1890  | 2000 | 590 | 850 | 450 | 520 | 2066 | 1810 | 600 | 370    |

<sup>\*</sup> All units are in mm

| Operation                 | Description                                                                                                                                                                                                                                                                                                                 | Standart |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| On / Off                  | Control panel or external start stop function is available.                                                                                                                                                                                                                                                                 | Standard |
| Display                   | Digital control panel is available.                                                                                                                                                                                                                                                                                         | Standard |
| Display                   | Wireless controller is available as option.                                                                                                                                                                                                                                                                                 | Optional |
| Fan Speed Control         | 3 steps fan speed control of supply and exhaust fan is available.                                                                                                                                                                                                                                                           | Standard |
| Fan Speed Control         | Constant air flow or constant pressure.                                                                                                                                                                                                                                                                                     | Optional |
| Fan Speed Control         | Airflow control based on the air quality sensor is available.                                                                                                                                                                                                                                                               | Optional |
| Bypass Damper Function    | Free cooling is available ,by controlling the indoor and outdoor air conditions.                                                                                                                                                                                                                                            | Standard |
| Frost Protection Function | When outdoor temperature is low, this function will become active by receiving information from humidity and temperature sensors.<br>Unbalanced, pre-heater, by-pass                                                                                                                                                        | Standard |
| ModBus                    | It controls all functions of unit via PC or central control system board.                                                                                                                                                                                                                                                   | Standard |
| Filter Function           | There are 2 alternatives to control filters:<br>1: It records run time of the unit and when set time expires,<br>control panel gives an alert for filter change.<br>2: Filter change time can be controlled with pressure switch mechanically.<br>By this way, control panel givesan alert when filter needs to be changed. | Standard |
| Boost Function            | It is used in order to increase fan speed:<br>Alternative1: Via boast button on the control panel.<br>Alternative 2: Via dry contact or light power input (230V) on PCB board.                                                                                                                                              | Standard |
| Safety                    | It automatically stops operatingin case of interfering to the unit while it is working.                                                                                                                                                                                                                                     | Standard |
| Fire Alarm Function       | It will be active in case of fire.                                                                                                                                                                                                                                                                                          | Standard |
| Electrical Heater         | Step control                                                                                                                                                                                                                                                                                                                |          |
| Heating Coil              | Heating coil valves on the device which include optional heating coil, are controlled by proportional valve motors with PID logic and sensitivity.                                                                                                                                                                          | Optional |

# **ACCESSORIES**

#### **Attenuator**



Attenuators are designed to remove the noise resulting from the Air-conditioning and Ventilation systems. The flat sound attenuating panel is used to eliminate the fan noise of 250 Hz octave strength.

|             | CFHR-S-05 | CFHR-S-07 | CFHR-S-10 | CFHR-S-12 | CFHR-S-16 | CFHR-S-25 | CFHR-S-28 | CFHR-S-33 | CFHR-S-40 |
|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Width (mm)  | 200       | 310       | 470       | 490       | 800       | 1130      | 1290      | 1390      | 600       |
| Height (mm) | 230       | 230       | 230       | 230       | 250       | 250       | 250       | 300       | 450       |
| Lenght (mm) | 600       | 600       | 600       | 600       | 600       | 600       | 600       | 600       | 600       |
| De 63 Hz    | 3         | 3         | 2         | 2         | 2         | 2         | 2         | 2         | 2         |
| De 125 Hz   | 5         | 4         | 3         | 3         | 3         | 2         | 2         | 2         | 2         |
| De 250 Hz   | 9         | 9         | 9         | 6         | 6         | 6         | 6         | 6         | 6         |
| De 500 Hz   | 16        | 16        | 16        | 13        | 12        | 12        | 11        | 11        | 12        |
| De 1 kHz    | 19        | 19        | 19        | 14        | 14        | 13        | 12        | 13        | 13        |
| De 2 kHz    | 16        | 16        | 16        | 14        | 14        | 12        | 11        | 11        | 12        |
| De 4 kHz    | 13        | 13        | 13        | 10        | 10        | 7         | 7         | 8         | 9         |
| De 8 kHz    | 10        | 10        | 10        | 7         | 7         | 7         | 6         | 6         | 7         |
| Press (Pa)  | 26        | 16        | 16        | 15        | 17        | 17        | 17        | 17        | 21        |

|             | CFHR-S-05 | CFHR-S-07 | CFHR-S-10 | CFHR-S-12 | CFHR-S-16 | CFHR-S-25 | CFHR-S-28 | CFHR-S-33 | CFHR-S-40 |
|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Width (mm)  | 200       | 310       | 470       | 490       | 800       | 1130      | 1290      | 1390      | 600       |
| Height (mm) | 230       | 230       | 230       | 230       | 250       | 250       | 250       | 300       | 450       |
| Lenght (mm) | 1000      | 1000      | 1000      | 1000      | 1000      | 1000      | 1000      | 1000      | 1000      |
| De 63 Hz    | 3         | 4         | 4         | 4         | 4         | 4         | 4         | 4         | 3         |
| De 125 Hz   | 4         | 7         | 7         | 7         | 7         | 7         | 7         | 7         | 4         |
| De 250 Hz   | 10        | 15        | 15        | 14        | 14        | 14        | 14        | 15        | 10        |
| De 500 Hz   | 18        | 25        | 24        | 23        | 24        | 24        | 24        | 25        | 18        |
| De 1 kHz    | 21        | 28        | 28        | 27        | 28        | 27        | 27        | 29        | 21        |
| De 2 kHz    | 19        | 26        | 25        | 25        | 25        | 25        | 25        | 26        | 19        |
| De 4 kHz    | 13        | 20        | 20        | 19        | 20        | 20        | 20        | 20        | 13        |
| De 8 kHz    | 10        | 16        | 16        | 15        | 15        | 15        | 15        | 16        | 10        |
| Press (Pa)  | 17        | 17        | 19        | 18        | 19        | 19        | 19        | 30        | 23        |

### DX / Heating / Cooling Coil



- © Coils are Eurovent certified.
- © Coils are made of copper pipes and aluminum fins.
- The cassette material is galvanized or stainless steel.
- The coils were tested at a pressure of at least 20 bar. On request, 30 bars can be tested under pressure.
- The collectors used in the coils are copper pipes.
- In hot and cold water coils, the water inlet is from the bottom and the water outlet is at the top.
- Air and water flows are counter-flowing to increase the heat transfer between them.
- © Under the cooling coil, a condensate pan with a double slope is placed and the accumulated water is discharged through the drain pipe. In the case of a Drip Holder, a high-performance drill holder made of PVC material that can with stand up to 90 ° C is used.

#### **Electrical Heater**



**Rectangular electric heaters** have two thermostats as standard.

The first thermostat is set to 70  $^{\circ}$  C, the air in the electric heater cuts off the electric current when it reaches 70  $^{\circ}$  C, allowing the device to restart automatically when the temperature drops.

The second thermostat used for safety purposes is activated at 110  $^{\circ}$  C and cuts off the electric current.

The thermostat must be reset manually from the red button in order for the appliance to operate again.

|           |                 |            |             | ∆T:5 | ΔT:10 | ΔT:15 |
|-----------|-----------------|------------|-------------|------|-------|-------|
|           | Air Flow (m³/h) | Width (mm) | Lenght (mm) | kW   | kW    | kW    |
| CFHR-S-05 | 450             | 230        | 200         | 1    | 1,5   | 2,5   |
| CFHR-S-07 | 500             | 230        | 200         | 1    | 2     | 3     |
| CFHR-S-10 | 845             | 230        | 300         | 1,5  | 3     | 5     |
| CFHR-S-12 | 950             | 230        | 400         | 2    | 4     | 6     |
| CFHR-S-16 | 1500            | 250        | 450         | 3    | 6     | 9     |
| CFHR-S-25 | 2200            | 250        | 600         | 4    | 8     | 12    |
| CFHR-S-28 | 2500            | 250        | 800         | 5    | 9     | 14    |
| CFHR-S-33 | 3000            | 300        | 800         | 6    | 11    | 16    |
| CFHR-S-40 | 3500            | 450        | 850         | 7    | 13    | 19    |



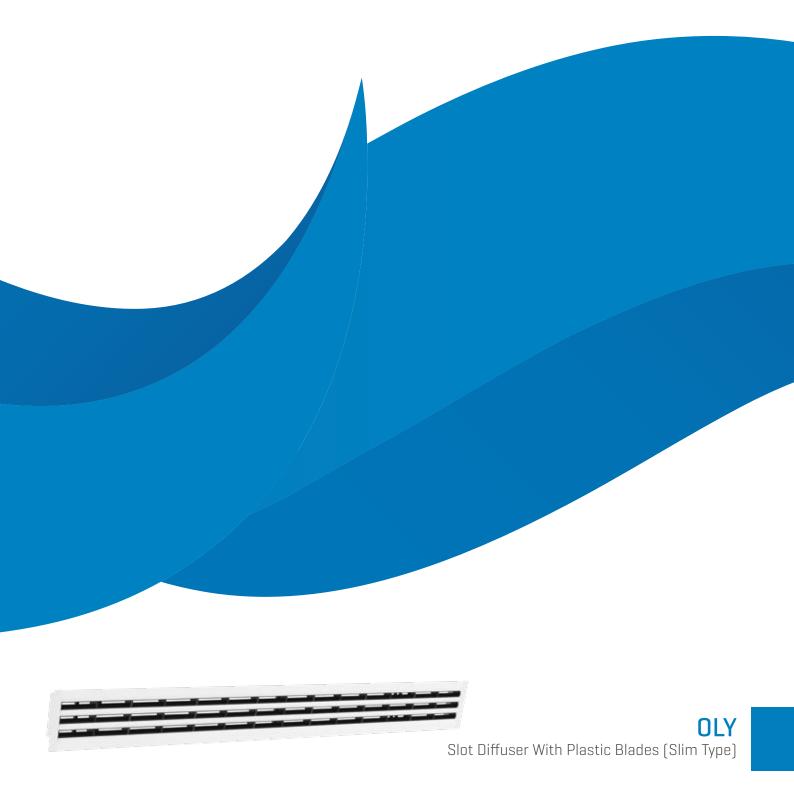




#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### Istanbul Sales Office


Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56













# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under four major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over two factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with three sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











- © OLY Slot Diffuser With Plastic Blades (Slim Type), thanks to its cylindrical shaped blades and modular structure, is both decorative and ideal for meeting comfort parameters in difficult climatic spaces.
- lt is decorative, can be produced modularly.
- Its narrow blade and slot inner structure is aerodynamically optimized and has a compact structure. Thus, it saves energy with low pressure drop.
- They are used as supply or return diffusers in ceiling and wall applications. It is suitable for horizontal throw from ceiling. It creates effective throw geometry in cooling applications with the Coanda effect.
- lt is used in areas with a height of 2-4 m.



#### **MATERIAL**

- ♠ Aluminum 6063 extrusion profile production
- ABS plastic blades that provide air direction inside the frame

# **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard
- © Optional
  - Different RAL color codes
  - Unpainted manufacturing
  - Matt anodised aluminum

#### **MOUNTING OPTIONS**



# **PRODUCT SELECTION**

# **STANDARD DIMENSIONS**

|        |  | +       |  |  |  |  |  |  |  |
|--------|--|---------|--|--|--|--|--|--|--|
|        |  | ω       |  |  |  |  |  |  |  |
|        |  | رب<br>+ |  |  |  |  |  |  |  |
|        |  | 土       |  |  |  |  |  |  |  |
|        |  | +       |  |  |  |  |  |  |  |
|        |  |         |  |  |  |  |  |  |  |
| W + 27 |  |         |  |  |  |  |  |  |  |



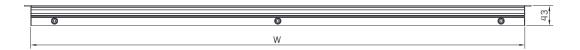



Table 1. Standard Dimension Table

| 0.                     |      |             | H (Heigh    | ıt)[mm]     |          |
|------------------------|------|-------------|-------------|-------------|----------|
| Standard<br>Dimensions |      | 1 Slot      | 2 Slot      | 3 Slot      | 4 Slot   |
| Dillic                 |      |             | 63          | 91          | 121      |
|                        | 155  | <b>~</b>    | <b>✓</b>    | <b>~</b>    | <b>✓</b> |
|                        | 310  | <b>~</b>    | <b>✓</b>    | <b>✓</b>    | <b>✓</b> |
|                        | 460  | <b>~</b>    | <b>~</b>    | <b>~</b>    | <b>✓</b> |
| _                      | 615  | <b>&gt;</b> | >           | <b>&gt;</b> | <b>✓</b> |
| W [Width] [mm]         | 765  | <b>&gt;</b> | <b>&gt;</b> | <b>&gt;</b> | <b>~</b> |
| ارب<br>1               | 915  | >           | >           | <b>&gt;</b> | <b>✓</b> |
| <u>ig</u>              | 1070 | >           | <b>&gt;</b> | <b>&gt;</b> | <b>~</b> |
| _≥                     | 1220 | <b>~</b>    | <b>~</b>    | <b>~</b>    | <b>✓</b> |
| >                      | 1375 | <b>~</b>    | <b>~</b>    | <b>~</b>    | <b>\</b> |
|                        | 1525 | <b>\</b>    | <b>~</b>    | <b>~</b>    | <b>~</b> |
|                        | 1675 | <b>~</b>    | <b>~</b>    | <b>~</b>    | <b>~</b> |
|                        | 1830 | <b>~</b>    | <b>~</b>    | <b>~</b>    | <b>\</b> |
|                        | 1980 | <b>✓</b>    | <b>✓</b>    | <b>~</b>    | <b>✓</b> |



# **PERFORMANCE DATA**

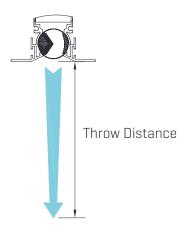
# **EFFECTIVE AREA TABLE**

Table 2. Effective Area Table

|                         |            |        | H (Heigh | nt)[mm] |        |  |  |
|-------------------------|------------|--------|----------|---------|--------|--|--|
| Effective<br>Area [mm²] |            | 1 Slot | 2 Slot   | 3 Slot  | 4 Slot |  |  |
| Aica                    |            | 35     | 63       | 91      | 121    |  |  |
|                         | 155        | 0.0012 | 0.0022   | 0.0032  | 0.0043 |  |  |
|                         | 310<br>460 | 0.0025 | 0.0045   | 0.0065  | 0.0086 |  |  |
|                         | 460        | 0.0037 | 0.0067   | 0.0096  | 0.0128 |  |  |
| _                       | 615        | 0.0050 | 0.0089   | 0.0129  | 0.0171 |  |  |
|                         | 765        | 0.0062 | 0.0111   | 0.0160  | 0.0213 |  |  |
|                         | 915        | 0.0074 | 0.0133   | 0.0192  | 0.0255 |  |  |
| /idt                    | 1070       | 0.0086 | 0.0155   | 0.0224  | 0.0298 |  |  |
| _ ≥                     | 1220       | 0.0098 | 0.0177   | 0.0255  | 0.0340 |  |  |
| >                       | 1375       | 0.0111 | 0.0199   | 0.0286  | 0.0383 |  |  |
| -                       | 1525       | 0.0123 | 0.0221   | 0.0319  | 0.0424 |  |  |
|                         | 1675       | 0.0135 | 0.0243   | 0.0351  | 0.0466 |  |  |
|                         | 1830       | 0.0147 | 0.0265   | 0.0383  | 0.0509 |  |  |
|                         | 1980       | 0.0159 | 0.0287   | 0.0414  | 0.0551 |  |  |



#### **SUPPLY AIR DATA**


Table 3. Supply Air Data Table

| Flow Rate |                                       | Effective Velocity (m/s) |        |        |        |        |         |        |          |              |        |                      |                |          |              |              |
|-----------|---------------------------------------|--------------------------|--------|--------|--------|--------|---------|--------|----------|--------------|--------|----------------------|----------------|----------|--------------|--------------|
| (m³/h)    |                                       | 0.5                      | 1.0    | 1.5    | 2.0    | 2.5    | 3.0     | 3.5    | 4.0      | 4.5          | 5.0    | 6.0                  | 7.0            | 8.0      | 9.0          | 10.0         |
|           | Effective Area [m²]                   | 0.0278                   | 0.0139 | 0.0093 | 0.0069 | 0.0056 | 0.0046  | 0.0040 | 0.0035   |              |        |                      |                |          |              |              |
|           | Pressure Drop [Pa]                    | <1                       | 2      | 4      | 6      | 8      | 10      | 13     | 16       |              |        |                      |                |          |              |              |
| 50        | Throw Distance [m]                    | 1                        | 1      | 1      | 2      | 2      | 2       | 2      | 3        |              |        |                      |                |          |              |              |
|           | Sound Power Level [dB(A)]             | <15                      | <15    | <15    | <15    | <15    | <15     | <15    | <15      |              |        |                      |                |          |              |              |
|           | Effective Area [m²]                   | 0.056                    | 0.028  | 0.0185 | 0.0139 | 0.0111 | 0.0093  | 0.0079 | 0.0069   | 0.0062       | 0.0056 | 0.0046               | 0.0040         | 0.0035   |              |              |
|           | Pressure Drop [Pa]                    | <1                       | 2      | 4      | 7      | 9      | 12      | 16     | 19       | 23           | 27     | 36                   | 46             | 56       |              |              |
| 100       | Throw Distance [m]                    | 1                        | 1      | 1      | 2      | 2      | 2       | 3      | 3        | 3            | 3      | 4                    | 4              | 5        |              |              |
|           | Sound Power Level [dB[A]]             | <15                      | <15    | <15    | <15    | <15    | <15     | 17     | 19       | 22           | 24     | 28                   | 31             | 34       |              |              |
|           | Effective Area [m²]                   | -10                      | 0.056  | 0.037  | 0.0278 | 0.0222 | 0.0185  | 0.0159 | 0.0139   | 0.0123       | 0.0111 | 0.0093               | 0.0079         | 0.0069   | 0.0062       | 0.0056       |
|           | Pressure Drop [Pa]                    |                          | 3      | 5      | 8      | 11     | 15      | 19     | 23       | 28           | 33     | 43                   | 55             | 67       | 81           | 95           |
| 200       | Throw Distance [m]                    |                          | 1      | 2      | 2      | 2      | 3       | 3      | 3        | 3            | 4      | 4                    | 5              | 5        | 5            | 6            |
|           | Sound Power Level [dB[A]]             |                          | <15    | <15    | <15    | <15    | 18      | 22     | 24       | 27           | 29     | 33                   | 36             | 39       | 42           | 44           |
|           | Effective Area [m²]                   |                          | -10    | 0.0556 | 0.0417 | 0.0333 | 0.0278  | 0.0238 | 0.0208   | 0.0185       | 0.0167 | 0.0139               | 0.0119         | 0.0104   | 0.0093       | 0.0083       |
|           | Pressure Drop [Pa]                    |                          |        | 6      | 9      | 13     | 17      | 21     | 26       | 31           | 36     | 48                   | 61             | 75       | 90           | 106          |
| 300       | Throw Distance [m]                    |                          |        | 2      | 2      | 2      | 3       | 3      | 3        | 4            | 4      | 40                   | 5              | 5        | 6            | 6            |
|           | Sound Power Level [dB[A]]             |                          |        | <15    | <15    | 18     | 21      | 25     | 27       | 30           | 32     | 36                   | 39             | 42       | 45           | 47           |
|           | Effective Area [m²]                   |                          |        | ~13    | 0.0556 | 0.0444 | 0.0370  | 0.0317 | 0.0278   | 0.0247       | 0.0222 | 0.0185               | 0.0159         | 0.0139   | 0.0123       | 0.0111       |
|           | Pressure Drop [Pa]                    |                          |        |        | 10     | 14     | 18      | 23     | 28       | 33           | 39     | 52                   | 66             | 81       | 97           | 114          |
| 400       | Throw Distance [m]                    |                          |        |        | 2      | 3      | 3       | 3      | 4        | 4            | 4      | 5                    | 5              | 6        | 6            | 7            |
|           | Sound Power Level [dB[A]]             |                          |        |        | <15    | 20     | 23      | 27     | 30       | 32           | 34     | 38                   | 41             | 44       | 47           | 49           |
|           | Effective Area [m²]                   | _                        |        |        | /T2    | 0.0556 | 0.0463  | 0.0397 | 0.0347   | 0.0309       | 0.0278 | 0.0231               | 0.0198         | 0.0174   | 0.0154       | 0.0139       |
|           | Pressure Drop[Pa]                     |                          |        |        |        | 14     | 19      | 24     | 30       | 35           | 42     | 55                   | 70             | 86       | 103          | 121          |
| 500       | Throw Distance [m]                    |                          |        |        |        | 3      | 3       | 3      | 4        | 35<br>4      | 42     | 5                    | 5              | 6        | 6            | 7            |
|           | Sound Power Level [dB[A]]             | _                        |        | _      |        | 21     | 25      | 28     | 31       | 34           | 36     | 40                   | 43             | 46       | 48           | 50           |
|           | Effective Area [m²]                   |                          |        |        |        | CT     | 0.0556  | 0.0476 | 0.0417   | 0.0370       | 0.0333 | 0.0278               | 0.0238         | 0.0208   | 0.0185       | 0.0167       |
|           | Pressure Drop [Pa]                    |                          |        |        |        |        | 20      |        |          |              | 44     |                      |                | 90       | 0.0000       |              |
| 600       | Throw Distance [m]                    | -                        |        |        |        |        |         | 25     | 31<br>4  | 37<br>4      | 44     | 58                   | 73             |          | 108<br>7     | 127<br>7     |
|           | Sound Power Level [dB(A)]             |                          |        |        |        |        | 3<br>26 | 3      | 32       |              | 37     | 5                    | <u>6</u><br>44 | 6<br>47  |              | -            |
|           | Effective Area [m²]                   |                          |        |        |        |        | 26      | 30     |          | 35<br>0.0432 | 0.0389 | 4 <u>1</u><br>0.0324 | 0.0278         | 0.0243   | 50<br>0.0216 | 52<br>0.0194 |
|           | Pressure Drop [Pa]                    |                          |        |        |        |        |         | 0.0556 | 0.0486   |              |        |                      |                |          |              |              |
| 700       | Throw Distance [m]                    |                          |        |        |        |        |         | 26     | 32       | 39           | 46     | 60                   | 77             | 94       | 113          | 133          |
| ,         | Sound Power Level [dB[A]]             |                          |        |        |        |        |         | 4      | 4        | 4            | 5      | 5<br>42              | 6<br>45        | 6<br>48  | 7            | 7            |
|           | Effective Area [m²]                   | -                        |        |        |        |        |         | 31     | 34       | 36           | 38     |                      |                |          | 51           | 53           |
|           |                                       | -                        |        | _      |        |        | _       |        | 0.0556   | 0.0494       | 0.0444 | 0.0370               | 0.0317         | 0.0278   | 0.0247       | 0.0222       |
| 800       | Pressure Drop [Pa] Throw Distance [m] | -                        |        |        |        |        |         |        | 34       | 40           | 47     | 63                   | 79             | 97       | 117          | 138          |
| 000       |                                       |                          |        |        |        |        |         |        | 4        |              | 5      | 5                    | 6              | 6<br>49  | 7            | 7            |
|           | Sound Power Level [dB(A)]             |                          |        |        |        |        |         |        | 35       | 37           | 39     | 43                   | 46             | 0        | 52           | 54           |
|           | Effective Area [m²]                   |                          |        |        |        |        |         |        |          | 0.0556       | 0.0500 | 0.0417               | 0.0357         | 0.0313   | 0.0278       | 0.0250       |
| 900       | Pressure Drop [Pa]                    | -                        |        |        |        |        |         |        | <u> </u> | 41           | 49     | 65                   | 82             | 101      | 121          | 142          |
| 000       | Throw Distance [m]                    |                          |        |        |        |        |         |        |          | 4            | 5      | 5                    | 6              | 6<br>50  | 7            | 8            |
|           | Sound Power Level [dB(A)]             | -                        | -      |        |        |        |         |        | <u> </u> | 38           | 40     | 44                   | 47             |          | 52           | 55           |
|           | Effective Area [m²]                   | -                        |        |        |        |        |         |        |          |              | 0.0556 | 0.0463               | 0.0397         | 0.0347   | 0.0309       | 0.0278       |
| 1000      | Pressure Drop [Pa] Throw Distance [m] | -                        | -      |        |        |        |         |        | <u> </u> |              | 50     | 66                   | 84<br>6        | 103<br>7 | 124          | 146          |
| 1000      |                                       | _                        |        |        |        |        |         |        |          |              | 5      | 5<br>45              |                | 51       | 7            | 8            |
|           | Sound Power Level [dB(A)]             |                          |        |        |        |        |         |        |          |              | 41     | 45                   | 48             |          | 53           | 55           |
|           | Effective Area [m²]                   | -                        |        |        |        |        |         |        |          |              |        |                      | 0.0496         | 0.0434   | 0.0386       |              |
| 1250      | Pressure Drop [Pa]                    |                          |        |        |        |        |         |        |          |              |        |                      | 89             | 110      | 132          |              |
| ILJU      | Throw Distance [m]                    |                          |        |        |        |        |         |        |          |              |        |                      | 6              | 7        | 7            |              |
|           | Sound Power Level [dB(A)]             |                          |        |        |        |        |         |        |          |              |        |                      | 50             | 52       | 55           |              |
|           | Effective Area [m²]                   |                          |        |        |        |        |         |        |          |              |        |                      |                | 0.0521   | 0.0463       |              |
| 1500      | Pressure Drop [Pa]                    |                          |        |        |        |        |         |        |          |              |        |                      |                | 115      | 138          |              |
| 1900      | Throw Distance [m]                    |                          |        |        |        |        |         |        |          |              |        |                      |                | 7        | 8            |              |
|           | Sound Power Level [dB(A)]             |                          |        | 1      | l      | l      |         | l      |          |              |        |                      |                | 54       | 56           |              |

Design Upper Limit High Pressure Drop Quick Selection: Safe Choice

Note: Data is obtained with blades in a straight position. If the throw is adjusted horizontally, the pressure drop and sound power level data in the table have acceptable variability.

Throw distance: The vertical distance of the air in the comfort zone leaving the air distribution equipment at a speed of 0.25 m/s.





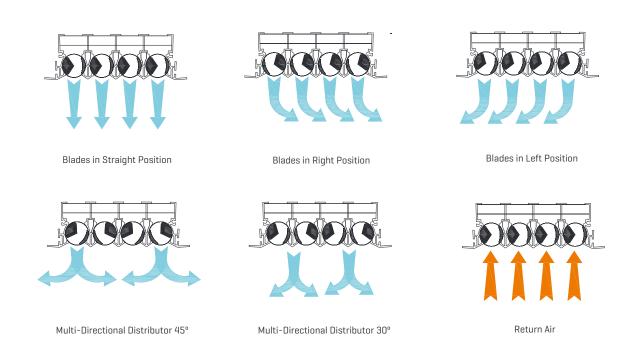

#### THROW DISTANCE CORRECTION TABLE

Table 4. Throw Distance Correction Chart

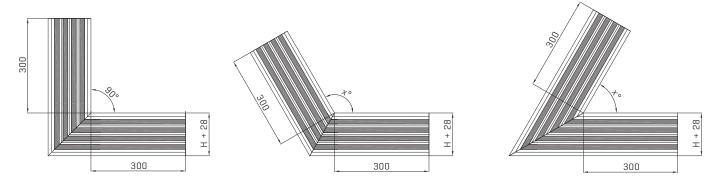
| Heating Mode (△T)         | 4    | 6    | 8    | 10   | 12   |
|---------------------------|------|------|------|------|------|
| Throw Distance Multiplier | 1.07 | 1.02 | 1    | 0.90 | 0.83 |
| Cooling Mode (△T)         | 4    | 6    | 8    | 10   | 12   |
| Throw Distance Multiplier | 1.31 | 1.36 | 1.42 | 1.48 | 1.54 |

#### **AIR FLOW DIRECTION**

Convenient blade positions for supply and return air.



**Note**: OLY - Slot Diffuser With Plastic Blades (Slim Type) is suitable for use in variable flow rate systems and the air throw directing characteristic remains constant between 100% and 25% flow rate.

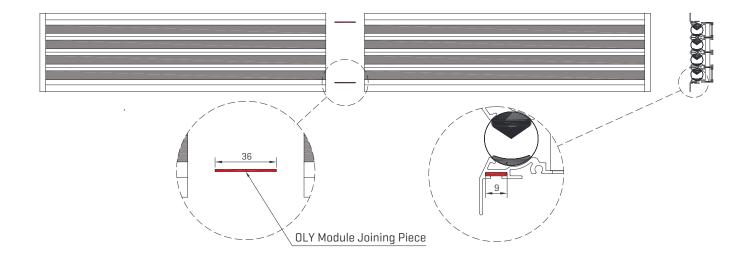

#### **SIDE CAP OPTIONS**

If specified in the order, the slot diffuser can be produced in the following ways, with a single cap or without caps. If the caps option is not specified in the orde standard capped production is made.



#### **CORNER JOINING**

In order to ensure the continuity of OLY installation on wall-to-wall applications, a stylish appearance is provided by the corner joining system that allows different angles of transitions.

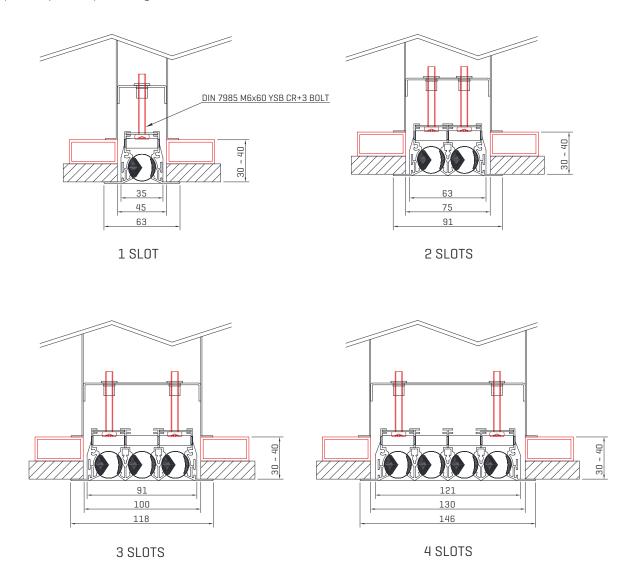



Standard corner joint length is 300 mm.

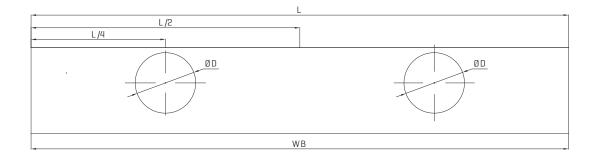
**x:** Corner piece angle. The standard corner joint is right angle (90°). The desired angle dimensions must be specified in the order. Corner piece angle is minimum 45°.

#### **MODULE ASSEMBLY**

When the slot length [W] given in orders for OLY - Slot Diffuser With Plastic Blades (Slim Type) is over 2000 mm, the slot profiles are assembled with the module joining piece. In this way, the slot diffuser is seen in one piece as well as preserving its strength.




Number of Modules = Round Up (Order Size / 2300)


#### **ASSEMBLY**

# **MOUNTING BRACKET**

Bracket assembly is made as standard. For each slot module, there are 2 mounting plates on OLY and 2 mounting plates [bracket] on the box. Bolt is screwed into the mounting plate on OLY, a nut is screwed into the mounting plate and the assembly is completed by screwing the bolt with a fillister head screw driver.



#### **BOX DIMENSIONS**



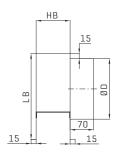



Table 3. Box Size Table

| Number of | Box Size Table         |                |                |                | S              | lot Length [mm] |                |                 |                 |                 |
|-----------|------------------------|----------------|----------------|----------------|----------------|-----------------|----------------|-----------------|-----------------|-----------------|
| Slots     | Property               | 400            | 600            | 800            | 1000           | 1200            | 1400           | 1600            | 1800            | 2000            |
|           | Box Neck (ØD) [mm]     | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø150 - 1 Piece  | Ø150 - 1 Piece | Ø150 - 2 Pieces | Ø150 - 2 Pieces | Ø200 - 2 Pieces |
| 1         | Box Height (LB) [mm]   | 175            | 175            | 175            | 175            | 225             | 225            | 225             | 225             | 275             |
| -         | Box 1st Size (WB) [mm] | 45             | 45             | 45             | 45             | 45              | 45             | 45              | 45              | 45              |
|           | Box 2nd Size (HB) [mm] | 410            | 610            | 810            | 1010           | 1210            | 1410           | 1610            | 1810            | 2010            |
|           | Box Neck (ØD) [mm]     | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece  | Ø200 - 1 Piece | Ø200 - 2 Pieces | Ø200 - 2 Pieces | Ø200 - 2 Pieces |
|           | Box Height (LB) [mm]   | 175            | 175            | 175            | 225            | 225             | 225            | 225             | 275             | 275             |
| 2         | Box 1st Size (WB) [mm] | 75             | 75             | 75             | 75             | 75              | 75             | 75              | 75              | 75              |
|           | Box 2nd Size (HB) [mm] | 410            | 610            | 810            | 1010           | 1210            | 1410           | 1610            | 1810            | 2010            |
|           | Box Neck (ØD) [mm]     | Ø100 - 1 Piece | Ø100 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø200 - 1 Piece  | Ø200 - 1 Piece | Ø200 - 2 Pieces | Ø250 - 2 Pieces | Ø250 - 2 Pieces |
| 3         | Box Height (LB) [mm]   | 175            | 175            | 225            | 225            | 225             | 225            | 275             | 275             | 275             |
| 3         | Box 1st Size (WB) [mm] | 100            | 100            | 100            | 100            | 100             | 100            | 100             | 100             | 100             |
|           | Box 2nd Size (HB) [mm] | 410            | 610            | 810            | 1010           | 1210            | 1410           | 1610            | 1810            | 2010            |
|           | Box Neck (ØD) [mm]     | Ø100 - 1 Piece | Ø150 - 1 Piece | Ø150 - 1 Piece | Ø200 - 1 Piece | Ø200 - 1 Piece  | Ø200 - 1 Piece | Ø250 - 2 Pieces | Ø250 - 2 Pieces | Ø250 - 2 Pieces |
| 4         | Box Height (LB) [mm]   | 175            | 175            | 225            | 225            | 225             | 225            | 275             | 275             | 275             |
| 4         | Box 1st Size (WB) [mm] | 130            | 130            | 130            | 130            | 130             | 130            | 130             | 130             | 130             |
|           | Box 2nd Size (HB) [mm] | 410            | 610            | 810            | 1010           | 1210            | 1410           | 1610            | 1810            | 2010            |

#### **PRODUCT SELECTION**

**Example:** The air flow distributed in the space is determined as 400 m<sup>3</sup> / h and the temperature difference is -8K. 4 meter slot diffuser will be used in supply application. Make your product selection.

**Solution**: From the supply data table (Table 3), the effective areas corresponding to the appropriate pressure drop and flow rate values are selected. The method to be used for the desired lengths of performance data is made by calculating the number of modules. The result is reached by correcting the data found for 1 module.

Number of modules for 4 meters of slot diffuser: Round up (4000/2300)=2 modules.

1 module length=4000/2 (Module)=2000 mm (Length to be used in calculation)

Required flow rate for 1 module=400/2 [Module]=200 m³/h [Flow Rate Used in Calculation]

From the effective area table (Table 2), the effective areas of the 2000 mm wide slot diffusers are selected according to the number of slots. Accordingly, the effective area values are approximately  $0.0161 \text{ m}^2$  (1 slot),  $0.0290 \text{ m}^2$  (2 slot),  $0.0419 \text{ m}^2$  (3 slot) and  $0.0557 \text{ m}^2$  (4 slot) according to the number of slots.

Using the effective area values obtained from the supply data table (Table 3) and the required flow rate for 1 module, the appropriate effective area value is determined. Performance data:

1 slot:

Pressure Drop: 18.4 Pa Throw Distance: 3 m

Sound Power Level: 21 dB(A)

2 slots:

Pressure Drop: 7.42 Pa Throw Distance: 1.9 m

Sound Power Level: <15 dB(A)

3 slots:

Pressure Drop: 4.21 Pa Throw Distance: 1.5 m

Sound Power Level: <15 dB(A)

4 slots:

Pressure Drop: 2.71 Pa Throw Distance: 1.2 m

Sound Power Level: <15 dB(A)

#### Throw Distance Correction Chart

In the 2-module slot diffuser selection, the throw distance was found to be 1.9 m. For cooling mode -8 K, refer to the Throw Distance Correction Chart (Table 4). The multiplier value is 1.42.

Corrected throw distance=1.9 m  $\times$  1.42=2.7 m



#### PRODUCT ORDER CODE

You can place your orders according to the following coding format.

#### OLY .ALM.KP. < A > . < B > . < C >

| Α | Slot Width (W) [mm]                      |                                     |
|---|------------------------------------------|-------------------------------------|
|   | 0000                                     | You can look at the standard sizes. |
| В | Vertical Size (H) [mm] & Number of Slots |                                     |
|   | 035-01                                   | 35 mm - 1 Slot                      |
|   | 063-02                                   | 63 mm - 2 Slots                     |
|   | 091-03                                   | 91 mm - 3 Slots                     |
|   | 121-04                                   | 121 mm - 4 Slots                    |
| С | Paint                                    |                                     |
|   | 00                                       | Unpainted                           |
|   | S1                                       | Standard Painted - RAL 9010         |
|   | S2                                       | Standard Painted - RAL 9016         |
|   | XX                                       | Special Painted                     |
|   | EK                                       | Matt Anodized Coating               |


Sample Coding; OLY.ALM.KP.01000.091-03.S1

| NOTES |                      |             |   |
|-------|----------------------|-------------|---|
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       | <u>iklimlendirme</u> | HVAC SYSTEM | S |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |
|       |                      |             |   |

| NOTES |                |  |
|-------|----------------|--|
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       | I HWAR SVSTEMS |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |
|       |                |  |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4, 35477 Tekeli, Menderes, İzmir/TURKEY Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### Istanbul Sales Office

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office, Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56













B-FRESH Air Purifier



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in Istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











#### **B-FRESH (AC FAN)**

- Maximum performance in one unit with 2000 m³/h air flow.
- With its special interior insulation and silencer, the sound levels are within comfort conditions even at maximum flow rate. The sound pressure at the lowest speed is only 35.9 dB.
- € It destroys viruses, bacteria and molds with a D99 dose of Ozone free UVC lamp.
- Its specially designed diffuser mixes the filtered air with the ambient air quickly and effectively.
- € It can be easily used in areas up to 400 m² such as lobby, meeting room, office, gym, classroom, kindergarten, market, mosque, public building, hairdresser's.
- lt has the opportunity to operate at the desired flow rate thanks to its 5-stage speed switch.



## **B-FRESH (EC FAN)**

- € 4 different models between 550-2000 m3/h.
- © 33.9 dB sound level at minimum speed thanks to 30 mm rock wool insulation.
- € High efficiency low noise EC fans.
- Adjustable 5 level fan speed.
- Optional D99 dose ozone-free UV-C lamp.



#### **B-FRESH (AC FAN) TECHNICAL SPECIFICATIONS**

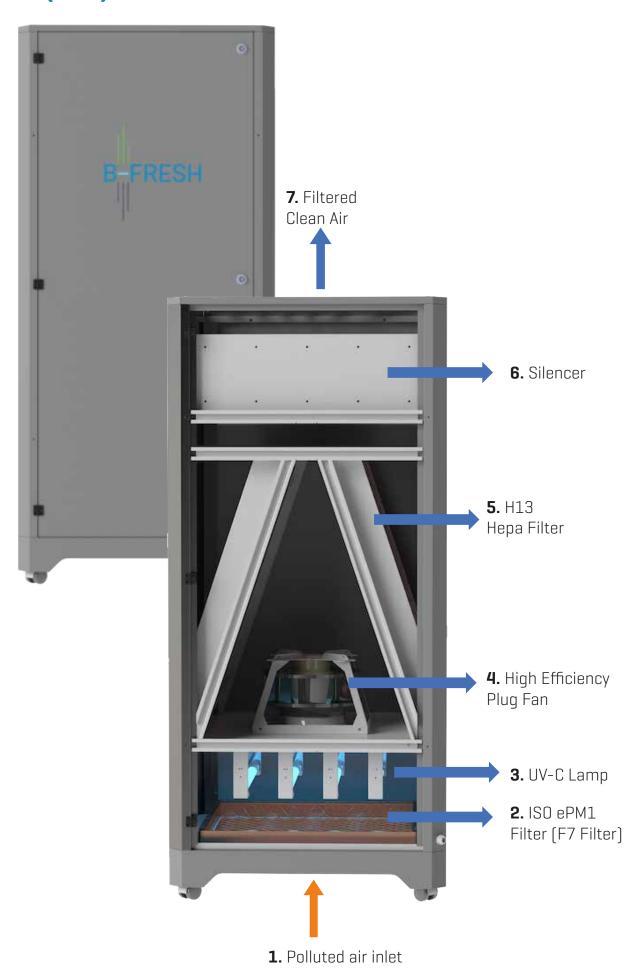
|                                                      | B-FRESH 20-AC                                    |
|------------------------------------------------------|--------------------------------------------------|
| Flow Rate Range (Min-Max)                            | 800-2000 m3/h                                    |
| Filters                                              | ISO ePM1 (F7) Filter + UV Lamp + H13 Hepa Filter |
| Min-Max Fan Power                                    | 195-515 W                                        |
| Operating Voltage                                    | 230V~1 50 Hz                                     |
| Sound Level in Min-Max Operation [from 1 meter away] | 35,9 dB(A)-54,8 dB(A) (from 1 m away)            |
| Sizes (LxWxH)                                        | 775 mm x 735 mm x 1680 mm                        |
| Unit's Weight                                        | 105 kg                                           |
| Recommended Use                                      | 160 m2-400 m2                                    |
| UV-C Lamp Life                                       | 10.800 hours                                     |
| Control                                              | Plug & Play                                      |

### **B-FRESH (EC FAN) TECHNICAL SPECIFICATIONS**

|                                                      | B-FRESH 05-EC                             | B-FRESH 08-EC                             | B-FRESH 12-EC                             | B-FRESH 20-EC                             |
|------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Flow Rate Range (Min-Max)                            | 110-550 m³/h                              | 160-800 m³/h                              | 240-1200 m³/h                             | 400-2000 m³/h                             |
| Filters                                              | ISO ePM1 (F7) Filter +<br>H14 Hepa Filter | ISO ePM1 (F7) Filter +<br>H14 Hepa Filter | ISO ePM1 (F7) Filter +<br>H14 Hepa Filter | ISO ePM1 (F7) Filter +<br>H14 Hepa Filter |
| Min-Max Fan Power                                    | 25-142 W                                  | 38-220 W                                  | 45-275 W                                  | 68-430 W                                  |
| Operating Voltage                                    | 230V~1 50 Hz                              | 230V~1 50 Hz                              | 230V~1 50 Hz                              | 230V~1 50 Hz                              |
| Sound Level in Min-Max Operation [from 1 meter away] | 34,1 dB(A)-51,4 dB(A)                     | 33,9 dB(A)-52 dB(A)                       | 34,2 dB(A)-51,9 dB(A)                     | 34,9 dB(A)-51,9 dB(A)                     |
| Sizes (LxWxH)                                        | 480mm x 577 mm x<br>1114 mm               | 550mm x 657 mm x<br>1249 mm               | 650mm x 657 mm x<br>1249 mm               | 780mm x 657mm x<br>1449 mm                |
| Unit's Weight                                        | 55 kg                                     | 60 kg                                     | 70 kg                                     | 75 kg                                     |
| Recommended Use                                      | 15 m²-80 m²                               | 21 m²-120 m²                              | 32 m²-200 m²                              | 55 m²-270 m²                              |
| Control                                              | Plug & Play                               | Plug & Play                               | Plug & Play                               | Plug & Play                               |

#### **OPERATION**

#### A. FILTRATION WITH HEPA FILTER


In the air, there are pollutants such as industrial wastes, bacteria, spores - molds, respirable particles, pollen, various smoke-gases and viruses that cause a worldwide pandemic. The COVID-19 pandemic has made air filtration more important than ever. These particles, 1 m and smaller in size, are among the pollutants that pose a higher risk to human health. Viruses range in size from 0.02 to 0.4 microns, Coronavirus in the range of 0.08 to 0.16 microns.

HEPA [High Efficiency Particulate Arresting] filters are capable of holding particles up to 0.10 microns up to 85% to 99.995 depending on efficiency types. In this way, the use of HEPA filters is one of the most effective methods in combating coronavirus in indoor ventilation systems. In the filtration system using a HEPA filter, a H13 class filter passes 50 of every 100 thousand particles through the system. ISO ePM1 Filter [F7 Filter] in accordance with EN 16890 standard is used to prevent the HEPA filters from getting dirty quickly. In this way, operating costs have been reduced.

#### **B. DISINFECTION WITH UV-C LAMP**

In the "Air Purifying Unit" produced by DOGU HVAC, UV-C lamps with a wavelength of 254 nm that do not produce ozone are used. In this way, viruses, bacteria, mold and fungi in the air sucked from the space are destroyed.

# **B-FRESH (AC FAN)**



#### 1. Polluted Air Inlet

It is the section where the unit intake the polluted air from the room.

#### 2. ISO ePM1 FILTER (F7 FILTER)

It provides filtration before UV-C lamp and H13 filter by keeping particles of 0.3-1 micron in the air. Filter life it lasts about 6 months, depending on usage. It is recommended to be changed every 6 months for a cleaner place.

#### 3. UV-C LAMP

Thanks to the UV-C lamp used in the unit, microorganisms in the air are inactivated at a rate of 0.99 (log 2). Its lifespan is 10,800 hours. It should be replaced at the end of this period for effective use. If used 12 hours a day, the lamps work efficiently for about 3 years.

#### 4. HIGH EFFICIENCY AC PLUG FAN

Thanks to the silent and 5-stage controllable fans, you can filtration with the most suitable air flow rate for your needs.

#### 5. H13 HEPA FILTER

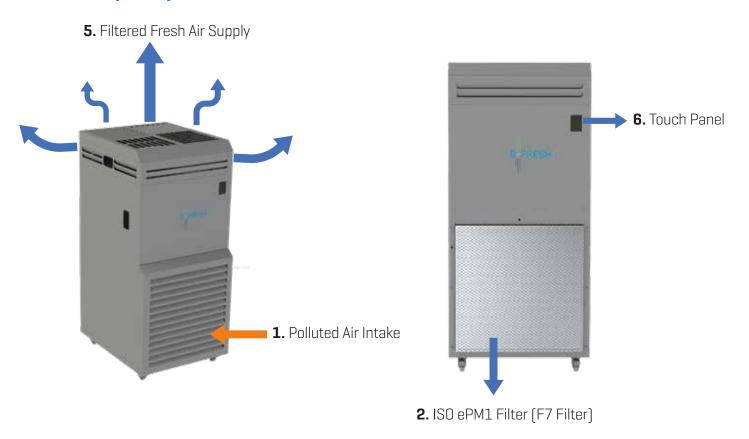
Thanks to the H13 class leakproof hepa filter, harmful organisms in the air  $[0.1-0.3 \, \mu m]$  size, which the F7 filter cannot hold] are cleaned by 99.95%. Filter life is 1 year. Its annual replacement is essential for a particle-free space.

#### **6. SILENCER**

Thanks to the silencer positioned close to the supply side inside the unit, the unit operates at a low noise level even at 100% fan speed.

#### 7. FILTERED CLEAN AIR SUPPLY

Thanks to the highly effective swirl diffuser in the supply section of the unit, the effective area of the fresh air is increased.


#### 8. FAN SPEED CONTROL

The unit, which has a user-friendly simple control system, performs the ON/OFF function after the unit is plugged in with the fan speed switch on it, and the fan speed can be controlled in order to obtain the air flow rate required by the space.

#### 9. UV-C LAMP ON-OFF

Depending on the need, the UV-C lamp can be activated with the On / Off button, but when the fan is off, the UV-C lamp must also be off. Thanks to the door switch on the service door of the unit, the power of the unit is cut off when the intervention door is opened. By this means users are prevented from contact with UV-C. Thanks to its 230V energy supply, the unit is suitable for plug-and-play use. Thanks to the movable wheels under the device, it can be positioned anywhere.

# B-FRESH (EC FAN)





#### 1. Polluted Air Intake

It is the section where the unit intake the polluted air from the room.

#### 2. ISO ePM1 FILTER (F7 FILTER)

It provides filtration before UV-C lamp and H13 filter by keeping particles of 0.3-1 micron in the air. Filter life it lasts about 6 months, depending on usage. It is recommended to be changed every 6 months for a cleaner place.

#### 3. HIGH EFFICIENCY EC PLUG FAN

Thanks to the silent and 5-stage controllable fans, you can filtration with the most suitable air flow rate for your needs.

#### 4. H14 HEPA FILTER

Thanks to the H14 class leakproof hepa filter, harmful organisms in the air (0.1-0.3 µm size, which the F7 filter cannot hold) are cleaned by 99.95%. Filter life is 1 year. Its annual replacement is essential for a particle-free space.

#### 5. FILTERED CLEAN AIR SUPPLY

It is the section where the unit supply the filtered air into the space.

#### **6. AUTOMATION PANEL AND TOUCH PANEL**

The unit, which has a user-friendly control system, can be controlled fully automatically thanks to the panel on it.

- -5 stage fan speed control
- -Filter contamination alarm
- -Ability to read flow rate, temperature and humidity from the touch screen
- -Entering the desired flow rate value from the screen with the fixed flow feature
- -CO2 control
- -Weekly programming

#### **B-FRESH, REFRESHING THE AIR OF EVERY ENVIRONMENT**

B-FRESH Air Purifier, thanks to its HEPA filters, can be used in interior spaces such as lobby, meeting room, office, gym, classroom, nursery, market, mosque, public building, hairdresser's and it cleans harmful particles and organisms such as bacteria, viruses, pollen, spores and molds up to 99.99% and maximizes air quality. Thanks to its special internal insulation and its silencer,

it works silently even at the highest fan speed. With the UV-C Lamp which is ozone-free, it destroys viruses, bacteria and molds and it provides hygiene and disinfection in spaces.



#### **USAGE AREAS**

- House
- Malls
- Markets
- Schools and classrooms
- Offices
- Kindergartens

- Bereaved care homes
- Public buildings
- Mosques
- Waiting rooms
- Gym
- Hotel rooms

- Meeting halls
- Examination rooms
- Hairdressers
- Beauty salons
- Restaurants and cafes
- Hospitals and pharmacies







#### **OFFICE**

B-FRESH positively affects the health and performance of your teammates by increasing the indoor air quality in office buildings that do not have windows due to their structure.B-FRESH positively affects the health and performance of your teammates by increasing the indoor air quality in office buildings that do not have windows due to their structure.



#### **SCHOOL**

B-FRESH improves the air quality by keeping the pollutants formed in the classroom environment. While it ensures the health of the teachers and students who breathe easily, it also eliminates the focusing problems caused by the polluted air.



#### **RESTAURANT**

B-FRESH effectively reduces the number of aerosols in the air and the residence time and density of suspended matter clouds in restaurants. This greatly reduces the risk of infection for quests and staff.



#### HOUSE

B-FRESH cleans the indoor air so that the air we breathe, which is important not only for asthma patients or those with respiratory diseases, but also for everyone, is beneficial not harmful to us.



#### HOTEL

In addition to the air quality of the region we choose, the clean air quality should be good in the indoor environments where we will spend time. B-FRESH offers a comfortable and healthy holiday experience to the guests by cleaning the indoor air of the hotels.



#### **CONSULTING ROOM**

B-FRESH, located in the waiting rooms of the consulting room, cleans the pollutants in the air that negatively affect the health of the patients, and allows you and your patients to breathe comfortably.









| NOTES                        |  |
|------------------------------|--|
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
| İKLİMLENDİRME L HVAC SYSTEMS |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |



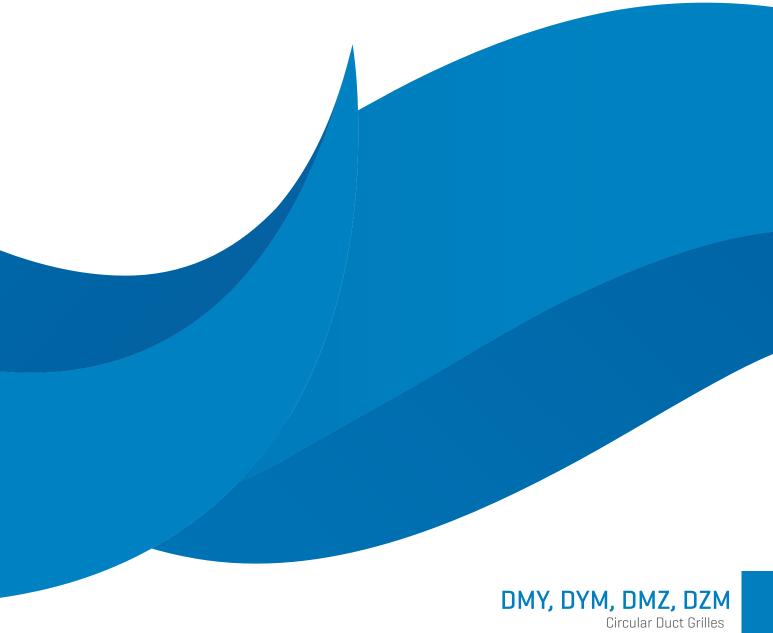




#### Headquarter

İTOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TÜRKİYE Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **İstanbul Sales Office**


Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, İstanbul/TÜRKİYE Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56















# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











# DMY - SINGLE ROW BLADE CIRCULAR DUCT GRILLE (ALUMINUM)

- © DMY Single Row Blade Circular Duct Grille is used in circular air ducts and has adjustable blades arranged in a single
- row.

It is a grille used in blowing or suction lines.



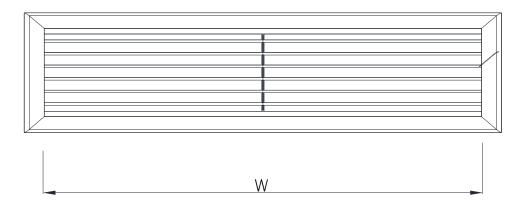
#### **MATERIAL**

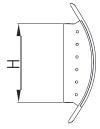
© Casing and blades made of aluminum 6063 extruded profile

#### **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard.
- © Optional
  - -Different RAL color codes
  - -Unpainted manufacturing

#### **MOUNTING TYPES**


Screw mounting type as standard.


## **ACCESSORIES**

- © Optional,
  - -ZKD Opposed Blade Air Adjustment Damper.



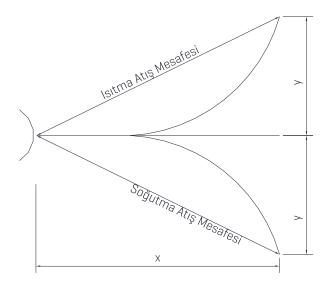
# **STANDARD DIMENSIONS**





**Table 1.** Standard Dimensions Table.

| Standard H Height (mm |         |          |             |          |             |             | mm) (N      | Must be  | Less t   | han Du   | ct Radi  | us)      |          |          |          |          |          |
|-----------------------|---------|----------|-------------|----------|-------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Dime                  | ensions | 50       | 75          | 100      | 125         | 150         | 175         | 200      | 250      | 300      | 325      | 350      | 400      | 450      | 500      | 525      | 600      |
|                       | 100     | <b>✓</b> | <b>V</b>    | <b>~</b> | <b>~</b>    | <b>~</b>    | <b>V</b>    | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>~</b> |
|                       | 125     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                       | 150     | <b>~</b> | <b>~</b>    | <b>~</b> | <           | <b>&gt;</b> | <b>V</b>    | <b>V</b> | <b>V</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>V</b> | <b>✓</b> | <b>V</b> | <b>~</b> |
|                       | 200     | <b>~</b> | >           | <b>\</b> | <b>\</b>    | >           | <b>&gt;</b> | <b>~</b> | <b>\</b> | <b>\</b> | <b>✓</b> | <b>\</b> | <b>✓</b> | <b>\</b> | <b>✓</b> | <b>~</b> | <b>✓</b> |
|                       | 225     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                       | 250     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                       | 300     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
| Ē                     | 325     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | >           | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
| W Width [mm]          | 350     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
| Vidt                  | 400     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
| ≶                     | 425     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                       | 450     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>&gt;</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                       | 500     | <b>~</b> | >           | <b>~</b> | <b>&gt;</b> | >           | <b>\</b>    | <b>✓</b> | <b>\</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>V</b> | <b>~</b> |
|                       | 525     | <b>✓</b> | <b>&gt;</b> | <b>✓</b> | <b>✓</b>    | >           | <b>~</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                       | 600     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>V</b>    | <b>✓</b>    | <b>V</b>    | <b>✓</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                       | 625     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                       | 825     | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>V</b>    | <b>✓</b>    | <b>V</b>    | <b>✓</b> | <b>V</b> | <b>V</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>V</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                       | 1800    | <b>✓</b> | <b>~</b>    | <b>✓</b> | <b>~</b>    | <b>&gt;</b> | <b>~</b>    | <b>✓</b> | <b>~</b> | <b>~</b> | <b>~</b> | <b>~</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>✓</b> |
|                       | 1025    | <b>~</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>&gt;</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |
|                       | 1250    | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> |




#### **PERFONCE DATA**

Table 2. Effective Area Table

| Effe         | ctive  |       |       |       |       |       |       | ı     | H Heigh | ıt (mm) |       |       |       |       |       |       |       |
|--------------|--------|-------|-------|-------|-------|-------|-------|-------|---------|---------|-------|-------|-------|-------|-------|-------|-------|
| Area         | a [m²] | 50    | 75    | 100   | 125   | 150   | 175   | 200   | 250     | 300     | 325   | 350   | 400   | 450   | 500   | 525   | 600   |
|              | 100    | 0,003 | 0,005 | 0,007 | 0,008 | 0,010 | 0,012 | 0,013 | 0,017   | 0,020   | 0,022 | 0,023 | 0,027 | 0,030 | 0,033 | 0,035 | 0,040 |
|              | 125    | 0,004 | 0,006 | 0,008 | 0,010 | 0,012 | 0,015 | 0,017 | 0,021   | 0,025   | 0,027 | 0,029 | 0,033 | 0,037 | 0,042 | 0,044 | 0,050 |
|              | 150    | 0,005 | 0,007 | 0,010 | 0,012 | 0,015 | 0,017 | 0,020 | 0,025   | 0,030   | 0,032 | 0,035 | 0,040 | 0,045 | 0,050 | 0,052 | 0,060 |
|              | 200    | 0,007 | 0,010 | 0,013 | 0,017 | 0,020 | 0,023 | 0,027 | 0,033   | 0,040   | 0,043 | 0,047 | 0,053 | 0,060 | 0,067 | 0,070 | 0,080 |
|              | 225    | 0,007 | 0,011 | 0,015 | 0,019 | 0,022 | 0,026 | 0,030 | 0,037   | 0,045   | 0,049 | 0,052 | 0,060 | 0,067 | 0,075 | 0,079 | 0,090 |
|              | 250    | 0,008 | 0,012 | 0,017 | 0,021 | 0,025 | 0,029 | 0,033 | 0,042   | 0,050   | 0,054 | 0,058 | 0,067 | 0,075 | 0,083 | 0,087 | 0,100 |
|              | 300    | 0,010 | 0,015 | 0,020 | 0,025 | 0,030 | 0,035 | 0,040 | 0,050   | 0,060   | 0,065 | 0,070 | 0,080 | 0,090 | 0,100 | 0,105 | 0,120 |
| E            | 325    | 0,011 | 0,016 | 0,022 | 0,027 | 0,032 | 0,038 | 0,043 | 0,054   | 0,065   | 0,070 | 0,076 | 0,087 | 0,097 | 0,108 | 0,114 | 0,130 |
| W Width [mm] | 350    | 0,012 | 0,017 | 0,023 | 0,029 | 0,035 | 0,041 | 0,047 | 0,058   | 0,070   | 0,076 | 0,082 | 0,093 | 0,105 | 0,116 | 0,122 | 0,140 |
| Vidt         | 400    | 0,013 | 0,020 | 0,027 | 0,033 | 0,040 | 0,047 | 0,053 | 0,067   | 0,080   | 0,087 | 0,093 | 0,106 | 0,120 | 0,133 | 0,140 | 0,160 |
| <b>&gt;</b>  | 425    | 0,014 | 0,021 | 0,028 | 0,035 | 0,042 | 0,049 | 0,057 | 0,071   | 0,085   | 0,092 | 0,099 | 0,113 | 0,127 | 0,141 | 0,148 | 0,170 |
|              | 450    | 0,015 | 0,022 | 0,030 | 0,037 | 0,045 | 0,052 | 0,060 | 0,075   | 0,090   | 0,097 | 0,105 | 0,120 | 0,135 | 0,150 | 0,157 | 0,180 |
|              | 500    | 0,017 | 0,025 | 0,033 | 0,042 | 0,050 | 0,058 | 0,067 | 0,083   | 0,100   | 0,108 | 0,116 | 0,133 | 0,150 | 0,166 | 0,175 | 0,200 |
|              | 525    | 0,017 | 0,026 | 0,035 | 0,044 | 0,052 | 0,061 | 0,070 | 0,087   | 0,105   | 0,114 | 0,122 | 0,140 | 0,157 | 0,175 | 0,183 | 0,210 |
|              | 600    | 0,020 | 0,030 | 0,040 | 0,050 | 0,060 | 0,070 | 0,080 | 0,100   | 0,120   | 0,130 | 0,140 | 0,160 | 0,180 | 0,200 | 0,210 | 0,240 |
|              | 625    | 0,021 | 0,031 | 0,042 | 0,052 | 0,062 | 0,073 | 0,083 | 0,104   | 0,125   | 0,135 | 0,146 | 0,166 | 0,187 | 0,208 | 0,218 | 0,250 |
|              | 825    | 0,027 | 0,041 | 0,055 | 0,069 | 0,082 | 0,096 | 0,110 | 0,137   | 0,165   | 0,178 | 0,192 | 0,220 | 0,247 | 0,275 | 0,288 | 0,329 |
|              | 1025   | 0,034 | 0,051 | 0,068 | 0,085 | 0,102 | 0,119 | 0,136 | 0,171   | 0,205   | 0,222 | 0,239 | 0,273 | 0,307 | 0,341 | 0,358 | 0,409 |
|              | 1250   | 0,042 | 0,062 | 0,083 | 0,104 | 0,125 | 0,146 | 0,166 | 0,208   | 0,250   | 0,270 | 0,291 | 0,333 | 0,374 | 0,416 | 0,437 | 0,499 |

## **BLOWING DATA**



#### Note:

- Throw Distance: The distance where the air in the comfort zone reaches a speed of 0.25 m/s with the air distribution equipment.
- The data are obtained when the duct flow velocity 3 m/s and the room air temperature difference with the air distribution equipment is T = 8K.

Table 3. Blow Data Table

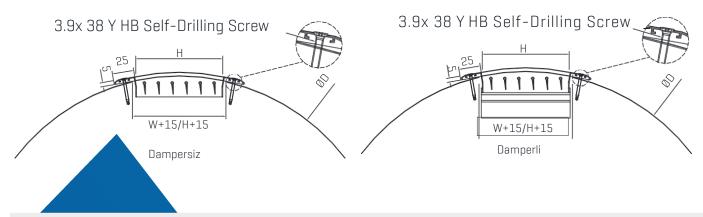
|                    |                              |        |        |       | Effe  | ctive Vel | ocity (m | /s]    |        |        |        |
|--------------------|------------------------------|--------|--------|-------|-------|-----------|----------|--------|--------|--------|--------|
| Flow Rate (m3 / h) |                              | 0,5    | 1,0    | 1,5   | 2,0   | 2,5       | 3,0      | 3,5    | 4,0    | 4,5    | 5,0    |
|                    | Effective Area [m²]          | 0,0278 | 0,0139 | 0,009 | 0.007 | 0.006     | 0,005    | 0.0040 | 0.0035 |        |        |
|                    | Pressure Drop [Pa]           | <1     | 3      | 8     | 14    | 22        | 32       | 45     | 59     |        |        |
| 50                 | Throw Distance [m]           | 1      | 2      | 2     | 3     | 3         | 3        | 4      | 4      |        |        |
|                    | Sound Pressure Level [dB[A]] | <15    | <15    | <15   | <15   | 16        | 21       | 25     | 29     |        |        |
|                    | Effective Area [m²]          | 0,0556 | 0,0278 | 0,019 | 0,014 | 0,011     | 0,009    | 0,008  | 0,007  | 0,006  | 0,006  |
| 100                | Pressure Drop [Pa]           | <1     | 3      | 8     | 14    | 22        | 33       | 45     | 59     | 76     | 94     |
| 100                | Throw Distance [m]           | 1      | 2      | 2     | 3     | 3         | 4        | 4      | 4      | 4      | 5      |
|                    | Sound Pressure Level [dB(A)] | <15    | <15    | <15   | <15   | 19        | 24       | 28     | 32     | 35     | 38     |
|                    | Effective Area [m²]          | 0,111  | 0,056  | 0,037 | 0,028 | 0,022     | 0,019    | 0,016  | 0,014  | 0,012  | 0,011  |
| 200                | Pressure Drop [Pa]           | <1     | 3      | 8     | 14    | 22        | 33       | 45     | 60     | 76     | 95     |
| 200                | Throw Distance [m]           | 1      | 2      | 2     | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)] | <15    | <15    | <15   | 16    | 22        | 27       | 31     | 35     | 38     | 41     |
|                    | Effective Area [m²]          | 0,167  | 0,083  | 0,056 | 0,042 | 0,033     | 0,028    | 0,024  | 0,021  | 0,019  | 0,017  |
| 300                | Pressure Drop [Pa]           | <1     | 3      | 8     | 14    | 23        | 33       | 45     | 60     | 76     | 95     |
| 300                | Throw Distance [m]           | 1      | 2      | 3     | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)] | <15    | <15    | <15   | 18    | 24        | 29       | 33     | 37     | 40     | 43     |
|                    | Effective Area [m²]          | 0,222  | 0,111  | 0,074 | 0,056 | 0,044     | 0,037    | 0,032  | 0,028  | 0,025  | 0,022  |
| 400                | Pressure Drop [Pa]           | <1     | 3      | 8     | 14    | 23        | 33       | 45     | 60     | 77     | 95     |
| 700                | Throw Distance [m]           | 1      | 2      | 3     | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)] | <15    | <15    | <15   | 19    | 25        | 30       | 34     | 38     | 41     | 44     |
|                    | Effective Area [m²]          | 0,278  | 0,139  | 0,093 | 0,069 | 0,056     | 0,046    | 0,040  | 0,035  | 0,031  | 0,028  |
| 500                | Pressure Drop [Pa]           | <1     | 3      | 8     | 14    | 23        | 33       | 46     | 60     | 77     | 95     |
| 300                | Throw Distance [m]           | 2      | 2      | 3     | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)] | <15    | <15    | <15   | 20    | 26        | 31       | 35     | 39     | 42     | 45     |
|                    | Effective Area [m²]          | 0,333  | 0,167  | 0,111 | 0,083 | 0,067     | 0,056    | 0,048  | 0,042  | 0,037  | 0,0333 |
| 600                | Pressure Drop [Pa]           | <1     | 3      | 8     | 14    | 23        | 33       | 46     | 60     | 77     | 96     |
| ьии                | Throw Distance [m]           | 2      | 2      | 3     | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)] | <15    | <15    | <15   | 21    | 27        | 32       | 36     | 40     | 43     | 46     |
|                    | Effective Area [m²]          | 0,389  | 0,194  | 0,130 | 0,097 | 0,078     | 0,065    | 0,056  | 0,049  | 0,043  | 0,0389 |
| 700                | Pressure Drop [Pa]           | <1     | 3      | 8     | 14    | 23        | 33       | 46     | 60     | 77     | 96     |
| 700                | Throw Distance [m]           | 2      | 2      | 3     | 3     | 3         | 4        | 4      | 5      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)] | <15    | <15    | <15   | 22    | 28        | 33       | 37     | 40     | 44     | 46     |
|                    | Effective Area [m²]          | 0,444  | 0,222  | 0,148 | 0,111 | 0,089     | 0,074    | 0,064  | 0,056  | 0,049  | 0,0444 |
| 800                | Pressure Drop [Pa]           | <1     | 3      | 8     | 14    | 23        | 33       | 46     | 60     | 77     | 96     |
| 000                | Throw Distance [m]           | 2      | 2      | 3     | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)] | <15    | <15    | <15   | 22    | 28        | 33       | 37     | 41     | 44     | 47     |
|                    | Effective Area [m²]          |        | 0,250  | 0,167 | 0,125 | 0,100     | 0,083    | 0,071  | 0,063  | 0,056  | 0,0500 |
| 900                | Pressure Drop [Pa]           |        | 3      | 8     | 14    | 23        | 33       | 46     | 60     | 77     | 96     |
| 300                | Throw Distance [m]           |        | 2      | 3     | 3     | 3         | 4        | 4      | 5      | 5      | 5,1    |
|                    | Sound Pressure Level [dB(A)] |        | <15    | 15    | 23    | 29        | 34       | 38     | 41     | 45     | 47     |
|                    | Effective Area [m²]          |        | 0,278  | 0,185 | 0,139 | 0,111     | 0,093    | 0,079  | 0,069  | 0,062  | 0,0556 |
| 1000               | Pressure Drop [Pa]           |        | 3      | 8     | 14    | 23        | 33       | 46     | 60     | 77     | 96     |
| 1000               | Throw Distance [m]           |        | 2      | 3     | 3     | 3         | 4        | 4      | 5      | 5      | 5,1    |
|                    | Sound Pressure Level [dB(A)] |        | <15    | 16    | 23    | 29        | 34       | 38     | 42     | 45     | 48     |
|                    | Effective Area [m²]          |        | 0,347  | 0,232 | 0,174 | 0,139     | 0,116    | 0,099  | 0,087  | 0,077  | 0,0694 |
| 1250               | Pressure Drop [Pa]           |        | 3      | 8     | 14    | 23        | 33       | 46     | 61     | 77     | 96     |
| 1530               | Throw Distance [m]           |        | 2      | 3     | 3     | 4         | 4        | 4      | 5      | 5      | 5,1    |
|                    | Sound Pressure Level [dB(A)] |        | <15    | 17    | 24    | 30        | 35       | 39     | 43     | 46     | 48     |
|                    | Effective Area [m²]          |        | 0,417  | 0,278 | 0,208 | 0,167     | 0,139    | 0,119  | 0,104  | 0,0926 | 0,0833 |
| 1500               | Pressure Drop [Pa]           |        | 3      | 8     | 14    | 23        | 33       | 46     | 61     | 77     | 96     |
| 1500               | Throw Distance [m]           |        | 2      | 3     | 3     | 4         | 4        | 4      | 5      | 4,9    | 5,1    |
|                    | Sound Pressure Level [dB(A)] |        | <15    | 17    | 25    | 31        | 36       | 40     | 44     | 47     | 50     |
|                    | Effective Area [m²]          |        | 0,486  | 0,324 | 0,243 | 0,194     | 0,162    | 0,139  | 0,122  | 0,1080 | 0,0972 |
| 1750               | Pressure Drop [Pa]           |        | 3      | 8     | 14    | 23        | 33       | 46     | 61     | 78     | 97     |
| 1750               | Throw Distance [m]           |        | 2      | 3     | 3     | 4         | 4        | 4      | 5      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)] |        | <15    | 18    | 26    | 32        | 37       | 41     | 44     | 48     | 50     |

# **SUCTION DATA**

Table 4. Suction Data Table

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | Effective Velocity (m/s) |        |        |        |       |       |       |       |        |        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------|--------|--------|-------|-------|-------|-------|--------|--------|--|
| Flow Rate (m3/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | 0,5                      | 1,0    | 1,5    | 2,0    | 2,5   | 3,0   | 3,5   | 4,0   | 4,5    | 5,0    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          | 0,0278                   | 0,0139 | 0,0093 | 0,0069 | 0,006 | 0,005 | 0,004 | 0,003 |        |        |  |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pressure Drop [Pa]           | <1                       | 3      | 6      | 12     | 19    | 27    | 38    | 50    |        |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | <15    | <15   | 19    | 23    | 27    |        |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          | 0,0556                   | 0,0278 | 0,019  | 0,014  | 0,011 | 0,009 | 0,008 | 0,007 | 0,006  | 0,006  |  |
| Effect   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour   Sour | Pressure Drop [Pa]           | <1                       | 3      | 7      | 12     | 19    | 28    | 39    | 52    | 66     | 83     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | <15    | 17    | 22    | 27    | 27    | 33     | 36     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          | 0,111                    | 0,056  | 0,037  | 0,028  | 0,022 | 0,019 | 0,016 | 0,014 | 0,012  | 0,011  |  |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pressure Drop [Pa]           | <1                       | 3      | 7      | 12     | 20    | 29    | 40    | 53    | 68     | 85     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | <15    | 21    | 26    | 30    | 34    | 37     | 40     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          | 0,167                    | 0,083  | 0,056  | 0,042  | 0,033 | 0,028 | 0,024 | 0,021 | 0,019  | 0,017  |  |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pressure Drop [Pa]           | <1                       | 3      | 7      | 13     | 20    | 29    | 41    | 54    | 69     | 86     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | 17     | 23    | 28    | 32    | 35    | 39     | 42     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          | 0,222                    | 0,111  | 0,074  | 0,056  | 0,044 | 0,037 | 0,032 | 0,028 | 0,025  | 0,022  |  |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pressure Drop [Pa]           | <1                       | 3      | 7      | 13     | 20    | 30    | 41    | 55    | 70     | 87     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | 18     | 24    | 29    | 33    | 37    | 40     | 43     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          | 0,278                    | 0,139  | 0,093  | 0,069  | 0,056 | 0,046 | 0,040 | 0,035 | 0,031  | 0,028  |  |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pressure Drop [Pa]           | <1                       | 3      | 7      | 13     | 21    | 30    | 42    | 55    | 71     | 88     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | 19     | 25    | 30    | 34    | 38    | 41     | 44     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          | 0,333                    | 0,167  | 0,111  | 0,083  | 0,067 | 0,056 | 0,048 | 0,042 | 0,037  | 0,0333 |  |
| 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pressure Drop [Pa]           | <1                       | 3      | 7      | 13     | 21    | 30    | 42    | 56    | 71     | 89     |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | 20     | 26    | 31    | 35    | 39    | 42     | 45     |  |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Effective Area [m²]          | 0,389                    | 0,194  | 0,130  | 0,097  | 0,078 | 0,065 | 0,056 | 0,049 | 0,043  | 0,0389 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pressure Drop [Pa]           | <1                       | 3      | 7      | 13     | 21    | 31    | 42    | 56    | 72     | 89     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | 21     | 27    | 32    | 36    | 40    | 43     | 46     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          | 0,444                    | 0,222  | 0,148  | 0,111  | 0,089 | 0,074 | 0,063 | 0,056 | 0,049  | 0,0444 |  |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pressure Drop [Pa]           | <1                       | 3      | 7      | 13     | 21    | 31    | 42    | 56    | 72     | 90     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | 21     | 27    | 32    | 37    | 40    | 43     | 46     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          |                          | 0,250  | 0,167  | 0,125  | 0,100 | 0,083 | 0,071 | 0,063 | 0,056  | 0,0500 |  |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pressure Drop [Pa]           |                          | 3      | 7      | 13     | 21    | 31    | 43    | 56    | 72     | 90     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] |                          | <15    | <15    | 22     | 28    | 33    | 37    | 41    | 44     | 47     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          |                          | 0,278  | 0,185  | 0,139  | 0,111 | 0,093 | 0,079 | 0,069 | 0,062  | 0,0556 |  |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pressure Drop [Pa]           |                          | 3      | 7      | 13     | 21    | 31    | 43    | 57    | 73     | 91     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] |                          | <15    | <15    | 22     | 28    | 33    | 38    | 41    | 44     | 47     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          |                          | 0,347  | 0,231  | 0,174  | 0,139 | 0,116 | 0,099 | 0,087 | 0,077  | 0,0694 |  |
| 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pressure Drop [Pa]           |                          | 3      | 7      | 13     | 21    | 31    | 43    | 57    | 73     | 91     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] |                          | <15    | 16     | 23     | 30    | 34    | 39    | 42    | 45     | 48     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          |                          | 0,417  | 0,278  | 0,208  | 0,167 | 0,139 | 0,119 | 0,104 | 0,0926 | 0,0833 |  |
| 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pressure Drop [Pa]           |                          | 3      | 7      | 13     | 21    | 31    | 43    | 58    | 74     | 92     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] |                          | <15    | 16     | 24     | 30    | 35    | 40    | 43    | 46     | 49     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          |                          | 0,486  | 0,324  | 0,243  | 0,194 | 0,162 | 0,139 | 0,122 | 0,1080 | 0,0972 |  |
| 1750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pressure Drop [Pa]           |                          | 3      | 7      | 14     | 22    | 32    | 44    | 58    | 74     | 93     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] |                          | <15    | 17     | 25     | 31    | 36    | 40    | 44    | 47     | 50     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective Area [m²]          |                          |        | 0,370  | 0,278  | 0,222 | 0,185 | 0,159 | 0,139 | 0,1235 | 0,1111 |  |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pressure Drop [Pa]           |                          |        | 7      | 14     | 22    | 32    | 44    | 58    | 75     | 93     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sound Pressure Level [dB(A)] |                          |        | 18     | 26     | 32    | 37    | 41    | 45    | 48     | 51     |  |

#### **DUCT FLOW AND DAMPER CORRECTION TABLE**


**Table 5.** Duct Flow and Damper Correction Table

| Multilier According to Damper Position |                          |    |                        |                     |                        |                     |                        |                     |                        |                     |  |
|----------------------------------------|--------------------------|----|------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|--|
|                                        |                          |    |                        | Full Open           |                        | 25% Closed          |                        | 50% Closed          |                        | 75% Closed          |  |
| Duct Velocity<br>(m/s)                 | Amount to Add            |    | Pressure<br>Multiplier | Sound<br>Multiplier | Pressure<br>Multiplier | Sound<br>Multiplier | Pressure<br>Multiplier | Sound<br>Multiplier | Pressure<br>Multiplier | Sound<br>Multiplier |  |
| 0,5                                    | Pressure Drop [Pa]       | -6 | 1,09                   | 1,05                | 1,86                   | 1,21                | 2,76                   | 1,46                | 3,67                   | 1,71                |  |
|                                        | Sound Generation [dB(A)] | -6 |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 1                                      | Pressure Drop [Pa]       | -5 |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | -5 |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 2                                      | Pressure Drop [Pa]       | -3 |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | -2 |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 3                                      | Pressure Drop [Pa]       | 0  |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | 0  |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 4                                      | Pressure Drop [Pa]       | 4  |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | 2  |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 5                                      | Pressure Drop [Pa]       | 10 |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | 4  |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 6                                      | Pressure Drop [Pa]       | 17 |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | 6  |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 7                                      | Pressure Drop [Pa]       | 25 |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | 9  |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 8                                      | Pressure Drop [Pa]       | 35 |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | 11 |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 9                                      | Pressure Drop [Pa]       | 46 |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | 13 |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 10                                     | Pressure Drop [Pa]       | 60 |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | 15 |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 11                                     | Pressure Drop [Pa]       | 75 |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | 18 |                        |                     |                        |                     |                        |                     |                        |                     |  |
| 12                                     | Pressure Drop [Pa]       | 92 |                        |                     |                        |                     |                        |                     |                        |                     |  |
|                                        | Sound Generation [dB(A)] | 20 |                        |                     |                        |                     |                        |                     |                        |                     |  |

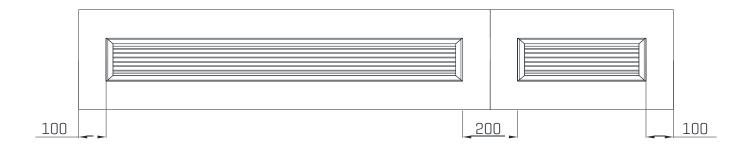
Note: As the air velocity in the duct increases and the damper position changes, the pressure loss and sound pressure level created by the grill increase. Accordingly, the blowing or suction data in the selected grille must first be multiplied by the damper coefficient if there is a damper. Then the correct result is achieved by adding sound production and pressure loss values according to the channel speed.

#### **DUCT FLOW AND DAMPER CORRECTION TABLE**

#### 1. SCREWED SYSTEM

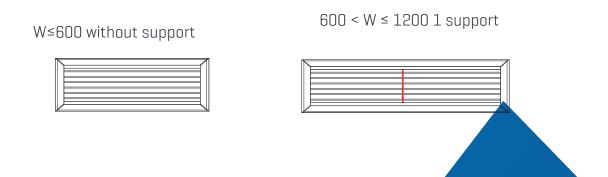


#### **OPPOSITE BLADE DAMPER**




When air adjustment is requested, the opposite blade air adjustment damper is delivered with a special damper switch. It is suitable to use for blowing and suction. Thanks to its aerodynamic wing structure and mechanical design, it enables to adjust the air flow with low pressure loss.

#### **DUCT FLOW AND DAMPER CORRECTION TABLE**


## **MAXIMUM MODULE SIZE**

The standard size of a single piece product is within the limits of  $100 \times 50$  to  $1250 \times 600$ . If the order is placed over standard sizes, the grilles will be produced more than once in full pieces. Recommended mounting method is shown below.



#### SUPPORT NUMBER PARAMETER

Support is used when W> 600 in order to maintain the strength according to the height increase in the product.



#### PRODUCT SELECTION

Example: It is expected to blow 300 m<sup>3</sup> / h from a circular duct grille connected to a circular duct with an air velocity of 5 m / s. Opposite blade damper will be used. The diameter of the channel which the grille is connected will be 250 mm. The maximum pressure loss should be 100 Pa. Make the selection.

Solution: Required correction coefficients for 5 m / s duct air velocity are obtained from Duct Flow and Damper Correction Table.

When the damper in the 25% closed position:

Pressure multiplier 1.86

Sound multiplier 1.21

Values to be added for 5 m / s channel air velocity

Pressure Drop +10 Pa

Sound Generation +4 dB(A).

From the blow data table (Table 3) the required values for a 300 m<sup>3</sup> / h blowing flow and the corresponding effective area are obtained. For 0.033 m<sup>2</sup> effective area, 23 Pa pressure drop, 3 m throw distance and 24 dB (A) sound pressure level and 2.5 m / s effective velocity values are obtained.

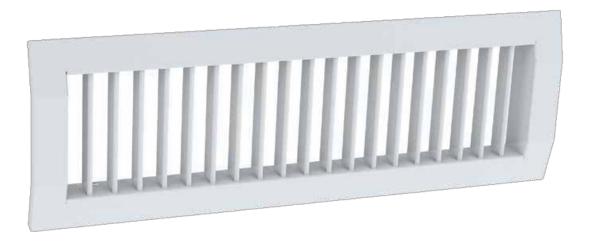
Corrected pressure drop and sound pressure level are calculated. Pressure Drop =  $23 \times 1,86 + 10 = 52,8 \text{ Pa}$ Sound Pressure Level =  $26 \times 1,21 + 4 = 35,5 \text{ dB}[A]$ 

The selected dimension must meet the  $H \le R$  constraint since the duct radius (R) = 100 mm.

After confirming the conformity of the obtained values, the grille size corresponding to  $0.033 \text{ m}^2$  effective area is selected as W [Width] 500 mm x H [Height] 100 mm on the Effective Area Table [Table 2].

#### PRODUCT ORDER CODE

You can place your orders according to the following coding format.


#### DMY. < A > . < B > . < C > . < D > . < E > . < F > . < G >

| Α | Raw Material Type       |                                           |
|---|-------------------------|-------------------------------------------|
|   | ALM                     | Aluminum                                  |
| В | Damper                  |                                           |
|   | ZD                      | Opposite Blade Damper                     |
|   | DZ                      | Without Damper                            |
| С | Mounting Type           |                                           |
|   | VD                      | Screwed System                            |
| D | Width (W) (mm)          |                                           |
|   | 0000                    | You can view it from standard dimensions. |
| E | Height (H) (mm)         |                                           |
|   | 0000                    | You can view it from standard dimensions. |
| F | Radius of Duct (D) (mm) |                                           |
|   | 0000                    | You can view it from standard dimensions. |
| G | Paint                   |                                           |
|   | 00                      | Paintless                                 |
|   | S1                      | Standard Painted - RAL 9010               |
|   | \$2                     | Standard Painted - RAL 9016               |
|   | XX                      | Special Painted                           |

Sample Codding; DMY.ALM.ZD.VD.0600.0300.0600.S1

# DYM - SINGLE ROW BLADE CIRCULAR DUCT GRILLE (GALVANIZED)

© DYM – Single Row Blade Circular Duct Galvanized Grille is a blowing grille that is used in circular air ducts and can be used for suction with the blades arranged in a single row.



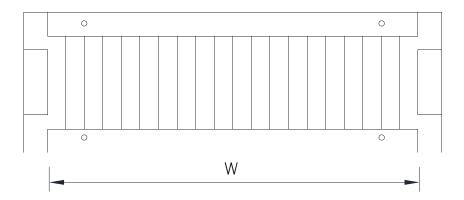
# **MATERIAL**

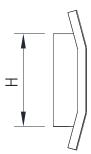
• As a standard, the casing of the product is galvanized sheet, its wings are made of 6063 extruded aluminum.

# **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint.
- © Optional
  - -Different RAL color codes
  - -Unpainted manufacturing

## **MOUNTING TYPES**


Screw mounting type as standard.


## **ACCESSORIES**

- © Optional
  - Special Slide Galvanized Damper
  - Sponge Gasket



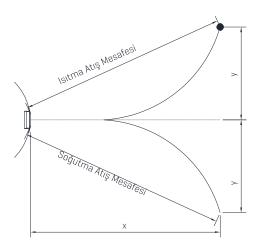
# **STANDARD DIMENSIONS**





**Table 1.** Standard Dimensions Table.

| Stan         | ndard  | H Height (mm) | (Must be Less tha | an Duct Radius) |
|--------------|--------|---------------|-------------------|-----------------|
| Dime         | nsions | 50            | 100               | 150             |
|              | 100    | <b>✓</b>      | <b>✓</b>          | <b>✓</b>        |
|              | 200    | <b>✓</b>      | <b>✓</b>          | >               |
|              | 225    | <b>✓</b>      | <b>✓</b>          | <b>&gt;</b>     |
|              | 300    | <b>✓</b>      | <b>✓</b>          | >               |
|              | 325    | <b>✓</b>      | <b>✓</b>          | <b>&gt;</b>     |
|              | 400    | <b>✓</b>      | <b>✓</b>          | <b>&gt;</b>     |
|              | 425    | <b>✓</b>      | <b>✓</b>          | <b>~</b>        |
| Ē            | 500    | <b>✓</b>      | <b>✓</b>          | <b>✓</b>        |
| h (m         | 525    | <b>✓</b>      | <b>✓</b>          | <b>✓</b>        |
| W Width [mm] | 600    | <b>✓</b>      | <b>✓</b>          | <b>✓</b>        |
| <b>\leq</b>  | 625    | <b>✓</b>      | <b>✓</b>          | <b>~</b>        |
|              | 700    | <b>✓</b>      | <b>✓</b>          | <b>✓</b>        |
|              | 800    | <b>✓</b>      | <b>\</b>          | <b>&gt;</b>     |
|              | 825    | <b>✓</b>      | <b>✓</b>          | <b>✓</b>        |
|              | 900    | <b>✓</b>      | <b>✓</b>          | <b>✓</b>        |
|              | 1000   | <b>✓</b>      | <b>✓</b>          | <b>✓</b>        |
|              | 1100   | <b>✓</b>      | <b>✓</b>          | <b>✓</b>        |
|              | 1200   | <b>✓</b>      | <b>✓</b>          | <b>✓</b>        |


# **PERFORMANCE DATA**

## **EFECTIVE AREA TABLE**

Table 2. Standard Dimensions Table.

| Effe         | ective     |       | H Height (mm) |       |
|--------------|------------|-------|---------------|-------|
| Area         | a [m²]     | 50    | 100           | 150   |
|              | 100        | 0,003 | 0,007         | 0,011 |
|              | 200        | 0,007 | 0,014         | 0,022 |
|              | 225        | 0,008 | 0,016         | 0,025 |
|              | 300        | 0,011 | 0,022         | 0,033 |
|              | 325        | 0,012 | 0,024         | 0,036 |
|              | 400        | 0,014 | 0,029         | 0,045 |
|              | 400<br>425 | 0,015 | 0,031         | 0,048 |
| Ē            | 425<br>500 | 0,018 | 0,037         | 0,056 |
| W Width [mm] | 425        | 0,019 | 0,039         | 0,059 |
| Widt         | 600        | 0,022 | 0,045         | 0,068 |
| >            | 625        | 0,023 | 0,047         | 0,071 |
|              | 700        | 0,026 | 0,052         | 0,079 |
|              | 800        | 0,029 | 0,060         | 0,091 |
|              | 825        | 0,030 | 0,062         | 0,094 |
|              | 900        | 0,033 | 0,068         | 0,103 |
|              | 1000       | 0,037 | 0,076         | 0,115 |
|              | 1100       | 0,041 | 0,083         | 0,127 |
|              | 1200       | 0,045 | 0,091         | 0,139 |

# **BLOWING TABLE**



#### Note:

Throw Distance: Hava dağıtıcı ekipman ile konfor zonundaki havanın 0,25 m/s hızına ulaştığı mesafe

Veriler kanal akış hızının 3 m/s ve hava dağıtıcı ekipman ile mahal hava sıcaklık farkının T = 8K olduğu durumda elde edilmiştir.



**Table 3.** Blowing Data

|                    |                                  |        |        | Eff   | ective Vel | ocity (m / | sj    |       |       |
|--------------------|----------------------------------|--------|--------|-------|------------|------------|-------|-------|-------|
| Flow Rate (m3 / h) |                                  | 0,5    | 1,0    | 1,5   | 2,0        | 2,5        | 3,0   | 3,5   | 4,0   |
|                    | Effective Area [m²]              | 0,0278 | 0,0139 | 0,009 | 0,007      | 0,006      | 0,005 | 0,004 | 0,004 |
| FO                 | Pressure Drop [Pa]               | 6      | 18     | 33    | 51         | 71         | 94    | 119   | 145   |
| 50                 | Throw Distance [m]               | 1      | 2      | 2     | 2          | 3          | 3     | 3     | 3     |
|                    | Sound Pressure Level [dB(A)]     | <15    | <15    | 18    | 24         | 29         | 32    | 36    | 38    |
|                    | Effective Area [m²]              | 0,0556 | 0,0278 | 0,019 | 0,014      | 0,011      | 0,009 | 0,008 | 0,007 |
|                    | Pressure Drop [Pa]               | 6      | 18     | 33    | 51         | 71         | 94    | 119   | 145   |
| 100                | Throw Distance [m]               | 1      | 2      | 2     | 3          | 3          | 3     | 3     | 4     |
|                    | Sound Pressure Level [dB(A)]     | <15    | <15    | 21    | 27         | 32         | 35    | 39    | 41    |
|                    | Effective Area [m²]              | 0,111  | 0,056  | 0,037 | 0,028      | 0,022      | 0,019 | 0,016 | 0,014 |
|                    | Pressure Drop [Pa]               | 6      | 18     | 33    | 51         | 71         | 94    | 119   | 145   |
| 200                | Throw Distance [m]               | 1      | 2      | 2     | 3          | 3          | 3     | 4     | 4     |
|                    | Sound Pressure Level [dB[A]]     | <15    | 16     | 24    | 30         | 35         | 38    | 42    | 44    |
|                    | Effective Area [m²]              | 10     | 0,083  | 0,056 | 0,042      | 0,033      | 0,028 | 0,024 | 0,021 |
|                    | Pressure Drop [Pa]               |        | 18     | 33    | 51         | 71         | 94    | 119   | 145   |
| 300                | Throw Distance [m]               |        | 2      | 3     | 3          | 3          | 4     | 4     | 4     |
|                    | Sound Pressure Level [dB(A)]     |        | 17     | 26    | 32         | 36         | 40    | 43    | 46    |
|                    | Effective Area [m²]              |        |        |       |            |            | 0,037 | 0,032 | 0,028 |
|                    | Pressure Drop [Pa]               |        | 0,111  | 0,074 | 0,056      | 0,044      | 94    |       | 145   |
| 400                | Throw Distance [m]               |        | 18     | 33    | 51         | 71         |       | 119   |       |
|                    | Sound Pressure Level [dB(A)]     |        | 2      | 3     | 3          | 3          | 4     | 4     | 4     |
|                    | Effective Area [m²]              |        | 19     | 27    | 33         | 38         | 41    | 45    | 47    |
|                    |                                  |        |        | 0,093 | 0,069      | 0,056      | 0,046 | 0,040 | 0,035 |
| 500                | Pressure Drop [Pa]               |        |        | 33    | 51         | 71         | 94    | 119   | 145   |
| 000                | Throw Distance [m]               |        |        | 3     | 3          | 4          | 4     | 4     | 5     |
|                    | Sound Pressure Level [dB(A)]     |        |        | 28    | 34         | 39         | 42    | 46    | 48    |
|                    | Effective Area [m²]              |        |        | 0,111 | 0,083      | 0,067      | 0,056 | 0,048 | 0,042 |
| 600                | Pressure Drop [Pa]               |        |        | 33    | 51         | 71         | 94    | 119   | 145   |
| 000                | Throw Distance [m]               |        |        | 3     | 3          | 4          | 4     | 4     | 5     |
|                    | Sound Pressure Level [dB(A)]     |        |        | 29    | 35         | 39         | 43    | 46    | 49    |
|                    | Effective Area [m²]              |        |        | 0,130 | 0,097      | 0,078      | 0,065 | 0,056 | 0,049 |
| 700                | Pressure Drop [Pa]               |        |        | 33    | 51         | 71         | 94    | 119   | 145   |
| 700                | Throw Distance [m]               |        |        | 3     | 3          | 4          | 4     | 4     | 5     |
|                    | Sound Pressure Level [dB(A)]     |        |        | 29    | 35         | 40         | 44    | 47    | 50    |
|                    | Effective Area [m²]              |        |        |       | 0,111      | 0,089      | 0,074 | 0,064 | 0,056 |
|                    | Pressure Drop [Pa]               |        |        |       | 51         | 71         | 94    | 119   | 145   |
| 800                | Throw Distance [m]               |        |        |       | 3          | 4          | 4     | 4     | 5     |
|                    | Sound Pressure Level [dB(A)]     |        |        |       | 38         | 41         | 44    | 48    | 50    |
|                    | Effective Area [m²]              |        |        |       | 0,125      | 0,100      | 0,083 | 0,071 | 0,063 |
|                    | Pressure Drop [Pa]               |        |        |       | 51         | 71         | 94    | 119   | 145   |
| 900                | Throw Distance [m]               |        |        |       | 3          | 4          | 4     | 5     | 5     |
|                    | Sound Pressure Level [dB(A)]     |        |        |       | 37         | 41         | 45    | 48    | 51    |
|                    | Effective Area [m²]              |        |        |       |            | 0,111      | 0,093 | 0,079 | 0,069 |
|                    | Pressure Drop [Pa]               |        |        |       |            | 71         | 94    | 119   | 145   |
| 1000               | Throw Distance [m]               |        |        |       |            | 4          | 4     | 5     | 5     |
|                    | Sound Pressure Level [dB[A]]     |        |        |       |            | 42         | 45    | 49    | 51    |
|                    | Effective Area [m²]              |        |        |       |            | IL.        |       | 0,099 | 0,087 |
|                    | Pressure Drop [Pa]               |        |        |       |            |            | 0,116 | 119   | 145   |
| 1250               | Throw Distance [m]               |        |        |       |            |            | 94    |       | 5     |
|                    | Sound Pressure Level [dB(A)]     |        |        |       |            |            |       | 5     |       |
|                    | Effective Area [m²]              |        |        |       |            |            | 46    | 50    | 52    |
|                    |                                  |        |        |       |            |            |       | 0,119 | 0,104 |
| 1500               | Pressure Drop [Pa]               |        |        |       |            |            |       | 119   | 145   |
| 1300               | Throw Distance [m]               |        |        |       |            |            |       | 5     | 5     |
|                    | Sound Pressure Level [dB(A)]     |        |        |       |            |            |       | 50    | 53    |
|                    | Effective Area [m <sup>2</sup> ] |        | 1      |       | I          | I          | I     | 1     | 0,122 |

# **SUCTION DATA**

**Table 4.** Suction Data Table

|                  |                              |        |        |        | Effe   | ctive Ve | locity (m | n/s]  |       |        |        |
|------------------|------------------------------|--------|--------|--------|--------|----------|-----------|-------|-------|--------|--------|
| Flow Rate (m3/h) |                              | 0,5    | 1,0    | 1,5    | 2,0    | 2,5      | 3,0       | 3,5   | 4,0   | 4,5    | 5,0    |
|                  | Effective Area [m²]          | 0,0278 | 0,0139 | 0,0093 | 0,0069 | 0,006    | 0,005     | 0,004 | 0,003 |        |        |
| 50               | Pressure Drop [Pa]           | <1     | 2      | 5      | 12     | 24       | 42        | 67    | 100   |        |        |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | <15    | <15    | 17       | 24        | 29    | 34    |        |        |
|                  | Effective Area [m²]          | 0,0556 | 0,0278 | 0,019  | 0,014  | 0,011    | 0,009     | 0,008 | 0,007 | 0,006  | 0,006  |
| 100              | Pressure Drop [Pa]           | <1     | 2      | 5      | 12     | 24       | 42        | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | <15    | <15    | 20       | 27        | 32    | 37    | 42     | 46     |
|                  | Effective Area [m²]          | 0,111  | 0,056  | 0,037  | 0,028  | 0,022    | 0,019     | 0,016 | 0,014 | 0,012  | 0,011  |
| 200              | Pressure Drop [Pa]           | <1     | 2      | 5      | 12     | 24       | 42        | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | <15    | <15    | 23       | 30        | 35    | 40    | 45     | 49     |
|                  | Effective Area [m²]          |        | 0,083  | 0,056  | 0,042  | 0,033    | 0,028     | 0,024 | 0,021 | 0,019  | 0,017  |
| 300              | Pressure Drop [Pa]           |        | 2      | 5      | 12     | 24       | 42        | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        | <15    | <15    | 16     | 25       | 31        | 37    | 42    | 47     | 50     |
|                  | Effective Area [m²]          |        | 0,111  | 0,074  | 0,056  | 0,044    | 0,037     | 0,032 | 0,028 | 0,025  | 0,022  |
| 400              | Pressure Drop [Pa]           |        | 2      | 5      | 12     | 24       | 42        | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        | <15    | <15    | 18     | 26       | 33        | 38    | 43    | 48     | 52     |
|                  | Effective Area [m²]          |        |        | 0,093  | 0,069  | 0,056    | 0,046     | 0,040 | 0,035 | 0,031  | 0,028  |
| 500              | Pressure Drop [Pa]           |        |        | 5      | 12     | 24       | 42        | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        |        | <15    | 19     | 27       | 34        | 34    | 44    | 49     | 53     |
|                  | Effective Area [m²]          |        |        | 0,111  | 0,083  | 0,067    | 0,056     | 0,048 | 0,042 | 0,037  | 0,0333 |
| 600              | Pressure Drop [Pa]           |        |        | 5      | 12     | 24       | 42        | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        |        | <15    | 19     | 26       | 34        | 40    | 45    | 50     | 53     |
|                  | Effective Area [m²]          |        |        | 0,130  | 0,097  | 0,078    | 0,065     | 0,056 | 0,049 | 0,043  | 0,0389 |
| 700              | Pressure Drop [Pa]           |        |        | 5      | 12     | 24       | 42        | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        |        | <15    | 20     | 28       | 35        | 41    | 46    | 50     | 54     |
|                  | Effective Area [m²]          |        |        |        | 0,111  | 0,089    | 0,074     | 0,063 | 0,056 | 0,049  | 0,0444 |
| 800              | Pressure Drop [Pa]           |        |        |        | 12     | 24       | 42        | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        |        |        | 21     | 29       | 36        | 41    | 46    | 51     | 55     |
|                  | Effective Area [m²]          |        |        |        | 0,125  | 0,100    | 0,083     | 0,071 | 0,063 | 0,056  | 0,0500 |
| 900              | Pressure Drop [Pa]           |        |        |        | 12     | 24       | 42        | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        |        |        | 21     | 29       | 36        | 42    | 47    | 51     | 55     |
|                  | Effective Area [m²]          |        |        |        |        | 0,111    | 0,093     | 0,079 | 0,069 | 0,062  | 0,0556 |
| 1000             | Pressure Drop [Pa]           |        |        |        |        | 24       | 42        | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        |        |        |        | 30       | 37        | 42    | 47    | 52     | 56     |
|                  | Effective Area [m²]          |        |        |        |        |          | 0,116     | 0,099 | 0,087 | 0,077  | 0,0694 |
| 1250             | Pressure Drop [Pa]           |        |        |        |        |          | 42        | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        |        |        |        |          | 38        | 43    | 48    | 53     | 57     |
| 4.500            | Effective Area [m²]          |        |        |        |        |          |           | 0,119 | 0,104 | 0,0926 | 0,0833 |
| 1500             | Pressure Drop [Pa]           |        |        |        |        |          |           | 67    | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        |        |        |        |          |           | 44    | 49    | 54     | 57     |
| 4750             | Effective Area [m²]          |        |        |        |        |          |           |       | 0,122 | 0,1080 | 0,0972 |
| 1750             | Pressure Drop [Pa]           |        |        |        |        |          |           |       | 100   | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        |        |        |        |          |           |       | 50    | 54     | 58     |
| 6005             | Effective Area [m²]          |        |        |        |        |          |           |       |       | 0,1235 | 0,1111 |
| 2000             | Pressure Drop [Pa]           |        |        |        |        |          |           |       |       | 143    | 197    |
|                  | Sound Pressure Level [dB(A)] |        |        |        |        |          |           |       |       | 55     | 59     |

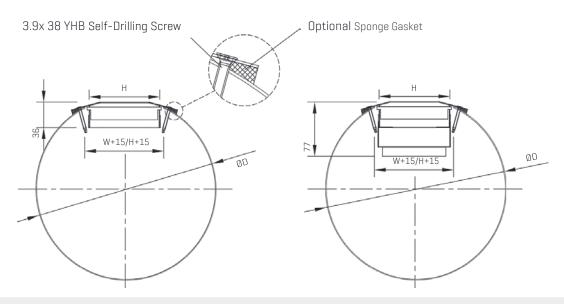

## **DUCT FLOW AND DAMPER CORRECTION TABLE**

Table 5. Duct Flow and Damper Correction Table

|                        |                          | Mu | Itilier Accor          | ding to Dar | nper Posit             | on                  |                        |                     |                        |                     |
|------------------------|--------------------------|----|------------------------|-------------|------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|
|                        |                          |    | Full (                 | Open        | 25% (                  | Closed              | 50% (                  | Closed              |                        | Closed              |
| Duct Velocity<br>(m/s) | Amount to Add            | dt | Pressure<br>Multiplier |             | Pressure<br>Multiplier | Sound<br>Multiplier | Pressure<br>Multiplier | Sound<br>Multiplier | Pressure<br>Multiplier | Sound<br>Multiplier |
| 0,5                    | Pressure Drop [Pa]       | -6 |                        |             |                        |                     |                        |                     |                        |                     |
| 0,0                    | Sound Generation [dB(A)] | -6 |                        |             |                        |                     |                        |                     |                        |                     |
| 1                      | Pressure Drop [Pa]       | -5 |                        |             |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)] | -5 |                        |             |                        |                     |                        |                     |                        |                     |
| 2                      | Pressure Drop [Pa]       | -3 |                        |             |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)] | -2 |                        |             |                        |                     |                        |                     |                        |                     |
| 3                      | Pressure Drop [Pa]       | 0  |                        |             |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)] | 0  |                        |             |                        |                     |                        |                     |                        |                     |
| 4                      | Pressure Drop [Pa]       | 4  |                        |             |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)] | 2  |                        |             |                        |                     |                        |                     |                        |                     |
| 5                      | Pressure Drop [Pa]       | 10 |                        |             |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)] | 4  |                        |             |                        |                     |                        |                     |                        |                     |
| 6                      | Pressure Drop [Pa]       | 17 | 1,2                    | 1,1         | 2,0                    | 1,3                 | 2,9                    | 1,5                 | 3,9                    | 1,8                 |
|                        | Sound Generation [dB(A)] | 6  | ⊥,∟                    | ⊥,⊥         | 0,2                    | ⊥,∪                 | ت, ع                   | Σ, Ο                | J,J                    | 1,0                 |
| 7                      | Pressure Drop [Pa]       | 25 |                        |             |                        |                     |                        |                     |                        |                     |
| ,                      | Sound Generation [dB(A)] | 9  |                        |             |                        |                     |                        |                     |                        |                     |
| 8                      | Pressure Drop [Pa]       | 35 |                        |             |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)] | 11 |                        |             |                        |                     |                        |                     |                        |                     |
| 9                      | Pressure Drop [Pa]       | 46 |                        |             |                        |                     |                        |                     |                        |                     |
| 3                      | Sound Generation [dB(A)] | 13 |                        |             |                        |                     |                        |                     |                        |                     |
| 10                     | Pressure Drop [Pa]       | 60 |                        |             |                        |                     |                        |                     |                        |                     |
| 10                     | Sound Generation [dB(A)] | 15 |                        |             |                        |                     |                        |                     |                        |                     |
| 11                     | Pressure Drop [Pa]       | 75 |                        |             |                        |                     |                        |                     |                        |                     |
| 11                     | Sound Generation [dB(A)] | 18 |                        |             |                        |                     |                        |                     |                        |                     |
| 12                     | Pressure Drop [Pa]       | 92 |                        |             |                        |                     |                        |                     |                        |                     |
| 12                     | Sound Generation [dB(A)] | 20 |                        |             |                        |                     |                        |                     |                        |                     |

**Note:** As the air velocity in the duct increases and the damper position changes, the pressure loss and sound pressure level created by the grill increase. Accordingly, the blowing or suction data in the selected grille must first be multiplied by the damper coefficient if there is a damper. Then the correct result is achieved by adding sound production and pressure loss values according to the channel speed.


#### **STANDARD DIMENSIONS**



#### **OPTIONAL SLIDE DAMPER**

It has sliding blades that provide air flow adjustment. It is suitable to be used for blowing and suction.

With the air flow straightener, the circular duct grilles provide homogeneous air distribution



#### **SIZE PARAMETERS**

Recommended mounting method in case more than one circular duct grille is placed side by side.

#### STANDARD DIMENSIONS

Example: 500 m<sup>3</sup> / h blowing is expected from a circular duct grille connected to a circular duct with an air velocity of 6 m / s. A slide damper will be used. The diameter of the channel which the grille is connected will be 250 mm. The maximum pressure loss should be 100 Pa. Make the selection.

Solution: The necessary correction coefficients for 6 m / s duct air velocity are obtained from the Duct Flow and Damper Correction Table (Table 5).

When the damper in the full open position:

Pressure multiplier 1.2

Sound multiplier 1.1

Values to be added for 6 m / s channel air velocity

Pressure Drop +17 Pa

Sound Generation +6 dB(A).

From the blow data table (Table 3) the required values for  $500 \, \text{m}^3$  / h blowing flow and the corresponding effective area are obtained. For  $0.069 \, \text{m}^2$  effective area,  $51 \, \text{Pa}$  pressure loss,  $3 \, \text{m}$  firing distance and  $34 \, \text{dB}$  (A) sound pressure level and  $2 \, \text{m}$  / s effective velocity values are obtained.

Corrected pressure drop and sound pressure level are calculated. Pressure Drop = 51x1,2 + 17 = 78,2 Pa Sound Pressure Level = 34x1,2 + 6 = 46,8 dB [A]

The selected dimension must meet the  $H \le R$  constraint since the channel radius  $\{R\} = 100$  mm.

After confirming the conformity of the obtained values, the grille size corresponding to 0.069 m² effective area is selected as W (Width) 900 mm x H (Height) 100 mm on the Effective Area Table (Table 2).

# **SIZE PARAMETERS**

You can place your orders according to the following coding format.

DYM. < A > . < B > . < C > . < D > . < E > . < F > . < G >

| Α | Raw Material Type |                                           |
|---|-------------------|-------------------------------------------|
|   | GAL               | Galvanized                                |
| В | Damper            |                                           |
|   | OD                | Slide Damper                              |
|   | DZ                | Without Damper                            |
| С | Mounting Type     |                                           |
|   | VD                | Screwed System                            |
|   | MD                | Without Mounting Hole                     |
| D | Accessories       |                                           |
|   | CO                | Sponge Gasket                             |
|   | 00                | Without Accessories                       |
| E | Widt (W) (mm)     |                                           |
|   | 0000              | You can view it from standard dimensions. |
| F | Height (H) (mm)   |                                           |
|   | 0000              | You can view it from standard dimensions. |
| G | Paint             |                                           |
|   | 00                | Paintless                                 |
|   | S1                | Standard Paint - RAL 9010                 |
|   | S2                | Standard Paint - RAL 9016                 |
|   | XX                | Special Paint                             |

 $\textbf{Sample Codding;} \ \mathsf{DYM.GAL.DZ.} 00.0600.0150.S1$ 

# DMZ - DOUBLE ROW BLADED CIRCULAR DUCT GRILLE (ALUMINUM)

- © DMZ Double Row Blade Circular Duct Grill is used in circular air ducts and has adjustable blades arranged in double rows.
- € It is a grille used in blowing or suction lines.

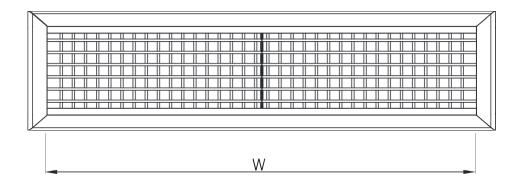


# **MATERIAL**

© Casing and blades made of aluminum 6063 extruded profile.

## **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard.
- © Optional
  - Different RAL color codes
  - Matt aluminum anodized finish for a matte and metallic look
  - Unpainted manufacturing


# **MOUNTING TYPES**

Screw mounting type as standard.

# **ACCESSORIES**

- © Optional
  - -ZKD Opposite Blade Air Adjustment Damper

# **SIZE PARAMETERS**



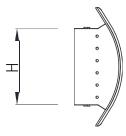
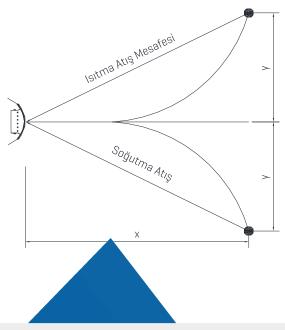



Table 1. Standard Dimensions Table.

| Sta          | ndard   |             |             |          |          |             | H Heig   | ht (mn   | ո) (Mus  | t be Les    | ss than  | Duct R      | adius)      |          |          |             |          |
|--------------|---------|-------------|-------------|----------|----------|-------------|----------|----------|----------|-------------|----------|-------------|-------------|----------|----------|-------------|----------|
| Dime         | ensions | 50          | 75          | 100      | 125      | 150         | 175      | 200      | 250      | 300         | 325      | 350         | 400         | 450      | 500      | 525         | 600      |
|              | 100     | <b>~</b>    | <b>~</b>    | <b>~</b> | <b>~</b> | <b>~</b>    | <b>V</b> | <b>V</b> | <b>~</b> | <b>~</b>    | <b>V</b> | <b>✓</b>    | <b>~</b>    | <b>V</b> | <b>~</b> | <b>~</b>    | <b>~</b> |
|              | 125     | <b>✓</b>    | <b>&gt;</b> | <b>✓</b> | <b>✓</b> | <b>\</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | >           | <b>✓</b> | <b>\</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
|              | 150     | <b>&gt;</b> | >           | <b>✓</b> | <b>✓</b> | >           | <b>✓</b> | <b>✓</b> | <b>\</b> | >           | <b>\</b> | >           | <b>&gt;</b> | <b>✓</b> | <b>\</b> | <b>&gt;</b> | <b>~</b> |
|              | 200     | <b>✓</b>    | >           | <b>✓</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
|              | 225     | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
|              | 250     | <b>✓</b>    | <b>\</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
|              | 300     | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
| Ē            | 325     | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
| W Width (mm) | 350     | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
| Nidt         | 400     | <b>✓</b>    | <b>\</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
| €            | 425     | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>~</b> |
|              | 450     | <b>✓</b>    | <b>&gt;</b> | <b>✓</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
|              | 500     | <b>~</b>    | >           | <b>✓</b> | <b>✓</b> | >           | <b>✓</b> | <b>✓</b> | <b>~</b> | >           | <b>✓</b> | >           | <b>✓</b>    | <b>✓</b> | <b>~</b> | <b>~</b>    | <b>~</b> |
|              | 525     | <b>✓</b>    | >           | <b>✓</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
|              | 600     | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
|              | 625     | <b>✓</b>    | <b>\</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b>    | <b>~</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
|              | 825     | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>V</b> |
|              | 1800    | <b>✓</b>    | <b>\</b>    | <b>✓</b> | <b>✓</b> | <b>\</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b> | <b>\</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |
|              | 1025    | <b>✓</b>    | >           | <b>✓</b> | <b>✓</b> | <b>&gt;</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | >           | <b>✓</b> | <b>&gt;</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>~</b> |
|              | 1250    | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b>    | <b>✓</b> | <b>✓</b>    | <b>✓</b>    | <b>✓</b> | <b>✓</b> | <b>✓</b>    | <b>✓</b> |


## **PERFORMANCE DATA**

# **EFFECTIVE AREA**

Table 2. Effective Area Table

| Effe         | ctive  |       |       |       |       |       |       | ı     | H Heigh | t (mm) | 1     |       |       |       |       |       |       |
|--------------|--------|-------|-------|-------|-------|-------|-------|-------|---------|--------|-------|-------|-------|-------|-------|-------|-------|
| Area         | a [m²] | 50    | 75    | 100   | 125   | 150   | 175   | 200   | 250     | 300    | 325   | 350   | 400   | 450   | 500   | 525   | 600   |
|              | 100    | 0,003 | 0,004 | 0,006 | 0,007 | 0,009 | 0,010 | 0,012 | 0,015   | 0,018  | 0,019 | 0,021 | 0,024 | 0,027 | 0,030 | 0,031 | 0,036 |
|              | 125    | 0,004 | 0,006 | 0,007 | 0,009 | 0,011 | 0,013 | 0,015 | 0,019   | 0,022  | 0,024 | 0,026 | 0,030 | 0,034 | 0,037 | 0,039 | 0,045 |
|              | 150    | 0,004 | 0,007 | 0,009 | 0,011 | 0,013 | 0,016 | 0,018 | 0,022   | 0,027  | 0,029 | 0,031 | 0,036 | 0,040 | 0,045 | 0,047 | 0,054 |
|              | 200    | 0,006 | 0,009 | 0,012 | 0,015 | 0,018 | 0,021 | 0,024 | 0,030   | 0,036  | 0,039 | 0,042 | 0,048 | 0,054 | 0,060 | 0,063 | 0,072 |
|              | 225    | 0,007 | 0,010 | 0,013 | 0,017 | 0,020 | 0,024 | 0,027 | 0,034   | 0,040  | 0,044 | 0,047 | 0,054 | 0,061 | 0,067 | 0,071 | 0,081 |
|              | 250    | 0,007 | 0,011 | 0,015 | 0,019 | 0,022 | 0,026 | 0,030 | 0,037   | 0,045  | 0,049 | 0,052 | 0,060 | 0,067 | 0,075 | 0,079 | 0,090 |
|              | 300    | 0,009 | 0,013 | 0,018 | 0,022 | 0,027 | 0,031 | 0,036 | 0,045   | 0,054  | 0,058 | 0,063 | 0,072 | 0,081 | 0,090 | 0,094 | 0,108 |
| -            | 325    | 0,010 | 0,015 | 0,019 | 0,024 | 0,029 | 0,034 | 0,039 | 0,049   | 0,058  | 0,063 | 0,068 | 0,078 | 0,088 | 0,097 | 0,102 | 0,117 |
| W Width [mm] | 350    | 0,010 | 0,016 | 0,021 | 0,026 | 0,031 | 0,037 | 0,042 | 0,052   | 0,063  | 0,068 | 0,073 | 0,084 | 0,094 | 0,105 | 0,110 | 0,126 |
| th (         | 400    | 0,012 | 0,018 | 0,024 | 0,030 | 0,036 | 0,042 | 0,048 | 0,060   | 0,072  | 0,078 | 0,084 | 0,096 | 0,108 | 0,120 | 0,126 | 0,144 |
| Ķ            | 425    | 0,013 | 0,019 | 0,025 | 0,032 | 0,038 | 0,045 | 0,051 | 0,064   | 0,076  | 0,083 | 0,089 | 0,102 | 0,115 | 0,127 | 0,134 | 0,153 |
| >            | 450    | 0,013 | 0,020 | 0,027 | 0,034 | 0,040 | 0,047 | 0,054 | 0,067   | 0,081  | 0,088 | 0,094 | 0,108 | 0,121 | 0,135 | 0,142 | 0,162 |
|              | 500    | 0,015 | 0,022 | 0,030 | 0,037 | 0,045 | 0,052 | 0,060 | 0,075   | 0,090  | 0,097 | 0,105 | 0,120 | 0,135 | 0,150 | 0,157 | 0,180 |
|              | 525    | 0,016 | 0,024 | 0,031 | 0,039 | 0,047 | 0,055 | 0,063 | 0,079   | 0,094  | 0,102 | 0,110 | 0,126 | 0,142 | 0,157 | 0,165 | 0,189 |
|              | 600    | 0,018 | 0,027 | 0,036 | 0,045 | 0,054 | 0,063 | 0,072 | 0,090   | 0,108  | 0,117 | 0,126 | 0,144 | 0,162 | 0,180 | 0,189 | 0,216 |
|              | 625    | 0,019 | 0,028 | 0,037 | 0,047 | 0,056 | 0,066 | 0,075 | 0,094   | 0,112  | 0,122 | 0,131 | 0,150 | 0,168 | 0,187 | 0,197 | 0,225 |
|              | 825    | 0,025 | 0,037 | 0,049 | 0,062 | 0,074 | 0,086 | 0,099 | 0,124   | 0,148  | 0,161 | 0,173 | 0,198 | 0,222 | 0,247 | 0,259 | 0,296 |
|              | 1025   | 0,031 | 0,046 | 0,061 | 0,077 | 0,092 | 0,107 | 0,123 | 0,153   | 0,184  | 0,200 | 0,215 | 0,246 | 0,276 | 0,307 | 0,322 | 0,368 |
|              | 1250   | 0,037 | 0,056 | 0,075 | 0,094 | 0,112 | 0,131 | 0,150 | 0,187   | 0,225  | 0,243 | 0,262 | 0,299 | 0,337 | 0,374 | 0,393 | 0,449 |

## **BLOWING DATA**



#### Note:

Throw Distance: The distance where the air in the comfort zone reaches a speed of 0.25 m / s with the air distribution equipment.

The data are obtained when the duct flow velocity is 3 m / s and the room air temperature difference with the air distribution equipment is  $\Delta T = 8K$ .

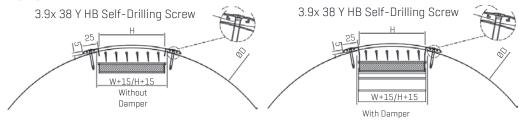
**Table 3.** Supply Data Table

|                    |                                                  |          |        |          | Effe  | ctive Vel | ocity (m | /s)    |        |        |        |
|--------------------|--------------------------------------------------|----------|--------|----------|-------|-----------|----------|--------|--------|--------|--------|
| Flow Rate (m3 / h) |                                                  | 0,5      | 1,0    | 1,5      | 2,0   | 2,5       | 3,0      | 3,5    | 4,0    | 4,5    | 5,0    |
|                    | Effective Area [m²]                              | 0,0278   | 0,0139 | 0,009    | 0,007 | 0,006     | 0,005    | 0,0040 | 0,0035 | 0,003  |        |
| <b>50</b>          | Pressure Drop [Pa]                               | <1       | 3      | 7        | 12    | 20        | 29       | 39     | 52     | 66     |        |
| 50                 | Throw Distance [m]                               | 1        | 2      | 2        | 3     | 3         | 3        | 4      | 4      | 4      |        |
|                    | Sound Pressure Level [dB(A)]                     | <15      | <15    | <15      | <15   | <15       | 20       | 24     | 27     | 30     |        |
|                    | Effective Area [m²]                              | 0,0556   | 0,0278 | 0,019    | 0,014 | 0,011     | 0,009    | 0,008  | 0,007  | 0,006  | 0,0056 |
| 100                | Pressure Drop [Pa]                               | <1       | 3      | 7        | 12    | 20        | 29       | 40     | 52     | 67     | 83     |
| 100                | Throw Distance [m]                               | 1        | 2      | 2        | 3     | 3         | 4        | 4      | 4      | 4      | 5      |
|                    | Sound Pressure Level [dB(A)]                     | <15      | <15    | <15      | <15   | 18        | 23       | 27     | 30     | 34     | 36     |
|                    | Effective Area [m²]                              | 0,111    | 0,056  | 0,037    | 0,028 | 0,022     | 0,019    | 0,016  | 0,014  | 0,012  | 0,011  |
| 200                | Pressure Drop [Pa]                               | <1       | 3      | 7        | 13    | 20        | 29       | 40     | 53     | 67     | 84     |
| 200                | Throw Distance [m]                               | 1        | 2      | 2        | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)]                     | <15      | <15    | <15      | <15   | 21        | 26       | 30     | 33     | 37     | 39     |
|                    | Effective Area [m²]                              | 0,167    | 0,083  | 0,056    | 0,042 | 0,033     | 0,028    | 0,024  | 0,021  | 0,019  | 0,017  |
| 300                | Pressure Drop [Pa]                               | <1       | 3      | 7        | 13    | 20        | 29       | 40     | 53     | 68     | 84     |
| 300                | Throw Distance [m]                               | 1        | 2      | 3        | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)]                     | <15      | <15    | <15      | 17    | 23        | 28       | 32     | 35     | 38     | 41     |
|                    | Effective Area [m²]                              | 0,222    | 0,111  | 0,074    | 0,056 | 0,044     | 0,037    | 0,032  | 0,028  | 0,025  | 0,022  |
| 400                | Pressure Drop [Pa]                               | <1       | 3      | 7        | 13    | 20        | 29       | 40     | 53     | 68     | 84     |
| 700                | Throw Distance [m]                               | 1        | 2      | 3        | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)]                     | <15      | <15    | <15      | 18    | 24        | 29       | 33     | 37     | 40     | 43     |
|                    | Effective Area [m²]                              | 0,278    | 0,139  | 0,093    | 0,069 | 0,056     | 0,046    | 0,040  | 0,035  | 0,031  | 0,028  |
| 500                | Pressure Drop [Pa]                               | <1       | 3      | 7        | 13    | 20        | 29       | 40     | 53     | 68     | 84     |
| 300                | Throw Distance [m]                               | 1        | 2      | 3        | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)]                     | <15      | <15    | <15      | 19    | 25        | 30       | 34     | 38     | 41     | 44     |
|                    | Effective Area [m²]                              | 0,333    | 0,167  | 0,111    | 0,083 | 0,067     | 0,056    | 0,048  | 0,042  | 0,037  | 0,0333 |
| 600                | Pressure Drop [Pa]                               | <1       | 3      | 7        | 14    | 20        | 29       | 40     | 53     | 68     | 85     |
| 000                | Throw Distance [m]                               | 1        | 2      | 3        | 3     | 3         | 4        | 4      | 4      | 5      | 4,9    |
|                    | Sound Pressure Level [dB(A)]                     | <15      | <15    | <15      | 20    | 26        | 31       | 35     | 38     | 41     | 44     |
|                    | Effective Area [m²]                              | 0,389    | 0,194  | 0,130    | 0,097 | 0,078     | 0,065    | 0,056  | 0,049  | 0,043  | 0,0389 |
| 700                | Pressure Drop [Pa]                               | <1       | 3      | 7        | 13    | 20        | 29       | 40     | 53     | 68     | 85     |
| 700                | Throw Distance [m]                               | 1        | 2      | 3        | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)]                     | <15      | <15    | <15      | 20    | 26        | 31       | 35     | 39     | 42     | 45     |
|                    | Effective Area [m²]                              | 0,444    | 0,222  | 0,148    | 0,111 | 0,089     | 0,074    | 0,064  | 0,056  | 0,049  | 0,044  |
| 800                | Pressure Drop [Pa]                               | <1       | 3      | 7        | 13    | 20        | 29       | 40     | 53     | 68     | 85     |
| 000                | Throw Distance [m]                               | 1        | 2      | 3        | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)]                     | <15      | <15    | <15      | 21    | 27        | 32       | 36     | 40     | 43     | 46     |
|                    | Effective Area [m²]                              |          | 0,250  | 0,167    | 0,125 | 0,100     | 0,083    | 0,071  | 0,063  | 0,056  | 0,050  |
| 900                | Pressure Drop [Pa]                               |          | 3      | /        | 13    | 20        | 29       | 40     | 53     | 68     | 85     |
| 000                | Throw Distance [m]                               |          | 2      | 3        | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)]                     |          | <15    | <15      | 21    | 27        | 32       | 37     | 40     | 43     | 46     |
|                    | Effective Area [m²]                              |          | 0,278  | 0,185    | 0,139 | 0,111     | 0,093    | 0,079  | 0,069  | 0,062  | 0,0551 |
| 1000               | Pressure Drop [Pa] Throw Distance [m]            |          | 3 2    | 3        | 13    | 20        | 29       | 41     | 53     | 68     | 85     |
|                    |                                                  |          | <15    | <u> </u> | 3     | 3         | 4        | 4      | 4      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)]                     |          | 0,347  | 0,232    | 22    | 28        | 33       | 37     | 41     | 44     | 47     |
|                    | Effective Area [m²]                              |          |        |          | 0,174 | 0,139     | 0,116    | 0,099  | 0,087  | 0,077  | 0,0694 |
| 1250               | Pressure Drop [Pa] Throw Distance [m]            |          | 3 2    | 3        | 13    | 20        | 29       | 41     | 54     | 68     | 85     |
|                    |                                                  | -        | <15    | 15       | 3     | 3         | 4        | 4      | 5 //2  | 5 //-  | 5,1    |
|                    | Sound Pressure Level [dB(A)] Effective Area [m²] |          | 0,417  | 0,278    | 23    | 29        | 34       | 38     | 42     | 45     | 48     |
|                    |                                                  |          | 3      | U,Z/0    | 0,208 | 0,167     | 0,139    | 0,119  | 0,104  | 0,0926 | 0,083  |
| 1500               | Pressure Drop [Pa] Throw Distance [m]            |          | 2      | 3        | 13    | 20        | 30       | 41     | 54     | 68     | 85     |
| _555               |                                                  |          | <15    | 16       | 3     | 4         | 4        | 4      | 5      | 4,8    | 5,1    |
|                    | Sound Pressure Level [dB(A)]                     |          |        |          | 24    | 30        | 35       | 39     | 42     | 46     | 48     |
|                    | Effective Area [m²]                              |          |        | 0,324    | 0,243 | 0,194     | 0,162    | 0,139  | 0,122  | 0,1080 | 0,097  |
| 1750               | Pressure Drop [Pa]                               |          |        | 7        | 13    | 20        | 30       | 41     | 54     | 69     | 85     |
| 1,00               | Throw Distance [m]                               |          |        | 3        | 3     | 4         | 4        | 4      | 5      | 5      | 5      |
|                    | Sound Pressure Level [dB(A)]                     | <u> </u> |        | 17       | 24    | 30        | 35       | 39     | 43     | 46     | 49     |

**Table 4.** Exhaust Data Table

|                  |                              |        |        |        | Effe   | ctive Ve | locity (m | ı/s]  |       |        |        |
|------------------|------------------------------|--------|--------|--------|--------|----------|-----------|-------|-------|--------|--------|
| Flow Rate (m3/h) |                              | 0,5    | 1,0    | 1,5    | 2,0    | 2,5      | 3,0       | 3,5   | 4,0   | 4,5    | 5,0    |
|                  | Effective Area [m²]          | 0,0278 | 0,0139 | 0,0093 | 0,0069 | 0,006    | 0,005     | 0,004 | 0,003 | 0,0031 |        |
| 50               | Pressure Drop [Pa]           | <1     | 4      | 8      | 15     | 24       | 35        | 48    | 63    | 80     |        |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | <15    | <15    | 17       | 22        | 26    | 29    | 32     |        |
|                  | Effective Area [m²]          | 0,0556 | 0,0278 | 0,019  | 0,014  | 0,011    | 0,009     | 0,008 | 0,007 | 0,006  | 0,0056 |
| 100              | Pressure Drop [Pa]           | <1     | 4      | 8      | 15     | 24       | 35        | 48    | 63    | 81     | 100    |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | <15    | <15    | 20       | 25        | 29    | 32    | 36     | 38     |
|                  | Effective Area [m²]          | 0,111  | 0,056  | 0,037  | 0,028  | 0,022    | 0,019     | 0,016 | 0,014 | 0,012  | 0,011  |
| 200              | Pressure Drop [Pa]           | <1     | 4      | 8      | 15     | 24       | 35        | 48    | 64    | 81     | 101    |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | <15    | 17     | 23       | 28        | 32    | 35    | 39     | 41     |
|                  | Effective Area [m²]          | 0,167  | 0,083  | 0,056  | 0,042  | 0,033    | 0,028     | 0,024 | 0,021 | 0,019  | 0,017  |
| 300              | Pressure Drop [Pa]           | <1     | 4      | 8      | 15     | 24       | 35        | 48    | 64    | 82     | 101    |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | <15    | 19     | 25       | 30        | 34    | 37    | 40     | 43     |
|                  | Effective Area [m²]          | 0,222  | 0,111  | 0,074  | 0,056  | 0,044    | 0,037     | 0,032 | 0,028 | 0,025  | 0,022  |
| 400              | Pressure Drop [Pa]           | <1     | 4      | 8      | 15     | 24       | 35        | 49    | 64    | 82     | 102    |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | <15    | 20     | 26       | 31        | 35    | 39    | 42     | 45     |
|                  | Effective Area [m²]          | 0,278  | 0,139  | 0,093  | 0,069  | 0,056    | 0,046     | 0,040 | 0,035 | 0,031  | 0,028  |
| 500              | Pressure Drop [Pa]           | <1     | 4      | 8      | 15     | 24       | 35        | 49    | 64    | 82     | 102    |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | <15    | 21     | 27       | 32        | 36    | 40    | 43     | 46     |
|                  | Effective Area [m²]          | 0,333  | 0,167  | 0,111  | 0,083  | 0,067    | 0,056     | 0,048 | 0,042 | 0,037  | 0,0333 |
| 600              | Pressure Drop [Pa]           | <1     | 4      | 8      | 15     | 24       | 35        | 49    | 64    | 82     | 102    |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | <15    | 22     | 28       | 33        | 37    | 40    | 44     | 46     |
|                  | Effective Area [m²]          | 0,389  | 0,194  | 0,130  | 0,097  | 0,078    | 0,065     | 0,056 | 0,049 | 0,043  | 0,0389 |
| 700              | Pressure Drop [Pa]           | <1     | 4      | 8      | 15     | 24       | 35        | 49    | 64    | 82     | 102    |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | <15    | 22     | 28       | 33        | 37    | 41    | 44     | 47     |
|                  | Effective Area [m²]          | 0,444  | 0,222  | 0,148  | 0,111  | 0,089    | 0,074     | 0,063 | 0,056 | 0,049  | 0,0444 |
| 800              | Pressure Drop [Pa]           | <1     | 4      | 8      | 15     | 24       | 35        | 49    | 64    | 82     | 102    |
|                  | Sound Pressure Level [dB(A)] | <15    | <15    | 15     | 23     | 29       | 34        | 38    | 42    | 45     | 48     |
|                  | Effective Area [m²]          |        | 0,250  | 0,167  | 0,125  | 0,100    | 0,083     | 0,071 | 0,063 | 0,056  | 0,0500 |
| 900              | Pressure Drop [Pa]           |        | 4      | 8      | 15     | 24       | 35        | 49    | 64    | 82     | 102    |
|                  | Sound Pressure Level [dB(A)] |        | <15    | 16     | 24     | 20       | 34        | 39    | 42    | 45     | 48     |
|                  | Effective Area [m²]          |        | 0,278  | 0,185  | 0,139  | 0,111    | 0,093     | 0,079 | 0,069 | 0,062  | 0,0556 |
| 1000             | Pressure Drop [Pa]           |        | 4      | 8      | 15     | 24       | 36        | 49    | 65    | 82     | 103    |
|                  | Sound Pressure Level [dB(A)] |        | <15    | 16     | 24     | 30       | 35        | 39    | 43    | 46     | 49     |
|                  | Effective Area [m²]          |        | 0,347  | 0,231  | 0,174  | 0,139    | 0,116     | 0,099 | 0,087 | 0,077  | 0,0694 |
| 1250             | Pressure Drop [Pa]           |        | 4      | 8      | 15     | 24       | 36        | 49    | 65    | 83     | 103    |
|                  | Sound Pressure Level [dB(A)] |        | <15    | 17     | 25     | 31       | 36        | 30    | 44    | 47     | 50     |
|                  | Effective Area [m²]          |        | 0,417  | 0,278  | 0,208  | 0,167    | 0,139     | 0,119 | 0,104 | 0,0926 | 0,0833 |
| 1500             | Pressure Drop [Pa]           |        | 4      | 8      | 15     | 24       | 36        | 49    | 65    | 83     | 103    |
|                  | Sound Pressure Level [dB(A)] |        | <15    | 18     | 26     | 32       | 37        | 41    | 44    | 48     | 50     |
|                  | Effective Area [m²]          |        |        | 0,324  | 0,243  | 0,194    | 0,162     | 0,139 | 0,122 | 0,1080 | 0,0972 |
| 1750             | Pressure Drop [Pa]           |        |        | 9      | 16     | 24       | 36        | 49    | 65    | 83     | 103    |
|                  | Sound Pressure Level [dB(A)] |        |        | 19     | 26     | 32       | 37        | 42    | 45    | 48     | 51     |
|                  | Frective Area [m²]           |        |        | 0,370  | 0,278  | 0,222    | 0,185     | 0,159 | 0,139 | 0,1235 | 0,1111 |
| 2000             | ure Drop [Pa]                |        |        | 8      | 15     | 24       | 36        | 49    | 65    | 83     | 103    |
|                  | ressure Level [dB(A)]        |        |        | 19     | 27     | 33       | 38        | 42    | 46    | 49     | 52     |

## **DUCT FLOW AND DAMPER CORRECTION TABLE**


Table 5. Duct Flow and Damper Correction Table

|                        |                          | Mult | ilier Accor            | ding to Da          | mper Pos               | ition               |                        |                     |                        |                     |
|------------------------|--------------------------|------|------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|
|                        |                          |      | Full (                 | Open                | 25% (                  | Closed              | 50% (                  | Closed              | 75% (                  | Closed              |
| Duct Velocity<br>(m/s) | Amount to Ad             | d    | Pressure<br>Multiplier | Sound<br>Multiplier | Pressure<br>Multiplier | Sound<br>Multiplier | Pressure<br>Multiplier | Sound<br>Multiplier | Pressure<br>Multiplier | Sound<br>Multiplier |
| 0,5                    | Pressure Drop [Pa]       | -6   |                        |                     |                        |                     |                        |                     |                        |                     |
| 0,5                    | Sound Generation [dB(A)] | -6   |                        |                     |                        |                     |                        |                     |                        |                     |
| 1                      | Pressure Drop [Pa]       | -5   |                        |                     |                        |                     |                        |                     |                        |                     |
| _                      | Sound Generation [dB(A)] | -5   |                        |                     |                        |                     |                        |                     |                        |                     |
| 2                      | Pressure Drop [Pa]       | -3   |                        |                     |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)] | -2   |                        |                     |                        |                     |                        |                     |                        |                     |
| 3                      | Pressure Drop [Pa]       | 0    |                        |                     |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)] | 0    |                        |                     |                        |                     |                        |                     |                        |                     |
| 4                      | Pressure Drop [Pa]       | 4    |                        |                     |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)] | 2    |                        |                     |                        |                     |                        |                     |                        |                     |
| 5                      | Pressure Drop [Pa]       | 10   |                        |                     |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)] | 4    |                        |                     |                        |                     |                        |                     |                        |                     |
| 6                      | Pressure Drop [Pa]       | 17   | 1 00                   | 1.05                | 1.00                   | 1 01                | 0.70                   | 1 //0               | 2.07                   | 1.71                |
|                        | Sound Generation [dB(A)] | 6    | 1,09                   | 1,05                | 1,86                   | 1,21                | 2,76                   | 1,46                | 3,67                   | ⊥,/⊥                |
| 7                      | Pressure Drop [Pa]       | 25   | -                      |                     |                        |                     |                        |                     |                        |                     |
| /                      | Sound Generation [dB(A)] | 9    | -                      |                     |                        |                     |                        |                     |                        |                     |
| 8                      | Pressure Drop [Pa]       | 35   | -                      |                     |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)] | 11   | -                      |                     |                        |                     |                        |                     |                        |                     |
| 9                      | Pressure Drop [Pa]       | 46   | -                      |                     |                        |                     |                        |                     |                        |                     |
| 3                      | Sound Generation [dB(A)] | 13   | -                      |                     |                        |                     |                        |                     |                        |                     |
| 10                     | Pressure Drop [Pa]       | 60   | -                      |                     |                        |                     |                        |                     |                        |                     |
| 10                     | Sound Generation [dB(A)] | 15   |                        |                     |                        |                     |                        |                     |                        |                     |
| 11                     | Pressure Drop [Pa]       | 75   |                        |                     |                        |                     |                        |                     |                        |                     |
| 11                     | Sound Generation [dB(A)] | 18   |                        |                     |                        |                     |                        |                     |                        |                     |
| 10                     | Pressure Drop [Pa]       | 92   |                        |                     |                        |                     |                        |                     |                        |                     |
| 12                     | Sound Generation [dB(A)] | 20   |                        |                     |                        |                     |                        |                     |                        |                     |

**Note:** As the air velocity in the duct increases and the damper position changes, the pressure loss and sound pressure level created by the grill increase. Accordingly, the blowing or suction data in the selected grille must first be multiplied by the damper coefficient if there is a damper. Then the correct result is achieved by adding sound production and pressure loss values according to the channel speed.

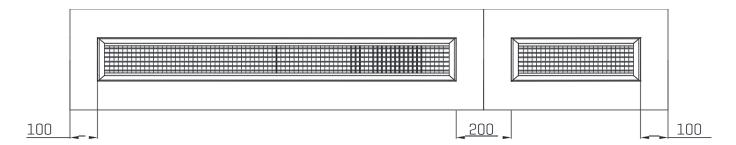
# **PERFORMANCE DATA**

#### 1. SCREWED SYSTEM



## **OPPOSITE BLADE DAMPER**




When air adjustment is requested, the opposite blade air adjustment damper is shipped with a special damper switch..

It is suitable to be used for blowing and suction

#### **SIZE PARAMETERS**

#### **MAXIMUM MODULE SIZE**

The standard size of a single piece product is within the limits of 100x50 and 1250x600. If the order is placed over standard sizes, the culverts will be produced more than once in full pieces. Recommended mounting method is shown below.



#### **MAXIMUM MODULE SIZE**

Support is used in dimensions of W> 600 in order to protect the strength according to the increase in length.

#### **PRODUCT SELECTION**

Example:  $300 \, \text{m}^3$  / h blowing is expected from a circular duct vent connected to a circular duct with an air velocity of  $5 \, \text{m}$  / s. Opposite blade damper will be used. The diameter of the duct to which the grille is connected will be  $250 \, \text{mm}$ . The maximum pressure loss should be  $100 \, \text{Pa}$ . Make the selection.

Solution: The necessary correction coefficients for 6 m / s duct air velocity are obtained from the Duct Flow and Damper Correction Table (Table 5).

With the damper in the 25% closed position:

Pressure multiplier 1.86

Sound multiplier 1.21

Values to be added for 5 m / s duct air velocity, Pressure loss +10 Pa

Sound production is +4 dB (A).

From the blow data table (Table 3) the required values for a  $300 \text{ m}^3$  / h blowing flow and the corresponding effective area are obtained. For  $0.028 \text{ m}^2$  effective area, 29 Pa pressure loss, 4 m shooting distance and 28 dB (A) sound pressure level and 3 m / s effective velocity values are obtained.

Corrected pressure loss and sound pressure level are calculated. Pressure Loss = 29x1.86 + 10 = 64 Pa

Sound Pressure Level = 26x1.21 + 4 = 37.9 dB [A]

The selected dimension must meet the  $H \le R$  constraint, since the duct radius (R) = 100 mm.

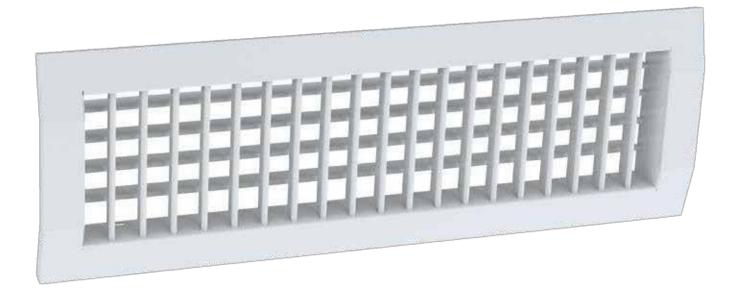
After confirming the conformity of the obtained values, the aperture size corresponding to 0.028 m<sup>2</sup> selected as W (Width) 625 mm x H (Height) 75 mm on the Effective Area Table (Table 2).

e area is

# **PRODUCT ORDER CODES**

You can place your orders according to the following coding format.

DMZ. < A > . < B > . < C > . < D > . < E > . < F > . < G >


| Α | Raw Material Type   |                                      |
|---|---------------------|--------------------------------------|
|   | ALM                 | Aluminum                             |
| В | Damper              |                                      |
|   | ZD                  | Opposite Blade Damper                |
|   | DZ                  | Without Damper                       |
| C | Mounting Type       |                                      |
|   | VD                  | Screwed System                       |
| D | Width(W) (mm)       |                                      |
|   | 0000                | You can view it from Standard Sizes. |
| E | Height (H) (mm)     |                                      |
|   | 0000                | You can view it from Standard Sizes. |
| F | Kanal Çapı (D) (mm) |                                      |
|   | 0000                | You can view it from Standard Sizes. |
| G | Paint               |                                      |
|   | 00                  | Unpainted                            |
|   | S1                  | Standard Paint - RAL 9010            |
|   | S2                  | Standard Paint - RAL 9016            |
|   | XX                  | Special Paint                        |

 $\textbf{Sample Codding;} \ \texttt{DMZ.ALM.ZD.VD.} 0600.0300.0600.S1$ 



# DZM - DOUBLE ROW BLADE CİRCULAR DUCT GRILLE (GALVANIZED)

© DZM - Double Row Blade Circular Duct Galvanized Grill is a blowing grille that is used in circular air ducts and can also be used for suction with double rows of blades.



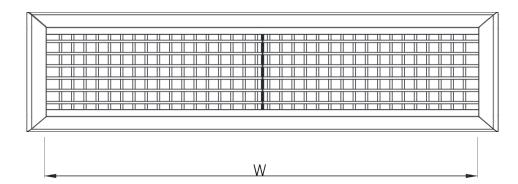
## **MATERIAL**

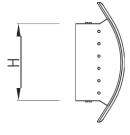
As a standard, the product's casing is galvanized sheet, its blades are made of 6063 extruded aluminum.

#### **SURFACE COATING**

- RAL 9010 or RAL 9016 electrostatic powder paint as standard for aluminum case.
- € The blades are galvanized.
- © Optional
  - Different RAL color codes
  - Matt aluminum anodized finish for a matte and metallic look
  - Unpainted manufacturing

## **MOUNTING TYPES**


- Screw mounting as standard.
- Without mounting hole.


## **ACCESSORIES**

- © Optional
  - Special Slide Galvanized Damper
  - -With Gasket



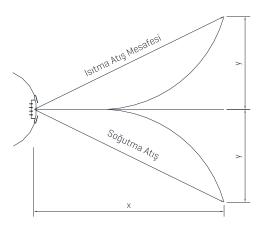
# **STANDARD DIMENSIONS**





**Table 1.**Selection Table

| Effe         | ective | H Height (mm) (Must be Less than Duct Radius) |          |             |  |  |  |  |
|--------------|--------|-----------------------------------------------|----------|-------------|--|--|--|--|
| Are          | a [m²] | 50                                            | 100      | 150         |  |  |  |  |
|              | 100    | <b>✓</b>                                      | <b>✓</b> | <b>&gt;</b> |  |  |  |  |
|              | 200    | <b>✓</b>                                      | <b>✓</b> | <           |  |  |  |  |
|              | 225    | <b>✓</b>                                      | <b>✓</b> | >           |  |  |  |  |
|              | 300    | <b>✓</b>                                      | <b>✓</b> | <b>&gt;</b> |  |  |  |  |
|              | 325    | <b>✓</b>                                      | <b>✓</b> | <b>&gt;</b> |  |  |  |  |
|              | 400    | <b>✓</b>                                      | <b>✓</b> |             |  |  |  |  |
|              | 425    | <b>✓</b>                                      | <b>✓</b> | <b>✓</b>    |  |  |  |  |
| Ξ            | 500    | <b>✓</b>                                      | <b>✓</b> | <b>&gt;</b> |  |  |  |  |
| m h          | 525    | <b>✓</b>                                      | <b>✓</b> | <b>&gt;</b> |  |  |  |  |
| W Width [mm] | 600    | <b>✓</b>                                      | <b>✓</b> | >           |  |  |  |  |
| <b>\leq</b>  | 625    | <b>✓</b>                                      | <b>✓</b> | >           |  |  |  |  |
|              | 700    | <b>✓</b>                                      | <b>✓</b> | <b>~</b>    |  |  |  |  |
|              | 800    | <b>✓</b>                                      | <b>✓</b> | <b>✓</b>    |  |  |  |  |
|              | 825    | <b>✓</b>                                      | <b>✓</b> | <b>✓</b>    |  |  |  |  |
|              | 900    | <b>✓</b>                                      | <b>✓</b> | <b>✓</b>    |  |  |  |  |
|              | 1000   | <b>✓</b>                                      | <b>✓</b> | <b>✓</b>    |  |  |  |  |
|              | 1100   | <b>✓</b>                                      | <b>✓</b> | <b>~</b>    |  |  |  |  |
|              | 1200   | <b>✓</b>                                      | <b>✓</b> | <b>✓</b>    |  |  |  |  |


# **PERFORMANCE DATA**

## **EFFECTIVE AREA TABLE**

Table 2. Effective Area Table

| Effective    |      |       | H Height (mm) |       |  |
|--------------|------|-------|---------------|-------|--|
| Area [m²]    |      | 50    | 100           | 150   |  |
|              | 100  | 0,003 | 0,006         | 0,010 |  |
|              | 200  | 0,006 | 0,013         | 0,020 |  |
|              | 225  | 0,007 | 0,015         | 0,022 |  |
|              | 300  | 0,010 | 0,020         | 0,030 |  |
|              | 325  | 0,010 | 0,021         | 0,032 |  |
|              | 400  | 0,013 | 0,026         | 0,040 |  |
|              | 425  | 0,014 | 0,028         | 0,043 |  |
| Ē            | 500  | 0,016 | 0,033         | 0,051 |  |
| m h          | 525  | 0,017 | 0,035         | 0,053 |  |
| W Width [mm] | 600  | 0,020 | 0,040         | 0,061 |  |
| <b>&gt;</b>  | 625  | 0,020 | 0,042         | 0,064 |  |
|              | 700  | 0,023 | 0,047         | 0,072 |  |
|              | 800  | 0,026 | 0,054         | 0,082 |  |
|              | 825  | 0,027 | 0,056         | 0,085 |  |
|              | 900  | 0,030 | 0,061         | 0,93  |  |
|              | 1000 | 0,033 | 0,068         | 0,103 |  |
|              | 1100 | 0,037 | 0,075         | 0,114 |  |
|              | 1200 | 0,040 | 0,082         | 0,125 |  |

## **SUPPLY DATA**



## Note:

Atış Mesafesi: Hava dağıtıcı ekipman ile konfor zonundaki havanın 0,25 m/s hızına ulaştığı<u>/m</u>esafe

Veriler kanal akış hızının 3 m/s ve hava dağıtıcı ekipman ile mahal hava sıcaklık farkının T = 8K olduğu durumda elde edilmiştir.

**Table 3.** Supply Data Table

|                                              |                                                 |        |         | Eff         | ective Vel  | ocity (m /  | 's)                 |              |              |
|----------------------------------------------|-------------------------------------------------|--------|---------|-------------|-------------|-------------|---------------------|--------------|--------------|
| Flow Rate (m3 / h)                           |                                                 | 0,5    | 1,0     | 1,5         | 2,0         | 2,5         | 3,0                 | 3,5          | 4,0          |
|                                              | Effective Area [m²]                             | 0,0278 | 0,0139  | 0,009       | 0,007       | 0,006       | 0,005               | 0,004        | 0,004        |
| 50<br>100<br>200<br>300<br>400<br>500<br>600 | Pressure Drop [Pa]                              | 6      | 18      | 33          | 51          | 71          | 94                  | 119          | 145          |
|                                              | Throw Distance [m]                              | 1      | 2       | 2           | 3           | 3           | 3                   | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    | <15    | <15     | 18          | 24          | 29          | <b>3,0</b> 0,005 94 | 36           | 38           |
|                                              | Effective Area [m²]                             | 0,0556 | 0,0278  | 0,019       | 0,014       | 0,011       |                     | 0,008        | 0,007        |
| 100                                          | Pressure Drop [Pa]                              | 6      | 18      | 33          | 51          | 71          |                     | 119          | 145          |
|                                              | Throw Distance [m]                              | 1      | 2       | 2           | 3           | 3           |                     | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    | <15    | <15     | 21          | 27          | 32          |                     | 39           | 41           |
|                                              | Effective Area [m²] Pressure Drop [Pa]          | 0,111  | 0,056   | 0,037       | 0,028       | 0,022       |                     | 0,016        | 0,014        |
| 200                                          | Throw Distance [m]                              | 6      | 18<br>2 | 33<br>2     | 51          | 71          |                     | 119          | 145<br>4     |
|                                              | Sound Pressure Level [dB(A)]                    | <15    | 16      | 24          | 30          | 35          |                     | 42           | 44           |
|                                              | Effective Area [m²]                             | 113    | 0,083   | 0,056       | 0,042       | 0,033       |                     | 0,024        | 0,021        |
|                                              | Pressure Drop [Pa]                              |        | 18      | 33          | 51          | 71          |                     | 119          | 145          |
| 300                                          | Throw Distance [m]                              |        | 2       | 3           | 3           | 3           | <b>+</b>            | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    |        | 17      | 26          | 32          | 36          |                     | 43           | 46           |
|                                              | Effective Area [m²]                             |        | 0,111   | 0,074       | 0,056       | 0,044       | 0,037               | 0,032        | 0,028        |
| //00                                         | Pressure Drop [Pa]                              |        | 18      | 33          | 51          | 71          | 94                  | 119          | 145          |
| 400                                          | Throw Distance [m]                              |        | 2       | 3           | 3           | 3           | 4                   | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    |        | 19      | 27          | 33          | 38          |                     | 45           | 47           |
|                                              | Effective Area [m²]                             |        |         | 0,093       | 0,069       | 0,056       |                     | 0,040        | 0,035        |
| 500                                          | Pressure Drop [Pa]                              |        |         | 33          | 51          | 71          |                     | 119          | 145          |
| 000                                          | Throw Distance [m] Sound Pressure Level [dB(A)] |        |         | 3           | 3           | 3           |                     | 4            | 4            |
|                                              | Effective Area [m²]                             |        |         | 28          | 34          | 39          |                     | 46           | 48           |
| 600                                          | Pressure Drop [Pa]                              |        |         | 0,111<br>33 | 0,083<br>51 | 0,067       |                     | 0,048<br>119 | 0,042<br>145 |
|                                              | Throw Distance [m]                              |        |         | 33          | 3           | 71          |                     | 4            | 4            |
|                                              | Sound Pressure Level [dB[A]]                    |        |         | 29          | 35          | 39          | · ·                 | 46           | 49           |
|                                              | Effective Area [m²]                             |        |         | LJ          | 0,097       | 0,078       |                     | 0,056        | 0,049        |
|                                              | Pressure Drop [Pa]                              |        |         |             | 51          | 71          |                     | 119          | 145          |
| 700                                          | Throw Distance [m]                              |        |         |             | 3           | 3           |                     | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    |        |         |             | 35          | 40          | 44                  | 47           | 50           |
|                                              | Effective Area [m²]                             |        |         |             | 0,111       | 0,089       | 0,074               | 0,064        | 0,056        |
|                                              | Pressure Drop [Pa]                              |        |         |             | 51          | 71          | 94                  | 119          | 145          |
| 800                                          | Throw Distance [m]                              |        |         |             | 3           | 3           | -                   | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    |        |         |             | 36          | 41          |                     | 48           | 50           |
|                                              | Effective Area [m²]                             |        |         |             |             | 0,100       |                     | 0,071        | 0,063        |
| 900                                          | Pressure Drop [Pa]                              |        |         |             |             | 71          |                     | 119          | 145          |
| 50<br>100<br>200<br>300<br>400<br>500        | Throw Distance [m] Sound Pressure Level [dB(A)] |        |         |             |             | 3           | · ·                 | 4            | 5            |
|                                              | Effective Area [m²]                             |        |         |             |             | 41          |                     | 48           | 51           |
|                                              | Pressure Drop [Pa]                              |        |         |             |             | 0,111<br>71 |                     | 0,079        | 0,069<br>145 |
| 1000                                         | Throw Distance [m]                              |        |         |             |             | 3           |                     | 4            | 5            |
|                                              | Sound Pressure Level [dB(A)]                    |        |         |             |             | 42          | · ·                 | 49           | 51           |
|                                              | Effective Area [m²]                             |        |         |             |             |             |                     | 0,099        | 0,087        |
|                                              | Pressure Drop [Pa]                              |        |         |             |             |             |                     | 119          | 145          |
| 1250                                         | Throw Distance [m]                              |        |         |             |             |             |                     | 4            | 5            |
|                                              | Sound Pressure Level [dB(A)]                    |        |         |             |             |             |                     | 50           | 52           |
|                                              | Effective Area [m²]                             |        |         |             |             |             |                     | 0,119        | 0,104        |
| 1500                                         | Pressure Drop [Pa]                              |        |         |             |             |             |                     | 119          | 145          |
| 1500                                         | Throw Distance [m]                              |        |         |             |             |             |                     | 4            | 5            |
|                                              | Sound Pressure Level [dB(A)]                    |        |         |             |             |             |                     | 50           | 53           |
|                                              | Effective Area [m²]                             |        |         |             |             |             |                     |              | 0,122        |
| 1750                                         | essure Drop [Pa]                                |        |         |             |             |             |                     |              | 145          |
| 1/30                                         | w Distance [m]                                  |        |         |             |             |             |                     |              | 5            |
|                                              | Pressure Level [dB(A)]                          |        |         |             |             |             |                     |              | 54           |

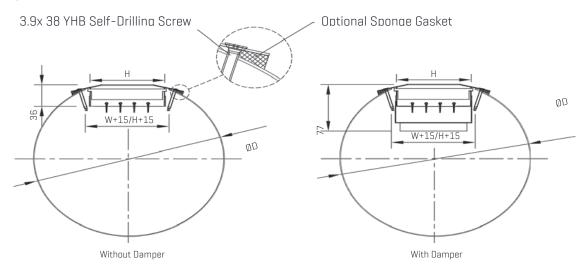
**Table 3.** Supply Data Table

|                                              |                                                 |        |         | Eff         | ective Vel  | ocity (m /  | 's)                 |              |              |
|----------------------------------------------|-------------------------------------------------|--------|---------|-------------|-------------|-------------|---------------------|--------------|--------------|
| Flow Rate (m3 / h)                           |                                                 | 0,5    | 1,0     | 1,5         | 2,0         | 2,5         | 3,0                 | 3,5          | 4,0          |
|                                              | Effective Area [m²]                             | 0,0278 | 0,0139  | 0,009       | 0,007       | 0,006       | 0,005               | 0,004        | 0,004        |
| 50<br>100<br>200<br>300<br>400<br>500<br>600 | Pressure Drop [Pa]                              | 6      | 18      | 33          | 51          | 71          | 94                  | 119          | 145          |
|                                              | Throw Distance [m]                              | 1      | 2       | 2           | 3           | 3           | 3                   | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    | <15    | <15     | 18          | 24          | 29          | <b>3,0</b> 0,005 94 | 36           | 38           |
|                                              | Effective Area [m²]                             | 0,0556 | 0,0278  | 0,019       | 0,014       | 0,011       |                     | 0,008        | 0,007        |
| 100                                          | Pressure Drop [Pa]                              | 6      | 18      | 33          | 51          | 71          |                     | 119          | 145          |
|                                              | Throw Distance [m]                              | 1      | 2       | 2           | 3           | 3           |                     | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    | <15    | <15     | 21          | 27          | 32          |                     | 39           | 41           |
|                                              | Effective Area [m²] Pressure Drop [Pa]          | 0,111  | 0,056   | 0,037       | 0,028       | 0,022       |                     | 0,016        | 0,014        |
| 200                                          | Throw Distance [m]                              | 6      | 18<br>2 | 33<br>2     | 51          | 71          |                     | 119          | 145<br>4     |
|                                              | Sound Pressure Level [dB(A)]                    | <15    | 16      | 24          | 30          | 35          |                     | 42           | 44           |
|                                              | Effective Area [m²]                             | 113    | 0,083   | 0,056       | 0,042       | 0,033       |                     | 0,024        | 0,021        |
|                                              | Pressure Drop [Pa]                              |        | 18      | 33          | 51          | 71          |                     | 119          | 145          |
| 300                                          | Throw Distance [m]                              |        | 2       | 3           | 3           | 3           | 1                   | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    |        | 17      | 26          | 32          | 36          |                     | 43           | 46           |
|                                              | Effective Area [m²]                             |        | 0,111   | 0,074       | 0,056       | 0,044       | 0,037               | 0,032        | 0,028        |
| //00                                         | Pressure Drop [Pa]                              |        | 18      | 33          | 51          | 71          | 94                  | 119          | 145          |
| 400                                          | Throw Distance [m]                              |        | 2       | 3           | 3           | 3           | 4                   | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    |        | 19      | 27          | 33          | 38          |                     | 45           | 47           |
|                                              | Effective Area [m²]                             |        |         | 0,093       | 0,069       | 0,056       |                     | 0,040        | 0,035        |
| 500                                          | Pressure Drop [Pa]                              |        |         | 33          | 51          | 71          |                     | 119          | 145          |
| 000                                          | Throw Distance [m] Sound Pressure Level [dB(A)] |        |         | 3           | 3           | 3           |                     | 4            | 4            |
|                                              | Effective Area [m²]                             |        |         | 28          | 34          | 39          |                     | 46           | 48           |
| 600                                          | Pressure Drop [Pa]                              |        |         | 0,111<br>33 | 0,083<br>51 | 0,067       |                     | 0,048<br>119 | 0,042<br>145 |
|                                              | Throw Distance [m]                              |        |         | 33          | 3           | 71          |                     | 4            | 4            |
|                                              | Sound Pressure Level [dB[A]]                    |        |         | 29          | 35          | 39          | · ·                 | 46           | 49           |
|                                              | Effective Area [m²]                             |        |         | LJ          | 0,097       | 0,078       |                     | 0,056        | 0,049        |
|                                              | Pressure Drop [Pa]                              |        |         |             | 51          | 71          |                     | 119          | 145          |
| 700                                          | Throw Distance [m]                              |        |         |             | 3           | 3           |                     | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    |        |         |             | 35          | 40          | 44                  | 47           | 50           |
|                                              | Effective Area [m²]                             |        |         |             | 0,111       | 0,089       | 0,074               | 0,064        | 0,056        |
|                                              | Pressure Drop [Pa]                              |        |         |             | 51          | 71          | 94                  | 119          | 145          |
| 800                                          | Throw Distance [m]                              |        |         |             | 3           | 3           | -                   | 4            | 4            |
|                                              | Sound Pressure Level [dB(A)]                    |        |         |             | 36          | 41          |                     | 48           | 50           |
|                                              | Effective Area [m²]                             |        |         |             |             | 0,100       |                     | 0,071        | 0,063        |
| 900                                          | Pressure Drop [Pa]                              |        |         |             |             | 71          |                     | 119          | 145          |
| 50<br>100<br>200<br>300<br>400<br>500        | Throw Distance [m] Sound Pressure Level [dB(A)] |        |         |             |             | 3           | · ·                 | 4            | 5            |
|                                              | Effective Area [m²]                             |        |         |             |             | 41          |                     | 48           | 51           |
|                                              | Pressure Drop [Pa]                              |        |         |             |             | 0,111<br>71 |                     | 0,079        | 0,069<br>145 |
| 1000                                         | Throw Distance [m]                              |        |         |             |             | 3           |                     | 4            | 5            |
|                                              | Sound Pressure Level [dB(A)]                    |        |         |             |             | 42          | · ·                 | 49           | 51           |
|                                              | Effective Area [m²]                             |        |         |             |             |             |                     | 0,099        | 0,087        |
|                                              | Pressure Drop [Pa]                              |        |         |             |             |             |                     | 119          | 145          |
| 1250                                         | Throw Distance [m]                              |        |         |             |             |             |                     | 4            | 5            |
|                                              | Sound Pressure Level [dB(A)]                    |        |         |             |             |             |                     | 50           | 52           |
|                                              | Effective Area [m²]                             |        |         |             |             |             |                     | 0,119        | 0,104        |
| 1500                                         | Pressure Drop [Pa]                              |        |         |             |             |             |                     | 119          | 145          |
| 1500                                         | Throw Distance [m]                              |        |         |             |             |             |                     | 4            | 5            |
|                                              | Sound Pressure Level [dB(A)]                    |        |         |             |             |             |                     | 50           | 53           |
|                                              | Effective Area [m²]                             |        |         |             |             |             |                     |              | 0,122        |
| 1750                                         | essure Drop [Pa]                                |        |         |             |             |             |                     |              | 145          |
| 1/30                                         | w Distance [m]                                  |        |         |             |             |             |                     |              | 5            |
|                                              | Pressure Level [dB(A)]                          |        |         |             |             |             |                     |              | 54           |

Table 4. Exhaust Data Table

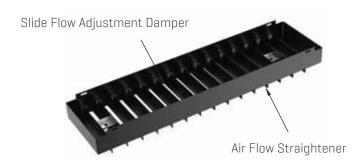
|                  |                              | Effective Velocity (m/s) |        |        |        |       |       |       |       |        |
|------------------|------------------------------|--------------------------|--------|--------|--------|-------|-------|-------|-------|--------|
| Flow Rate (m3/h) |                              | 0,5                      | 1,0    | 1,5    | 2,0    | 2,5   | 3,0   | 3,5   | 4,0   | 4,5    |
|                  | Effective Area [m²]          | 0,0278                   | 0,0139 | 0,0093 | 0,0069 | 0,006 | 0,005 | 0,004 | 0,003 |        |
| 50               | Pressure Drop [Pa]           | <1                       | 2      | 5      | 12     | 24    | 42    | 67    | 100   |        |
|                  | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | <15    | 17    | 24    | 29    | 34    |        |
| 100              | Effective Area [m²]          | 0,0556                   | 0,0278 | 0,019  | 0,014  | 0,011 | 0,009 | 0,008 | 0,007 | 0,006  |
|                  | Pressure Drop [Pa]           | <1                       | 2      | 5      | 12     | 24    | 42    | 67    | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | <15    | 20    | 27    | 32    | 37    | 42     |
|                  | Effective Area [m²]          | 0,111                    | 0,056  | 0,037  | 0,028  | 0,022 | 0,019 | 0,016 | 0,014 | 0,012  |
| 200              | Pressure Drop [Pa]           | <1                       | 2      | 5      | 12     | 24    | 42    | 67    | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] | <15                      | <15    | <15    | <15    | 23    | 30    | 35    | 40    | 45     |
|                  | Effective Area [m²]          |                          | 0,083  | 0,056  | 0,042  | 0,033 | 0,028 | 0,024 | 0,021 | 0,019  |
| 300              | Pressure Drop [Pa]           |                          | 2      | 5      | 12     | 24    | 42    | 67    | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] |                          | <15    | <15    | 16     | 25    | 31    | 37    | 42    | 47     |
|                  | Effective Area [m²]          |                          | 0,111  | 0,074  | 0,056  | 0,044 | 0,037 | 0,032 | 0,028 | 0,025  |
| 400              | Pressure Drop [Pa]           |                          | 2      | 5      | 12     | 24    | 42    | 67    | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] |                          | <15    | <15    | 18     | 26    | 33    | 38    | 43    | 48     |
|                  | Effective Area [m²]          |                          |        | 0,093  | 0,069  | 0,056 | 0,046 | 0,040 | 0,035 | 0,031  |
| 500              | Pressure Drop [Pa]           |                          |        | 5      | 12     | 24    | 42    | 67    | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] |                          |        | <15    | 19     | 27    | 34    | 39    | 44    | 49     |
|                  | Effective Area [m²]          |                          |        | 0,111  | 0,083  | 0,067 | 0,056 | 0,048 | 0,042 | 0,037  |
| 600              | Pressure Drop [Pa]           |                          |        | 5      | 12     | 24    | 42    | 67    | 100   | 143    |
| , , ,            | Sound Pressure Level [dB(A)] |                          |        | <15    | 19     | 28    | 34    | 40    | 45    | 50     |
|                  | Effective Area [m²]          |                          |        | 0,130  | 0,097  | 0,078 | 0,065 | 0,056 | 0,049 | 0,043  |
| 700              | Pressure Drop [Pa]           |                          |        | 5      | 12     | 24    | 42    | 67    | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] |                          |        | <15    | 20     | 28    | 35    | 41    | 46    | 50     |
|                  | Effective Area [m²]          |                          |        |        | 0,111  | 0,089 | 0,074 | 0,063 | 0,056 | 0,049  |
| 800              | Pressure Drop [Pa]           |                          |        |        | 12     | 24    | 42    | 67    | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] |                          |        |        | 21     | 29    | 36    | 41    | 46    | 51     |
|                  | Effective Area [m²]          |                          |        |        |        | 0,100 | 0,083 | 0,071 | 0,063 | 0,056  |
| 900              | Pressure Drop [Pa]           |                          |        |        |        | 24    | 42    | 67    | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] |                          |        |        |        | 29    | 36    | 42    | 47    | 51     |
|                  | Effective Area [m²]          |                          |        |        |        | 0,111 | 0,093 | 0,079 | 0,069 | 0,062  |
| 1000             | Pressure Drop [Pa]           |                          |        |        |        | 24    | 42    | 67    | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] |                          |        |        |        | 30    | 37    | 42    | 47    | 52     |
|                  | Effective Area [m²]          |                          |        |        |        |       | 0,116 | 0,099 | 0,087 | 0,077  |
| 1250             | Pressure Drop [Pa]           |                          |        |        |        |       | 42    | 67    | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] |                          |        |        |        |       | 38    | 43    | 48    | 53     |
|                  | Effective Area [m²]          |                          |        |        |        |       |       | 0,119 | 0,104 | 0,0926 |
| 1500             | Pressure Drop [Pa]           |                          |        |        |        |       |       | 67    | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] |                          |        |        |        |       |       | 44    | 49    | 54     |
|                  | Effective Area [m²]          |                          |        |        |        |       |       |       | 0,122 | 0,1080 |
| 1750             | Pressure Drop [Pa]           |                          |        |        |        |       |       |       | 100   | 143    |
|                  | Sound Pressure Level [dB(A)] |                          |        |        |        |       |       |       | 50    | 54     |
|                  | Effective Area [m²]          |                          |        |        |        |       |       |       |       | 0,1235 |
| 2000             | Pressure Drop [Pa]           |                          |        |        |        |       |       |       |       | 143    |
|                  | Sound Pressure Level [dB(A)] |                          |        |        |        |       |       |       |       | 55     |

# **DUCT FLOW AND DAMPER CORRECTION TABLE**


Table 5. Duct Flow and Damper Correction Table

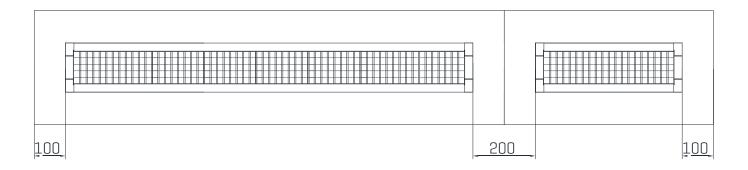
|                        | Multilier According to Damper Position |    |                        |                     |                        |                     |                        |                     |                        |                     |
|------------------------|----------------------------------------|----|------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|
|                        |                                        |    | Full (                 | Open                | 25% (                  | Closed              | 50% (                  | Closed              | 75% (                  | Closed              |
| Duct Velocity<br>(m/s) | Amount to Ado                          | ı  | Pressure<br>Multiplier | Sound<br>Multiplier | Pressure<br>Multiplier | Sound<br>Multiplier | Pressure<br>Multiplier | Sound<br>Multiplier | Pressure<br>Multiplier | Sound<br>Multiplier |
| 0,5                    | Pressure Drop [Pa]                     | -6 |                        |                     |                        |                     |                        |                     |                        |                     |
| 0,5                    | Sound Generation [dB(A)]               | -6 |                        |                     |                        |                     |                        |                     |                        |                     |
| 1                      | Pressure Drop [Pa]                     | -5 |                        |                     |                        |                     |                        |                     |                        |                     |
|                        | Sound Generation [dB(A)]               | -5 |                        |                     |                        |                     |                        |                     |                        |                     |
| 2                      | Pressure Drop [Pa]                     | -3 |                        |                     |                        |                     |                        |                     |                        |                     |
| -                      | Sound Generation [dB(A)]               | -2 |                        |                     |                        |                     |                        |                     |                        |                     |
| 3                      | Pressure Drop [Pa]                     | 0  |                        |                     |                        |                     |                        |                     |                        |                     |
| · ·                    | Sound Generation [dB(A)]               | 0  |                        |                     |                        |                     |                        |                     |                        |                     |
| 4                      | Pressure Drop [Pa]                     | 4  |                        |                     |                        |                     |                        |                     |                        |                     |
| •                      | Sound Generation [dB(A)]               | 2  |                        |                     |                        |                     |                        |                     |                        |                     |
| 5                      | Pressure Drop [Pa]                     | 10 |                        |                     |                        |                     |                        |                     |                        |                     |
| 3                      | Sound Generation [dB(A)]               | 4  |                        |                     |                        |                     |                        |                     |                        |                     |
| 6                      | Pressure Drop [Pa]                     | 17 | 1.2                    | 1.1                 | 2.0                    | 1.3                 | 2,9                    | 1.5                 | 3,9                    | 1.8                 |
| U                      | Sound Generation [dB(A)]               | 6  | 1,∠                    |                     | ≥,U                    | 1,3                 | 2,9                    | 1,5                 | 3,3                    | 1,8                 |
| 7                      | Pressure Drop [Pa]                     | 25 |                        |                     |                        |                     |                        |                     |                        |                     |
| ,                      | Sound Generation [dB(A)]               | 9  |                        |                     |                        |                     |                        |                     |                        |                     |
| 8                      | Pressure Drop [Pa]                     | 35 |                        |                     |                        |                     |                        |                     |                        |                     |
| 0                      | Sound Generation [dB(A)]               | 11 |                        |                     |                        |                     |                        |                     |                        |                     |
| 9                      | Pressure Drop [Pa]                     | 46 |                        |                     |                        |                     |                        |                     |                        |                     |
| 3                      | Sound Generation [dB(A)]               | 13 |                        |                     |                        |                     |                        |                     |                        |                     |
| 10                     | Pressure Drop [Pa]                     | 60 | -                      |                     |                        |                     |                        |                     |                        |                     |
| 10                     | Sound Generation [dB(A)]               | 15 |                        |                     |                        |                     |                        |                     |                        |                     |
| 11                     | Pressure Drop [Pa]                     | 75 |                        |                     |                        |                     |                        |                     |                        |                     |
| 11                     | Sound Generation [dB(A)]               | 18 |                        |                     |                        |                     |                        |                     |                        |                     |
| 10                     | Pressure Drop [Pa]                     | 92 |                        |                     |                        |                     |                        |                     |                        |                     |
| 12                     | Sound Generation [dB(A)]               | 20 | and the                | James               | voltler al             | anges, the          | n ross                 |                     | oourst.                |                     |

level created by the grill increase. Accordingly, the blowing or suction data in the selected grille must first be multiplied by the damper coefficient if there is a damper. Then the correct result is achieved by adding sound production and pressure loss values according to the channel speed.


## **MOUNTING TYPES**

#### 1. SCREWED SYSTEM




## **OPTIONAL SLIDE DAMPER**

It is suitable to use for blowing and suction. With the air flow straightener, homogeneous air distribution is provided in circular duct grilles.



### **SIZE PARAMETERS**

Recommended mounting method in case more than one circular duct grille is positioned side by side.



#### **PRODUCT SELECTION**

Example: 200 m³ / h blowing is expected from a circular duct vent connected to a circular duct with an air velocity of 6 m / s. A slide damper will be used. The diameter of the duct which the grille is connected will be 250 mm. The maximum pressure loss should be 100 Pa. Make the selection.

Solution: The necessary correction coefficients for 6 m / s duct air velocity are obtained from the Duct Flow and Damper Correction Table (Table 5).

With the damper in the 25% closed position:

Pressure factor 2

Sound multiplier 1.3

Values to be added for 6 m / s duct air velocity, Pressure drop +17 Pa

Sound generation is +6 dB (A).

From the exhaust data table (Table 3) the required values for a 200 m³ / h exhaust flow rate and the corresponding effective area are obtained. For 0.037 m² effective area, 33 Pa pressure loss, 2 m firing distance and 24 dB (A) sound pressure level and 1.5 m / s effective velocity values are obtained.

Corrected pressure drop and sound pressure level are calculated.

Pressure Drop = 33x2 + 17 = 83 Pa

Sound Pressure Level = 24x1.3 + 6 = 37.2 dB (A)

The selected dimension must meet the  $H \le R$  constraint, since the duct radius  $\{R\} = 100$  mm.

After confirming the conformity of the obtained values, the grille size corresponding to  $0.037 \, \text{m}^2$  effective area is selected as W (Width) 525 mm x H (Height) 100 mm on the Effective Area Table (Table 2).

# **PRODUCT ORDER CODES**

You can place your orders according to the following coding format.

DZM. < A > . < B > . < C > . < D > . < E > . < F > . < G >

| Α | Raw Material Type |                                      |
|---|-------------------|--------------------------------------|
|   | GAL               | Galvanized                           |
| В | Damper            |                                      |
|   | OD                | Slide Damper                         |
|   | DZ                | Without Damper                       |
| С | Mounting Type     |                                      |
|   | VD                | Screwed System                       |
|   | MD                | Without Mounting Hole                |
| D | Accessories       |                                      |
|   | CO                | Sponge Gasket                        |
|   | 00                | Without Accessories                  |
| E | Widt (W) (mm)     |                                      |
|   | 0000              | You can view it from Standard Sizes. |
| F | Height (H) (mm)   |                                      |
|   | 0000              | You can view it from Standard Sizes. |
| G | Paint             |                                      |
|   | 00                | Unpainted                            |
|   | S1                | Standard Paint - RAL 9010            |
|   | S2                | Standard Paint - RAL 9016            |
|   | XX                | Special Paint                        |

 $\textbf{Sample Codding;} \ \mathsf{DZM.GAL.DZ.} 00.0600.0150.S1$ 

| NOTES |                 |                |  |
|-------|-----------------|----------------|--|
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       | iklimlendirme i |                |  |
|       |                 | TIVAG OTOTEMIC |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |
|       |                 |                |  |

| NOTES |               |              |  |
|-------|---------------|--------------|--|
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       | İKLİMLENDİRME | HVAU SYSTEMS |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |







Tel.: +90 216 250 55 45 | Fax:+90 216 250 55 56

#### **Ankara Sales Office**

Armada Alışveriş ve İş Merkezi Eskişehir Yolu No:6 A Blok Kat:11 Ofis:1104 06520 Söğütözü, Yenimahalle, Ankara/TURKEY Tel.: +90 312 295 62 06 | Fax: +90 533 441 68 23

# **Antalya Sales Office**

Yenigün Mah. Mevlana Sok. No: 54, Midtown Plaza, B Blok, Kat: 5/26 Muratpaşa, Antalya/TURKEY Tel.: +90 242 505 87 77

## **Adana Sales Office**

Mimar Selim Rustem İş Merkezi, Atatürk Cad. No: 18 Seyhan, Adana/TURKEY Tel: +90 322 999 7326 | Fax: +90 322 999 7301













**ACB**Variable Air Volume Device



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in Istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











- ACB Variable Air Volume Control Device, contains an averaging airflow measurement probe, airflow controller and actuator.

  Airflow is controlled based on actual flow measurement by changing the damper blade position.
- € It is used in circular ducts to control air flow in projects with special requirements such as comfort and hygiene. With variable air flow VAV systems, it provides energy savings of up to 50% in the energy consumed by the fan motor.
- The airflow set point can be modified between minimum and maximum settings by, e.g., a room controller with an analogue signal (0...10 or 2...10 VDC).
- All VAV devices produced are calibrated in the VAV laboratory according to the flow rates specified in the order and their leakage is tested according to DIN EN 1751. In this laboratory, calibration is completed by testing one-to-one field conditions with 7 measuring stations, each with different diameter and nominal flow.
- The tightness of the control damper in closed position conformed to standard EN1751 class 3 and casing tightness to EN 1751 Class B.
- © Duct connection includes airtight rubber gaskets.
- € ACB complies with EN 1946/4 and VDI 6022 hygiene standards.
- For supply and exhaust installations
- Maximum differential pressure over the damper of 1000 Pa
- © Operating range: ambient temperature of 0 to 50 °C
- Ambient relative humidity < 95%, non-condensing
- Operates at flow rates between 28 m³/h and 5372 m³/h
- ACB has a compact structure. It works efficiently with low pressure loss thanks to aerodynamic blade design.

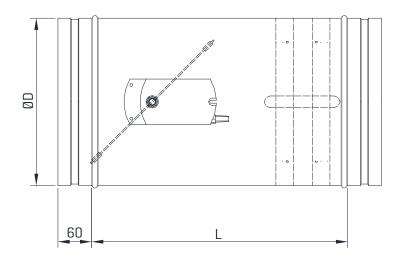
#### **MATERIAL**

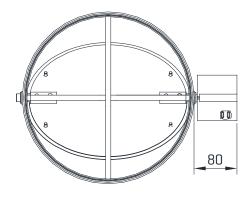
- © Galvanized steel casing and damper blade
- Zinc coated steel shaft
- Plastic bearings
- Neoprene blade gaskets
- € EPDM rubber duct gaskets
- Aluminium measurement probe

#### **ACCESORY**

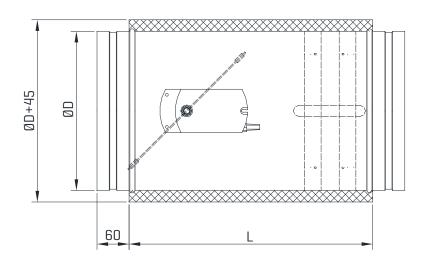
- Acoustic Insulation: In order to fulfill the acoustic comfort conditions in the selected product, it is insulated with an optional 19 mm thick foamed rubber. Rubber insulation is covered with galvanized sheet.
- ACQ Electrical Heater: When an additional heater power is needed for the supply air, an Electric Heater can be added to the output of the ACB.
- SGSS\_K Circular Silencer: Duct type silencer option is available to meet comfort conditions.




ACQ - Electric Heater




GSS\_K - Circular Silencer


## **STANDARD DIMENSIONS**

## **ACB WITHOUT INSULATION**





## **ACB WITH INSULATION**



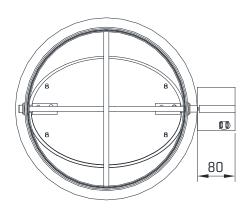



Table 1. Quick Selection

| TVDF (D., Diomester [mans]) | Vmin   | V <sub>max</sub> | L   |
|-----------------------------|--------|------------------|-----|
| TYPE (By Diameter [mm])     | [m³/h] | [m³/h]           | mm  |
| ACB-100                     | 28     | 266              | 345 |
| ACB-125                     | 44     | 428              | 325 |
| ACB-160                     | 72     | 705              | 330 |
| ACB-200                     | 113    | 1108             | 370 |
| ACB-250                     | 177    | 2086             | 420 |
| ACB-315                     | 281    | 3322             | 485 |
| ACB-355                     | 356    | 4226             | 525 |
| ACB-400                     | 452    | 5372             | 570 |

#### Note:

Vmin air speed of 1 m/s, Vnom values of air velocity 10 m/s refers to the nominal flow is to pass through a duct according to product size.

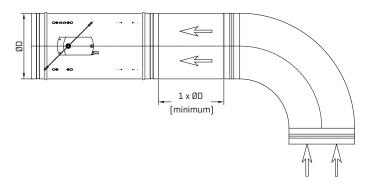
Vmax and Vmin values should be determined in the flow rate selection. The Vmin value can be selected between 0% and 100% of the Vnom value. The Vmax value can be chosen between 40% and 80% of the Vnom value. When Vmin and Vmax values are selected the same, the product will operate in constant flow [CAV] mode.

# **PERFORMANCE DATA**

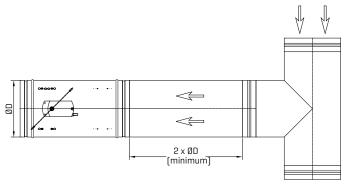
**Table 2.** Performance Data

| ACB - [W/O Insulation] |           | Air Regenerated Noise |                  |             | Case Radiated Noise |                                                           |             |      |           |      |      |      |      |      |      |
|------------------------|-----------|-----------------------|------------------|-------------|---------------------|-----------------------------------------------------------|-------------|------|-----------|------|------|------|------|------|------|
|                        | ACB - [Ir | nsulated]             |                  | Lpa [dB(A)] |                     |                                                           | LPR [dB(A)] |      |           |      |      |      |      |      |      |
| Nominal                | Velocity  | Flow<br>Rate          | Pressure<br>Drop |             |                     | B - [W/O Insulation] ACB - [W/O Insulation] ACB - [Insula |             |      | nsulated] |      |      |      |      |      |      |
| ØD                     | [s/w]     | [m³/h]                | [Pa]             | 100         | 200                 | 400                                                       | 800         | 100  | 200       | 400  | 800  | 100  | 200  | 400  | 800  |
|                        |           |                       |                  | [Pa]        | [Pa]                | [Pa]                                                      | [Pa]        | [Pa] | [Pa]      | [Pa] | [Pa] | [Pa] | [Pa] | [Pa] | [Pa] |
|                        | 2         | 53                    | 2                | 30          | 38                  | 45                                                        | 50          | <15  | 20        | 28   | 32   | <15  | <15  | <15  | 18   |
|                        | 4         | 106                   | 10               | 34          | 40                  | 47                                                        | 52          | <15  | 22        | 29   | 34   | <15  | <15  | <15  | 21   |
| 100                    | 6         | 160                   | 23               | 36          | 43                  | 49                                                        | 54          | 19   | 24        | 31   | 35   | <15  | <15  | 19   | 23   |
|                        | 8         | 213                   | 41               | 39          | 45                  | 51                                                        | 57          | 21   | 27        | 33   | 38   | <15  | <15  | 22   | 27   |
|                        | 10        | 266                   | 65               | 42          | 47                  | 54                                                        | 59          | 25   | 29        | 36   | 41   | <15  | 18   | 24   | 30   |
|                        | 2         | 86                    | 2                | 30          | 38                  | 45                                                        | 50          | <15  | 20        | 28   | 33   | <15  | <15  | <15  | 20   |
|                        | 4         | 172                   | 10               | 35          | 41                  | 48                                                        | 53          | <15  | 23        | 31   | 36   | <15  | <15  | 18   | 23   |
| 125                    | 6         | 258                   | 22               | 38          | 43                  | 51                                                        | 56          | 20   | 25        | 33   | 38   | <15  | <15  | 21   | 26   |
|                        | 8         | 344                   | 39               | 41          | 46                  | 53                                                        | 58          | 24   | 28        | 35   | 41   | <15  | <15  | 24   | 29   |
|                        | 10        | 428                   | 61               | 44          | 49                  | 55                                                        | 60          | 26   | 31        | 37   | 43   | <15  | 19   | 26   | 31   |
|                        | 2         | 141                   | 2                | 28          | 40                  | 46                                                        | 52          | <15  | 24        | 30   | 36   | <15  | <15  | <15  | 20   |
|                        | 4         | 282                   | 10               | 33          | 43                  | 48                                                        | 55          | <15  | 26        | 32   | 38   | <15  | <15  | 17   | 23   |
| 160                    | 6         | 423                   | 22               | 37          | 47                  | 51                                                        | 57          | 20   | 31        | 34   | 41   | <15  | 21   | 22   | 28   |
|                        | 8         | 564                   | 39               | 40          | 49                  | 53                                                        | 60          | 23   | 33        | 36   | 44   | <15  | 18   | 24   | 31   |
|                        | 10        | 705                   | 61               | 44          | 51                  | 55                                                        | 62          | 27   | 35        | 38   | 46   | <15  | 20   | 26   | 33   |
|                        | 2         | 222                   | 2                | 29          | 38                  | 44                                                        | 54          | <15  | 22        | 29   | 39   | <15  | <15  | <15  | 26   |
|                        | 4         | 444                   | 9                | 34          | 42                  | 49                                                        | 56          | 17   | 27        | 33   | 41   | <15  | <15  | 21   | 28   |
| 200                    | 6         | 666                   | 19               | 38          | 45                  | 51                                                        | 58          | 22   | 30        | 36   | 43   | <15  | 18   | 24   | 31   |
|                        | 8         | 888                   | 35               | 41          | 48                  | 54                                                        | 61          | 25   | 33        | 38   | 45   | <15  | 21   | 26   | 33   |
|                        | 10        | 1108                  | 54               | 45          | 51                  | 56                                                        | 63          | 29   | 35        | 40   | 48   | <15  | 23   | 29   | 35   |
|                        | 2         | 348                   | 2                | 28          | 37                  | 46                                                        | 52          | <15  | 21        | 30   | 39   | <15  | <15  | <15  | 26   |
|                        | 4         | 696                   | 9                | 35          | 42                  | 49                                                        | 57          | 17   | 27        | 33   | 41   | <15  | <15  | 21   | 28   |
| 250                    | 6         | 1044                  | 18               | 38          | 46                  | 52                                                        | 59          | 22   | 30        | 36   | 43   | <15  | 18   | 24   | 31   |
|                        | 8         | 1392                  | 33               | 41          | 49                  | 54                                                        | 61          | 25   | 33        | 38   | 45   | <15  | 21   | 26   | 33   |
|                        | 10        | 1740                  | 51               | 45          | 51                  | 56                                                        | 63          | 29   | 35        | 40   | 48   | <15  | 23   | 29   | 35   |
|                        | 12        | 2086                  | 53               | 48          | 53                  | 58                                                        | 64          | 32   | 36        | 42   | 48   | 22   | 28   | 33   | 39   |
|                        | 2         | 554                   | 2                | 29          | 37                  | 46                                                        | 52          | <15  | 21        | 31   | 37   | <15  | <15  | 20   | 27   |
|                        | 4         | 1108                  | 9                | 36          | 44                  | 50                                                        | 56          | 19   | 27        | 34   | 40   | <15  | 19   | 25   | 31   |
| 315                    | 6         | 1662                  | 17               | 40          | 47                  | 54                                                        | 59          | 24   | 31        | 37   | 43   | <15  | 22   | 29   | 34   |
|                        | 8         | 2216                  | 29               | 44          | 50                  | 56                                                        | 62          | 28   | 33        | 40   | 45   | 19   | 25   | 31   | 37   |
|                        | 10        | 2770                  | 46               | 48          | 53                  | 58                                                        | 64          | 32   | 36        | 42   | 48   | 22   | 28   | 33   | 39   |
|                        | 12        | 3322                  | 54               | 52          | 57                  | 59                                                        | 66          | 34   | 39        | 45   | 50   | 24   | 30   | 36   | 43   |
|                        | 2         | 704                   | 3                | 28          | 37                  | 44                                                        | 53          | <15  | 23        | 31   | 40   | <15  | <15  | 20   | 29   |
|                        | 4         | 1408                  | 14               | 36          | 45                  | 49                                                        | 56          | 21   | 30        | 35   | 43   | <15  | 20   | 24   | 32   |
| 355                    | 6         | 2112                  | 15               | 39          | 47                  | 53                                                        | 60          | 24   | 33        | 39   | 46   | 15   | 22   | 29   | 35   |
|                        | 8         | 2816                  | 26               | 43          | 50                  | 56                                                        | 63          | 28   | 36        | 42   | 49   | 18   | 26   | 31   | 38   |
|                        | 10        | 3520                  | 41               | 46          | 53                  | 59                                                        | 66          | 32   | 39        | 44   | 52   | 22   | 29   | 34   | 41   |
|                        | 12        | 4226                  | 54               | 52          | 56                  | 60                                                        | 68          | 34   | 41        | 45   | 54   | 24   | 30   | 36   | 43   |
|                        | 2         | 895                   | 2                | 29          | 36                  | 46                                                        | 55          | <15  | 22        | 34   | 41   | <15  | <15  | 22   | 31   |
|                        | 4         | 1790                  | 10               | 37          | 44                  | 50                                                        | 57          | 22   | 30        | 36   | 43   | <15  | 21   | 26   | 34   |
| 400                    | 6         | 2685                  | 14               | 40          | 47                  | 54                                                        | 60          | 26   | 33        | 39   | 46   | 17   | 23   | 30   | 37   |
|                        | 8         | 3580                  | 25               | 45          | 50                  | 56                                                        | 63          | 30   | 36        | 41   | 49   | 21   | 27   | 32   | 39   |
|                        | 10        | 4475                  | 38               | 48          | 54                  | 59                                                        | 67          | 33   | 39        | 45   | 53   | 24   | 30   | 36   | 43   |
|                        | 12        | 5372                  | 54               | 52          | 56                  | 60                                                        | 68          | 34   | 41        | 45   | 54   | 24   | 30   | 36   | 43   |

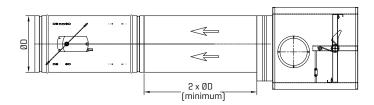
# **FLOW AREA**


**Table 3.** Flow Area By Dimensions

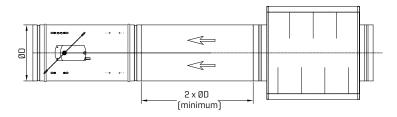
| Flow Area Table  |         | TYPE (By Diameter [mm]) |          |          |          |          |          |         |  |  |
|------------------|---------|-------------------------|----------|----------|----------|----------|----------|---------|--|--|
| I low Alea lable | ACB-100 | ACB- 125                | ACB- 160 | ACB- 200 | ACB- 250 | ACB- 315 | ACB- 355 | ACB-400 |  |  |
| Flow Area [m²]   | 0,008   | 0,012                   | 0,020    | 0,031    | 0,049    | 0,078    | 0,099    | 0,126   |  |  |


## **INSTALLATION**

It is installed by considering the air flow direction arrow on the ACB. For the differential pressure sensors to function correctly, the following distance rules must be observed. For duct connections such as elbows, branches, tee connections and reductions must conform to EN 13180 design.


#### A. AFTER BENDS




### **B. AFTER BRANCHES**



#### **C. AFTER FIRE DAMPERS**



## **D. AFTER SILENCERS**



**Tablo 4.** Minimum Duct Length Table

| Connection                                                          | Minimum Duct Length |
|---------------------------------------------------------------------|---------------------|
| Elbow                                                               | 1xØD                |
| Other duct equipment (T connection, reduction etc.  duct equipment) | 2x <b>ØD</b>        |
| Fire Damper                                                         | 2x <b>ØD</b>        |
| Silencer                                                            | 2x <b>ØD</b>        |

## **VAV COMPACT CONTROLLERS**

VAV controllers are equipped as standard with actuators with analog setpoint and feedback signals in DC 2 V... 10 V or DC 0 V... 10 V mode.

MP-BUS, MODBUS and BACnet communication options are available in the control devices.

Control devices are calibrated and adjusted at the factory to the desired flow rate and Vmin Vmax value with ZTH-EU and Belimo PC Tool.

**Table 5.** VAV Controller Information Table

| Order Code | Belimo Motor Code                       | Flow Volume<br>Adjustment<br>Analog input | Flow Volume<br>Adjustment via<br>BUS Com. | Controller<br>Parameters<br>Setup <sup>(3)</sup> | Hard Wired<br>Override               | Feedback<br>Signal Type                     | Feedback<br>Values <sup>(2)</sup>            | BUS Communicated<br>Variables                                                                                                           | Power<br>Supply     | Operating<br>Temperature<br>[°C] |
|------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|
| S71<br>S70 | LMV-D3-MP (5 Nm)<br>NMV-D3-MP (10 Nm)   |                                           | MP-BUS                                    | ZTH-EU,<br>PC TOOL,<br>NFC (Android),<br>MP-BUS  |                                      | DC 010 V,<br>DC 210 V,<br>MP-BUS            |                                              | Read/Write: Setpoint, Vmin, Vmax, Open, Close  Read: Actual Volume, Damper Angle, Actual Pressure, Serial Number, Fault, Alarm Messages |                     |                                  |
| S72        | LMV-D3-MF (5 Nm)                        | DC 010 V,<br>DC 210 V                     | _                                         | ZTH-EU,<br>PC TOOL                               | Open <sup>(1)</sup> Close Vmin, Vmax | DC 010 V,                                   | Actual Volume, Damper Angle, Actual Pressure | _                                                                                                                                       | AC 24 V,<br>DC 24 V | 0+50 °C                          |
| S71<br>S86 | LMV-D3-M0D (5 Nm)<br>NMV-D3-M0D (10 Nm) |                                           | MODBUS,<br>BACnet,<br>MP-BUS              | ZTH-EU,<br>PC TOOL,<br>MODBUS,<br>MP-BUS         |                                      | DC 010 V,<br>DC 210 V,<br>MODBUS,<br>MP-BUS |                                              | Read/Write: Setpoint, Vmin, Vmax, Open, Close  Read: Actual Volume, Damper Angle, Actual Pressure, Serial Number, Fault, Alarm Messages |                     |                                  |

#### Note:

- 1) Available on AC 24 supply only.
- 2] Output is analog. Therefore, only one feedback value can be selected.
- 3) Control units are not provided as accessories.

# **VAV COMPACT CONTROL DEVICE ELECTRIC CONNECTION**

# **S72: LMV-D3-MF (STANDARD PRODUCTION)**



| No. | Designation | Wire Colour | Function                                    |
|-----|-------------|-------------|---------------------------------------------|
| 1   | <u></u> Τ-  | Black       | AC/DC 24 V Supply                           |
| 2   | ~+          | Red         | дольо Еч у оцрргу                           |
| 3   | ٩Y          | White       | Referance Signal VAV / CAV                  |
| 5   | ▶U          | Orange      | -Actual Value Signal<br>-Tool Communication |

# **S71: LMV-D3-MP & S70: NMV-D3-MP**



| No. | Designation | Wire Colour | Function                                   |
|-----|-------------|-------------|--------------------------------------------|
| 1   |             | Black       | AC/DC 24 V Supply                          |
| 2   | ~+          | Red         | логво Ету оцрыу                            |
| 3   | ٩Y          | White       | Referance Signal VAV / CAV                 |
| 5   | ٠U          | Orange      | -Actual Value Signal<br>-MP-Bus Connection |

# **S73: LMV-D3-MOD & S86: NMV-D3-MOD**


| No. | Designation | Wire Colour | Function                |
|-----|-------------|-------------|-------------------------|
| 1   |             | Black       | AC/DC 24 V Supply       |
| 2   | ~+          | Red         | логос 24 у Зарріу       |
| 3   |             |             |                         |
| 5   | ►MFT        | Orange      | MP Connection           |
| 6   | D-          | Pink        | BACnet / Modbus (RS485) |
| 7   | D+          | Gray        | Bronder modela (No 100) |

# **OPTIONAL ADAPTIVE VAV CONTROL SYSTEM**

If desired, a product option is available with a fast response VAV servomotor, static pressure sensor and control platform. It provides the adaptive control of the ambient air flow by providing an on-off speed control independent of the duct pressure in 2.5 seconds.

**Table 6.** VRP-M Regulator Information Table

| VRP-M Controller                                   |                                                                                    |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| Nominal Voltage                                    | 24 V AC, 50/60 Hz<br>24 V DC                                                       |  |  |  |
| Power Supply                                       | 1,1 W (Without Servomotor,<br>with VFP 300)                                        |  |  |  |
| Reference Signal w (terminal 3)<br>Range: VminVmax | Input Impedance > 200 kΩ - DC 010 / 210 V or - 020 / 420 mA (with 500 Ω resistance |  |  |  |
| Actual Value                                       | 010 / 210 DC, maximum 5 mA                                                         |  |  |  |
| Degree of Protection                               | IP 42                                                                              |  |  |  |
| Operating Temperature                              | 0+50°C                                                                             |  |  |  |
| EMC                                                | CE 2004/108/EC                                                                     |  |  |  |
| Ambient Humidity                                   | 595% r.h                                                                           |  |  |  |



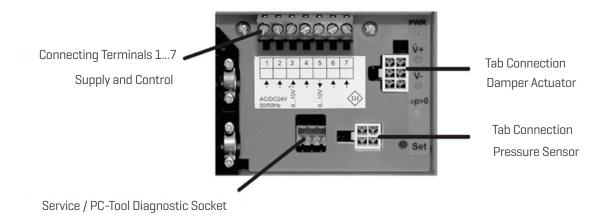
VRP-M

**Table 7.** VFP-300 Static Differential Pressure Transducer Information Table

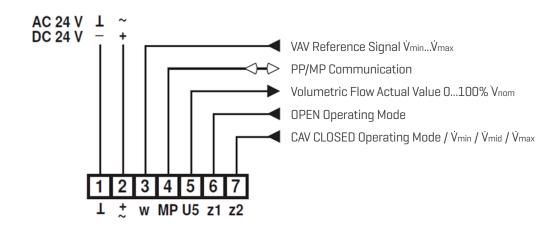
| VFP-300 Static Differe         | ential Pressure Sensor        |
|--------------------------------|-------------------------------|
| Supply Connection              | 15 V DC (Suitable with VRP-M) |
| Measuring Ranges               | 0300 Pa                       |
| Output Signal                  | 010 V DC                      |
| Connection for Pressure Losses | Internal Diameter Ø46 mm      |
| Protection Class               | III Safety Extra-Low Voltage  |
| Degree of Protection           | IP42                          |
| Operating Temperature          | 0+50°C                        |
| EMC                            | CE 2004/108/EC                |



VRP-300


Table 8. LMQ24A-SRV-ST & LMQ24A-SRV-ST Servomotor Information Table

| LMQ24A-SRV-                 | ST Servomotor                  |
|-----------------------------|--------------------------------|
| Supply with<br>VRP-M        | 24 V AC, 50/60 Hz<br>24 V DC   |
| Power Operating Consumption | 13 W                           |
| Protection Class            | III (Safety Extra-Low Voltage) |
| Torque                      | 4 Nm                           |
| Speed                       | 2,5 s / 90°                    |
| Degree of Protection        | IP54                           |
| Operating Temperature       | 0+50°C                         |
| EMC                         | CE 89/336/EEC                  |
| Ambient Humidity            | 595% r.h.                      |
| Maintenance                 | Maintenance Free               |


LMQ24A-SRV-ST NMQ24A-SRV-ST

# ADAPTIVE VAV CONTROL SYSTEM ELECTRIC CONNECTION

# **FRONT PANEL**



# FRONT PANEL CONNECTION TERMINALS FUNCTIONS



#### **PRODUCT SELECTION**

The maximum air flow rate of the space is known as Vmax. Vmax volume flow rate can be selected between maximum 80% and 40% of the nominal volume flow rate of the damper. Vmin flow rate can be selected as 30% of the nominal air flow rate of the damper. In 2-10V controller selection, the damper operates at a flow rate of Vmin at 2V and below. Between 0-10V, the damper has the feature of completely closing. If Vmax and Vmin are selected at the same value, the damper will operate in CAV [constant flow rate setting] mode.

**Example:** The total air flow of a zone is determined as 15000 m<sup>3</sup> / h. 5 VAV devices for the room will be installed in the supply duct. Select your product.

The maximum supply flow rate for each VAV to be used is calculated as  $15000/5 = 3000 \, \text{m}^3$  / h. Since Vmax = 80% Vnom and Vmax =  $3000 \, \text{m}^3$  / h, it is calculated as Vnom =  $3750 \, \text{m}^3$ /h from the formula. Vmin can be 30% of the Vnom value and can be selected Vmin =  $1125 \, \text{m}^3$ /h. According to the values of Vmin and Vmax, the appropriate size is selected from the Table 2. Quick Selection table as Vnom =  $4226 \, \text{m}^3$ /h and duct dimension is  $0355 \, \text{mm}$ .

For maximum calibrated flowrate of VAV is 3000 m<sup>3</sup>/h and diameter Ø355 mm, the performance data can be obtained from Table 2. Performance Data. According to the table, values can be interpolated. Example results shown below.

Pressure drop = 30 Pa

Air Regenerated Noise: 44 dB[A] [100 Pa], 64 dB[A] [800 Pa]

Case Radiated Noise Without Insulation: 29 dB[A] [100 Pa], 50 dB[A] [800 Pa]

Case Radiated Noise With Insulation: 19 dB(A) (100 Pa), 39 dB(A) (800 Pa)

#### **Actuator Selection**

According to the building automation system, the desired motor is selected from Table 5. VAV Controller Information Table. If the system is desired to be fast reacting under special conditions, adaptive vav control system is preferred. For electric connection information, see the section "Adaptive Vav Control System Electric Connection".

# **ORDER CODE**

# ACB.< A > . < B > . < C > . < D > . < E > . < F > . < G >

| Α | Material Type                                                |                             |  |  |  |  |
|---|--------------------------------------------------------------|-----------------------------|--|--|--|--|
|   | GAL                                                          | Galvanized                  |  |  |  |  |
|   | PAS                                                          | Stainless Steel             |  |  |  |  |
| В | Flow Type                                                    |                             |  |  |  |  |
|   | E                                                            | Exhaust                     |  |  |  |  |
|   | U                                                            | Supply                      |  |  |  |  |
| C | Mechanism                                                    |                             |  |  |  |  |
|   | S70                                                          | NMV-D3-MP                   |  |  |  |  |
|   | S71                                                          | LMV-D3-MP                   |  |  |  |  |
|   | S72                                                          | LMV-D3-MF                   |  |  |  |  |
|   | S73                                                          | LMV-D3-MOD                  |  |  |  |  |
|   | S74                                                          | LMV-D3-LON                  |  |  |  |  |
|   | S86                                                          | NMV-D3-MOD                  |  |  |  |  |
|   | S97                                                          | Adaptive VAV Control System |  |  |  |  |
| D | Installation                                                 |                             |  |  |  |  |
|   | KG                                                           | Duct Type                   |  |  |  |  |
| E | Insulation                                                   |                             |  |  |  |  |
|   | 00                                                           | Without Insulation          |  |  |  |  |
|   | 04                                                           | With Insulation             |  |  |  |  |
| G | Dimension [ØD]                                               |                             |  |  |  |  |
|   | 125 mm - 160 mm - 200 mm - 250 mm - 315 mm - 355 mm - 400 mm |                             |  |  |  |  |

**Example;** ACB.GAL.E.S72.KG.00.0200

| NOTES |                             |  |
|-------|-----------------------------|--|
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       | IKLIMLENDIRME   HVAC SYSTEM |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |
|       |                             |  |







## Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

## **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56













# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 6 major groups as Air Handling Units, Rooftop Units, Heat/Energy Recovery Units, Air Purifiers, Air Distribution & Management Products and Kitchen Ventilation Equipments are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 32.000 sqm in which 17.500 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in Istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.











#### **GENERAL FEATURES**

- UDS Circular Displacement Flow Unit provides maximum comfort for residents with low flow rates in large spaces such as hotel lobbies, factory areas, atriums and airports.
- It is recommended to use low speed units in cooling applications between -1°C and -6°C.
- Provides 360° air supply in the area where it is positioned, thanks to its circular feeding option.
- The velocity of the air leaving the unit is low. Thus, the fresh air cools the environment without disturbing the residents.
- Effectively removes the particles released by various pollutants from the space together with the heated air.
- TSE ISO EN 14644, DIN 1946/4, DIN 24194 and DIN 25414 hygiene quality standards.



#### **MATERIAL**

UDS – Circular Displacement Flow Unit is shaped from galvanized sheet metal. It is coated with electrostatic powder paint with high corrosion resistance. It can also be produced as stainless in line with customer preferences. There is a rubber gasket on the throat of the UDS that prevents air leakage.

### **DIMENSIONS**

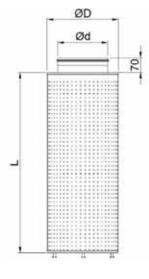



Table 1. Dimensions

| UDS | Ød [mm] | ØD [mm] | L[mm]       |
|-----|---------|---------|-------------|
| 200 | 199     | 286     |             |
| 250 | 249     | 336     | Between     |
| 315 | 314     | 406     | 200 mm      |
| 400 | 399     | 506     | and 1200 mm |
| 500 | 499     | 636     |             |
| 630 | 629     | 808     |             |

# **PERFORMANCE DATA**

Table 2. Performance

| Flow rate |                                                                 |            |           | Ød [       | mm]        |            |             |
|-----------|-----------------------------------------------------------------|------------|-----------|------------|------------|------------|-------------|
| [m³/h]    | L = 1000mm                                                      | 200        | 250       | 315        | 400        | 500        | 630         |
|           | Velocity [m/s]                                                  | 0.04       | 0.04      | 0.03       | 0.02       | 0.02       | 0.01        |
| 100       | Pressure Drop [Pa]                                              | 0.2        | 0.1       | <0.1       | <0.1       | <0.1       | < 0.1       |
| 100       | Sound Power Level [dB(A)]                                       | <15        | <15       | <15        | <15        | <15        | <15         |
|           | Throw Distance [m]                                              | 0.4        | 0.3       | 0.3        | 0.3        | 0.2        | 0.2         |
|           | Hız [m/s]                                                       | 0.07       | 0.05      | 0.04       | 0.03       | 0.03       | 0.02        |
| 150       | Pressure Drop [Pa]                                              | 0.4        | 0.3       | 0.2        | 0.1        | <0.1       | <0.1        |
|           | Sound Power Level [dB(A)]                                       | <15        | <15       | <15        | <15        | <15        | <15         |
|           | Throw Distance [m]                                              | 0.5        | 0.5       | 0.4        | 0.4        | 0.3        | 0.3         |
|           | Velocity [m/s]                                                  | 0.09       | 0.07      | 0.06       | 0.04       | 0.04       | 0.03        |
| 200       | Pressure Drop [Pa] Sound Power Level [dB[A]]                    | <15        | 1<br><15  | 0.3<br><15 | 0.2<br><15 | 0.1<br><15 | <0.1<br><15 |
|           | Throw Distance [m]                                              | 0.6        | 0.6       | 0.5        | 0.4        | 0.4        | 0.4         |
|           | Velocity [m/s]                                                  | 0.11       | 0.09      | 0.07       | 0.06       | 0.04       | 0.04        |
|           | Pressure Drop [Pa]                                              | 1          | 1         | 1          | 0.3        | 0.04       | 0.04        |
| 250       | Sound Power Level [dB(A)]                                       | <15        | <15       | <15        | <15        | <15        | <15         |
|           | Throw Distance [m]                                              | 0.8        | 0.7       | 0.6        | 0.5        | 0.5        | 0.4         |
|           | Velocity [m/s]                                                  | 0.13       | 0.11      | 0.08       | 0.07       | 0.05       | 0.04        |
| 000       | Pressure Drop [Pa]                                              | 2          | 1         | 1          | 0.5        | 0.3        | 0.2         |
| 300       | Sound Power Level [dB(A)]                                       | <15        | <15       | <15        | <15        | <15        | <15         |
|           | Throw Distance [m]                                              | 0.9        | 0.8       | 0.7        | 0.6        | 0.6        | 0.5         |
|           | Velocity [m/s]                                                  | 0.18       | 0.14      | 0.11       | 0.09       | 0.07       | 0.06        |
| 400       | Pressure Drop [Pa]                                              | 3          | 2         | 1          | 1          | 1          | 0           |
| 100       | Sound Power Level [dB(A)]                                       | <15        | <15       | <15        | <15        | <15        | <15         |
|           | Throw Distance [m]                                              | 1.1        | 1.0       | 0.9        | 0.8        | 0.7        | 0.6         |
|           | Velocity [m/s]                                                  | 0.22       | 0.18      | 0.14       | 0.11       | 0.09       | 0.07        |
| 500       | Pressure Drop [Pa]                                              | 5          | 3         | 2          | 1          | 1          | 1           |
|           | Sound Power Level [dB(A)]                                       | <15        | <15       | <15        | <15        | <15        | <15         |
|           | Throw Distance [m]                                              | 1.4        | 1.2       | 1.1        | 1.0        | 0.8        | 0.8         |
|           | Velocity [m/s]                                                  | 0.27<br>7  | 0.21<br>5 | 0.17<br>3  | 0.13<br>2  | 0.11       | 0.08        |
| 600       | Pressure Drop [Pa] Sound Power Level [dB[A]]                    | 18         | <15       | <15        | <15        | <15        | <15         |
|           | Throw Distance [m]                                              | 1.6        | 1.4       | 1.3        | 1.1        | 1.0        | 0.9         |
|           | Velocity [m/s]                                                  | 0.35       | 0.28      | 0.22       | 0.18       | 0.14       | 0.11        |
|           | Pressure Drop [Pa]                                              | 13         | 8         | 5          | 3          | 2          | 1           |
| 800       | Sound Power Level [dB(A)]                                       | 27         | 20        | <15        | <15        | <15        | <15         |
|           | Throw Distance [m]                                              | 2.0        | 1.8       | 1.6        | 1.4        | 1.2        | 1.1         |
|           | Velocity [m/s]                                                  | 0.44       | 0.35      | 0.28       | 0.22       | 0.18       | 0.14        |
| 1000      | Pressure Drop [Pa]                                              | 20         | 13        | 8          | 5          | 3          | 2           |
| 1000      | Sound Power Level [dB(A)]                                       | 34         | 27        | 20         | <15        | <15        | <15         |
|           | Throw Distance [m]                                              | 2.4        | 2.1       | 1.9        | 1.7        | 1.5        | 1.3         |
|           | Velocity [m/s]                                                  | 0.53       | 0.42      | 0.34       | 0.27       | 0.21       | 0.17        |
| 1200      | Pressure Drop [Pa]                                              | 28         | 18        | 12         | 7          | 5          | 3           |
|           | Sound Power Level [dB(A)]                                       | 39         | 33        | 26         | 18         | <15        | <15         |
|           | Throw Distance [m]                                              | 2.8        | 2.5       | 2.2        | 2.0        | 1.7        | 1.5         |
|           | Velocity [m/s]                                                  | 0.62<br>38 | 0.50      | 0.39       | 0.31       | 0.25       | 0.20<br>4   |
| 1400      | Pressure Drop [Pa] Sound Power Level [dB[A]]                    | 44         | 25<br>37  | 16<br>30   | 10<br>23   | 6<br>16    | <15         |
|           | Throw Distance [m]                                              | 3.2        | 2.8       | 2.5        | 2.2        | 2.0        | 1.8         |
|           | Velocity [m/s]                                                  | 0.71       | 0.57      | 0.45       | 0.35       | 0.28       | 0.22        |
| 46        | Pressure Drop [Pa]                                              | 50         | 33        | 21         | 13         | 8          | 5           |
| 1600      | Sound Power Level [dB(A)]                                       | 48         | 41        | 34         | 27         | 20         | <15         |
|           | Throw Distance [m]                                              | 3.5        | 3.1       | 2.8        | 2.5        | 2.2        | 2.0         |
|           | Velocity [m/s]                                                  | 0.80       | 0.64      | 0.51       | 0.40       | 0.32       | 0.25        |
| 1800      | Pressure Drop [Pa]                                              | 64         | 41        | 26         | 17         | 11         | 7           |
| 1000      | Sound Power Level [dB(A)]                                       | 52         | 45        | 38         | 31         | 24         | 17          |
|           | Throw Distance [m]                                              | 3.9        | 3.5       | 3.1        | 2.7        | 2.4        | 2.2         |
|           | Velocity [m/s]                                                  | 0.88       | 0.71      | 0.56       | 0.44       | 0.35       | 0.28        |
| 2000      | Pressure Drop [Pa]                                              | 79         | 51        | 33         | 20         | 13         | 8           |
|           | Sound Power Level [dB(A)]                                       | 55         | 48        | 41         | 34         | 27         | 20          |
|           | Throw Distance [m]                                              | 4.2        | 3.8       | 3.4        | 3.0        | 2.6        | 2.4         |
|           | Velocity [m/s]                                                  | 1.11       | 0.88      | 0.70       | 0.55       | 0.44       | 0.35        |
| 2500      | Pressure Drop [Pa]                                              | 123        | 80        | 51         | 32         | 21         | 13          |
|           | Sound Power Level [dB(A)] Throw Distance [m]                    | 62<br>5.1  | 55<br>4.5 | 48<br>4.0  | 41<br>3.6  | 34<br>3.2  | 27<br>2.8   |
|           | Velocity [m/s]                                                  | 1.33       | 1.06      | 0.84       | 0.66       | 0.53       | 0.42        |
|           |                                                                 | 177        | 115       | 73         | 46         | 30         | 19          |
|           | Pressure Dron [Pa]                                              |            |           |            |            |            | 10          |
| 3000      | Pressure Drop [Pa] Sound Power Level [dB[A]]                    |            |           |            | 46         | 39         | 32          |
| 3000      | Pressure Drop [Pa] Sound Power Level [dB(A)] Throw Distance [m] | 67<br>5.9  | 60<br>5.3 | 53<br>4.7  | 46<br>4.1  | 39<br>3.7  | 32<br>3.3   |

**Table 3.** Correction Factors

|       |          | Correctio | n Factor |       |
|-------|----------|-----------|----------|-------|
| L[mm] | Velocity | Pressure  | Sound    | Throw |
| 100   | 10       | 100       | 4        | 3.3   |
| 200   | 5        | 25        | 3.1      | 2.3   |
| 400   | 2.5      | 6.3       | 2.2      | 1.6   |
| 500   | 2.0      | 4         | 1.8      | 1.4   |
| 750   | 1.3      | 1.8       | 1.3      | 1.2   |
| 1000  | 1.0      | 1         | 1        | 1     |
| 1200  | 0.8      | 0.7       | 0.7      | 0.9   |

# **ORDER CODE**

You can place your orders according to the following coding format.

UDS. < A > . < B > . < C > . < D >

| Α | Material             |                           |
|---|----------------------|---------------------------|
|   | GAL                  | Galvanized                |
|   | PAS                  | Stainless Steel           |
| В | Dimension (Ød) [mm]  |                           |
|   | Ø200 - Ø250 - Ø315 - | Ø400 - Ø500 - Ø630        |
| С | Length (L) [mm]      |                           |
|   | 0000                 | Standard Dimensions       |
| D | Coating              |                           |
|   | 00                   | Without Color             |
|   | S1                   | Standard Color - RAL 9010 |
|   | S2                   | Standard Color - RAL 9016 |
|   | XX                   | Special Color             |

**Example:** UDS.GAL.0500.1200.S1

| NOTLAR |                      |             |     |
|--------|----------------------|-------------|-----|
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             | (R) |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        | <u>iklimlendirme</u> | HVAC SYSTEM | S   |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |
|        |                      |             |     |







#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56

















VKG
RECTANGULAR BACKDRAFT DAMPER



# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 180 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 55 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.







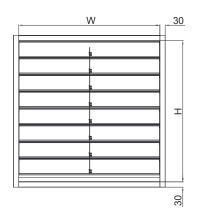


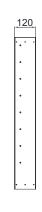


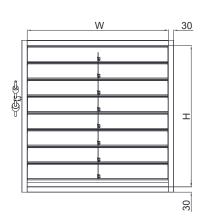
- VKG Rectangular Backdraft Damper opens with the air flow and pressure created by the operation of the fan motor in ventilation systems. It turns off when the fan motor stops.
- In the system, it prevents air flow in the opposite direction of the air flow direction to which the damper is applied.
- When the fan motor is off, it prevents rain, dust or small creatures such as insects and birds from entering the system.
- In parallel working fan systems (multiple fan system), it prevents the air from leaving the non-operating fan group.
- In case of positive pressure in pressurized ventilation systems, it opens its wings and reduces the internal pressure. In this way, it can respond quickly to pressure differences caused by suddenly closing dampers such as fire dampers and sealed dampers.

#### PRODUCT TYPE AND MATERIAL

- € The case is produced from aluminum as standard, optionally from galvanized sheet.
- © The blades are made of aluminum. There is a silicone gasket resistant to 80C temperature on the blades.


## **SURFACE COATING**


- © Unpainted as standard.
- © Optional (VKG.ALM)
  - -Electrostatic powder paint in RAL color codes


#### **INSTALLATION OPTIONS**

- © Duct Installation
- Supply Air Side
- Return Air Side
- Air Transfer

# **STANDARD SIZES**







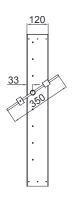



Table 1. Standard Sizes

| Standard : | 20512 |          |          |          | Н (Н     | leight) (mn | n)  |          |          |          |
|------------|-------|----------|----------|----------|----------|-------------|-----|----------|----------|----------|
| Standard   | 51263 | 100      | 200      | 300      | 400      | 500         | 700 | 800      | 900      | 1000     |
|            | 100   | <b>✓</b> | ✓        | ✓        | <b>✓</b> | ✓           | ✓   | ✓        | ✓        | <b>√</b> |
|            | 200   | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | ✓           | ✓   | ✓        | <b>✓</b> | <b>✓</b> |
|            | 300   | <b>✓</b> | <b>✓</b> | <b>✓</b> | ✓        | ✓           | ✓   | ✓        | <b>✓</b> | <b>✓</b> |
|            | 400   | ✓        | ✓        | ✓        | ✓        | ✓           | ✓   | ✓        | ✓        | <b>✓</b> |
|            | 500   | ✓        | ✓        | ✓        | ✓        | ✓           | ✓   | ✓        | ✓        | <b>✓</b> |
|            | 600   | ✓        | ✓        | ✓        | ✓        | ✓           | ✓   | ✓        | ✓        | <b>✓</b> |
| w          | 700   | ✓        | ✓        | ✓        | <b>✓</b> | ✓           | ✓   | ✓        | ✓        | <b>√</b> |
| (Width)    | 800   | ✓        | ✓        | ✓        | ✓        | ✓           | ✓   | ✓        | <b>✓</b> | ✓        |
| (mm)       | 900   | ✓        | <b>✓</b> | <b>✓</b> | ✓        | ✓           | ✓   | ✓        | <b>✓</b> | ✓        |
|            | 1000  | ✓        | ✓        | ✓        | <b>✓</b> | ✓           | ✓   | ✓        | ✓        | <b>✓</b> |
|            | 1100  | ✓        | ✓        | ✓        | ✓        | ✓           | ✓   | ✓        | ✓        | <b>✓</b> |
|            | 1200  | ✓        | ✓        | ✓        | <b>✓</b> | ✓           | ✓   | ✓        | ✓        | <b>✓</b> |
|            | 1300  | <b>✓</b> | ✓        | ✓        | ✓        | ✓           | ✓   | <b>√</b> | ✓        | <b>✓</b> |
|            | 1400  | ✓        | ✓        | ✓        | ✓        | ✓           | ✓   | ✓        | ✓        | <b>✓</b> |
|            | 1500  | <b>√</b> | <b>✓</b> | <b>√</b> | ✓        | ✓           | ✓   | ✓        | <b>✓</b> | <b>✓</b> |

# **QUICK SELECTION**

In the quick selection table below, air flow and throat measurements are given when the air velocity is 1.5m/s.

Table 2. Quick Selection

| Elow Dote | . [m3/h]    |                         |         |      | H (He | eight) [mn | 1]   |      |      |      |
|-----------|-------------|-------------------------|---------|------|-------|------------|------|------|------|------|
| Flow Rate | ; [111°/11] | 100                     | 200     | 300  | 400   | 500        | 700  | 800  | 900  | 1000 |
|           | 100         | 54                      | 108     | 162  | 216   | 270        | 378  | 432  | 486  | 540  |
|           | 200         | 108                     | 216     | 324  | 432   | 540        | 756  | 864  | 972  | 1080 |
|           | 300         | 162                     | 324     | 486  | 648   | 810        | 1134 | 1296 | 1458 | 1620 |
|           | 400         | 216                     | 432     | 648  | 864   | 1080       | 1512 | 1728 | 1944 | 2160 |
|           | 500         | 270                     | 324 648 | 810  | 1080  | 1350       | 1890 | 2160 | 2430 | 2700 |
|           | 600         | 324                     |         | 972  | 1296  | 1620       | 2268 | 2592 | 2916 | 3240 |
| W         | 700         | 378                     | 756     | 1134 | 1512  | 1890       | 2646 | 3024 | 3402 | 3780 |
| (Width)   | 800         | 432                     | 864     | 1296 | 1728  | 2160       | 3024 | 3456 | 3888 | 4320 |
| [mm]      | 900         | 486                     | 972     | 1458 | 1944  | 2430       | 3402 | 3888 | 4374 | 4860 |
|           | 1000        | 540                     | 1080    | 1620 | 2160  | 2700       | 3780 | 4320 | 4860 | 5400 |
|           | 1100        | 594                     | 1188    | 1782 | 2376  | 2970       | 4158 | 4752 | 5346 | 5940 |
|           | 1200        | 648                     | 1296    | 1944 | 2592  | 3240       | 4536 | 5184 | 5832 | 6480 |
|           | 1300        | 702                     | 1404    | 2106 | 2808  | 3510       | 4914 | 5616 | 6318 | 7020 |
|           | 1400        | <b>1400</b> 756 1512 23 |         | 2268 | 3024  | 3780       | 5292 | 6048 | 6804 | 7560 |
|           | 1500        | 810                     | 1620    | 2430 | 3240  | 4050       | 5670 | 6480 | 7290 | 8100 |

# **FLOW FIELD**

Flow fields used in product selection by using performance data are given in the table below.

Table 3. Flow Field

| Flow Fie | ld [m2]   |      |      |      |      |      |      | Н (Не | ight) | [mm] |      |      |      |      |      |
|----------|-----------|------|------|------|------|------|------|-------|-------|------|------|------|------|------|------|
| FIUW FIE | iu [iii-] | 100  | 200  | 300  | 400  | 500  | 700  | 800   | 900   | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 |
|          | 100       | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.07 | 0.08  | 0.09  | 0.10 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 |
|          | 200       | 0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.14 | 0.16  | 0.18  | 0.20 | 0.22 | 0.24 | 0.26 | 0.28 | 0.30 |
| w        | 300       | 0.03 | 0.06 | 0.09 | 0.12 | 0.15 | 0.21 | 0.24  | 0.27  | 0.30 | 0.33 | 0.36 | 0.39 | 0.42 | 0.45 |
|          | 400       | 0.04 | 0.08 | 0.12 | 0.16 | 0.20 | 0.28 | 0.32  | 0.36  | 0.40 | 0.44 | 0.48 | 0.52 | 0.56 | 0.60 |
| (Width)  | 500       | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.35 | 0.40  | 0.45  | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 |
| ,        | 600       | 0.06 | 0.12 | 0.18 | 0.24 | 0.30 | 0.42 | 0.48  | 0.54  | 0.60 | 0.66 | 0.72 | 0.78 | 0.84 | 0.90 |
| [mm]     | 700       | 0.07 | 0.14 | 0.21 | 0.28 | 0.35 | 0.49 | 0.56  | 0.63  | 0.70 | 0.77 | 0.84 | 0.91 | 0.98 | 1.05 |
|          | 800       | 0.08 | 0.16 | 0.24 | 0.32 | 0.40 | 0.56 | 0.64  | 0.72  | 0.80 | 0.88 | 0.96 | 1.04 | 1.12 | 1.20 |
|          | 900       | 0.09 | 0.18 | 0.27 | 0.36 | 0.45 | 0.63 | 0.72  | 0.81  | 0.90 | 0.99 | 1.08 | 1.17 | 1.26 | 1.35 |
|          | 1000      | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.70 | 0.80  | 0.90  | 1.00 | 1.10 | 1.20 | 1.30 | 1.40 | 1.50 |

# **PERFORMANCE DATA**

Table 4. Performance Data

|                     |                                          |          |           |           |           |           |           | FI        | ow Field [m | 1 <sup>2</sup> ] |           |           |           |           |           |           |
|---------------------|------------------------------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Flow Rate<br>[m³/h] |                                          | 0.1      | 0.2       | 0.3       | 0.4       | 0.5       | 0.6       | 0.7       | 0.8         | 0.9              | 1         | 1.1       | 1.2       | 1.3       | 1.4       | 1.5       |
|                     | Air Flow Speed [m/s]                     | 1.4      |           |           |           |           |           |           |             |                  |           |           |           |           |           |           |
| 500                 | Pressure Drop [Pa]                       | 23       |           |           |           |           |           |           |             |                  |           |           |           |           |           |           |
|                     | Sound Level [dB(A)]                      | 27       |           |           |           |           |           |           |             |                  |           |           |           |           |           |           |
|                     | Air Flow Speed [m/s]                     | 2.1      | 1.0       |           |           |           |           |           |             |                  |           |           |           |           |           |           |
| 750                 | Pressure Drop [Pa]                       | 29       | 20        |           |           |           |           |           |             |                  |           |           |           |           |           |           |
|                     | Sound Level [dB(A)]                      | 34       | 24        |           |           |           |           |           |             |                  |           |           |           |           |           |           |
| 1000                | Air Flow Speed [m/s]                     | 2.8      | 1.4       |           |           |           |           |           |             |                  |           |           |           |           |           |           |
| 1000                | Pressure Drop [Pa] Sound Level [dB(A)]   | 33       | 23        |           |           |           |           |           |             |                  |           |           |           |           |           |           |
|                     | Air Flow Speed [m/s]                     | 3.5      | 1.7       | 1.2       |           |           |           |           |             |                  |           |           |           |           |           |           |
| 1250                | Pressure Drop [Pa]                       | 38       | 26        | 21        |           |           |           |           |             |                  |           |           |           |           |           |           |
|                     | Sound Level [dB(A)]                      | 43       | 34        | 28        |           |           |           |           |             |                  |           |           |           |           |           |           |
|                     | Air Flow Speed [m/s]                     | 4.2      | 2.1       | 1.4       | 1.0       |           |           |           |             |                  |           |           |           |           |           |           |
| 1500                | Pressure Drop [Pa]                       | 42       | 29        | 23        | 20        |           |           |           |             |                  |           |           |           |           |           |           |
|                     | Sound Level [dB(A)]                      | 47       | 37        | 31        | 27        |           |           |           |             |                  |           |           |           |           |           |           |
|                     | Air Flow Speed [m/s]                     | 4.9      | 2.4       | 1.6       | 1.2       |           |           |           |             |                  |           |           |           |           |           |           |
| 1750                | Pressure Drop [Pa]                       | 45       | 31        | 25        | 21        |           |           |           |             |                  |           |           |           |           |           |           |
|                     | Sound Level [dB(A)]                      | 50       | 40        | 34        | 30        |           |           |           |             |                  |           |           |           |           |           |           |
| 2000                | Air Flow Speed [m/s]                     | 5.6      | 2.8       | 1.9       | 1.4       | 1.1       |           |           |             |                  |           |           |           |           |           |           |
| 2000                | Pressure Drop [Pa]                       | 49<br>52 | 33<br>42  | 27<br>37  | 23        | 20<br>29  | -         |           |             |                  |           |           |           |           |           |           |
|                     | Sound Level [dB(A)] Air Flow Speed [m/s] | 6.9      | 3.5       | 2.3       | 1.7       | 1.4       | 1.2       |           |             |                  |           |           |           |           |           |           |
| 2500                | Pressure Drop [Pa]                       | 55       | 38        | 30        | 26        | 23        | 21        |           |             |                  |           |           |           |           |           |           |
|                     | Sound Level [dB(A)]                      | 56       | 47        | 41        | 37        | 34        | 31        |           |             |                  |           |           |           |           |           |           |
|                     | Air Flow Speed [m/s]                     | 8.3      | 4.2       | 2.8       | 2.1       | 1.7       | 1.4       | 1.2       | 1.0         |                  |           |           |           |           |           |           |
| 3000                | Pressure Drop [Pa]                       | 60       | 42        | 33        | 29        | 25        | 23        | 21        | 20          |                  |           |           |           |           |           |           |
|                     | Sound Level [dB(A)]                      | 60       | 50        | 44        | 40        | 37        | 34        | 32        | 30          |                  |           |           |           |           |           |           |
|                     | Air Flow Speed [m/s]                     | 9.7      | 4.9       | 3.2       | 2.4       | 1.9       | 1.6       | 1.4       | 1.2         | 1.1              |           |           |           |           |           |           |
| 3500                | Pressure Drop [Pa]                       | 66       | 45        | 36        | 31        | 28        | 25        | 23        | 21          | 20               |           |           |           |           |           |           |
|                     | Sound Level [dB(A)]                      | 63       | 53        | 47        | 43        | 40        | 37        | 35        | 33          | 31               |           |           |           |           |           |           |
|                     | Air Flow Speed [m/s]                     |          | 5.6       | 3.7       | 2.8       | 2.2       | 1.9       | 1.6       | 1.4         | 1.2              | 1.1       | 1.0       |           |           |           |           |
| 4000                | Pressure Drop [Pa]                       |          | 49        | 39        | 33        | 30        | 27        | 25        | 23          | 22               | 20        | 19        |           |           |           |           |
|                     | Sound Level [dB(A)] Air Flow Speed [m/s] |          | 55<br>6.9 | 49        | 45<br>3.5 | 42<br>2.8 | 40<br>2.3 | 37<br>2.0 | 36<br>1.7   | 34<br>1.5        | 32<br>1.4 | 31<br>1.3 | 1.2       | 1.1       |           |           |
| 5000                | Pressure Drop [Pa]                       |          | 55        | 4.6       | 3.5       | 33        | 30        | 2.0       | 26          | 24               | 23        | 22        | 21        | 20        |           |           |
| 0000                | Sound Level [dB(A)]                      |          | 59        | 54        | 50        | 46        | 44        | 42        | 40          | 38               | 37        | 35        | 34        | 33        |           |           |
|                     | Air Flow Speed [m/s]                     |          | 8.3       | 5.6       | 4.2       | 3.3       | 2.8       | 2.4       | 2.1         | 1.9              | 1.7       | 1.5       | 1.4       | 1.3       | 1.2       | 1.1       |
| 6000                | Pressure Drop [Pa]                       |          | 60        | 49        | 42        | 37        | 33        | 31        | 29          | 27               | 25        | 24        | 23        | 22        | 21        | 20        |
|                     | Sound Level [dB(A)]                      |          | 63        | 57        | 53        | 50        | 47        | 45        | 43          | 41               | 40        | 39        | 37        | 36        | 35        | 34        |
|                     | Air Flow Speed [m/s]                     |          | 9.7       | 6.5       | 4.9       | 3.9       | 3.2       | 2.8       | 2.4         | 2.2              | 1.9       | 1.8       | 1.6       | 1.5       | 1.4       | 1.3       |
| 7000                | Pressure Drop [Pa]                       |          | 66        | 53        | 45        | 40        | 36        | 33        | 31          | 29               | 28        | 26        | 25        | 24        | 23        | 22        |
|                     | Sound Level [dB(A)]                      |          | 66        | 60        | 56        | 53        | 50        | 48        | 46          | 44               | 43        | 41        | 40        | 39        | 38        | 37        |
|                     | Air Flow Speed [m/s]                     |          | 11.1      | 7.4       | 5.6       | 4.4       | 3.7       | 3.2       | 2.8         | 2.5              | 2.2       | 2.0       | 1.9       | 1.7       | 1.6       | 1.5       |
| 8000                | Pressure Drop [Pa] Sound Level [dB(A)]   |          | 71        | 57        | 49        | 43        | 39        | 36        | 33          | 31               | 30        | 28        | 27        | 26        | 25        | 24        |
|                     | Air Flow Speed [m/s]                     |          | 68        | 62<br>8.3 | 58<br>6.3 | 55<br>5.0 | 52<br>4.2 | 50<br>3.6 | 48          | 47<br>2.8        | 45<br>2.5 | 2.3       | 43<br>2.1 | 42<br>1.9 | 40<br>1.8 | 40<br>1.7 |
| 9000                | Pressure Drop [Pa]                       |          |           | 60        | 52        | 46        | 4.2       | 3.6       | 36          | 33               | 32        | 30        | 2.1       | 27        | 26        | 25        |
| -5500               | Sound Level [dB(A)]                      |          |           | 64        | 60        | 57        | 55        | 52        | 51          | 49               | 47        | 46        | 45        | 44        | 43        | 42        |
|                     | Air Flow Speed [m/s]                     |          |           | 9.3       | 6.9       | 5.6       | 4.6       | 4.0       | 3.5         | 3.1              | 2.8       | 2.5       | 2.3       | 2.1       | 2.0       | 1.9       |
| 10000               | Pressure Drop [Pa]                       |          |           | 64        | 55        | 49        | 44        | 40        | 38          | 35               | 33        | 32        | 30        | 29        | 28        | 27        |
|                     | Sound Level [dB(A)]                      |          |           | 66        | 62        | 59        | 57        | 54        | 53          | 51               | 49        | 48        | 47        | 46        | 45        | 44        |
|                     | Air Flow Speed [m/s]                     |          |           | 11.6      | 8.7       | 6.9       | 5.8       | 5.0       | 4.3         | 3.9              | 3.5       | 3.2       | 2.9       | 2.7       | 2.5       | 2.3       |
| 12500               | Pressure Drop [Pa]                       |          |           | 72        | 62        | 55        | 50        | 46        | 42          | 40               | 38        | 36        | 34        | 33        | 31        | 30        |
|                     | Sound Level [dB(A)]                      |          |           | 71        | 66        | 63        | 61        | 59        | 57          | 55               | 53        | 52        | 51        | 50        | 49        | 48        |
| 15000               | Air Flow Speed [m/s]                     |          |           |           | 10.4      | 8.3       | 6.9       | 6.0       | 5.2         | 4.6              | 4.2       | 3.8       | 3.5       | 3.2       | 3.0       | 2.8       |
| 15000               | Pressure Drop [Pa]                       |          | -         |           | 68        | 60        | 55        | 50        | 47          | 44               | 42        | 39        | 38        | 36        | 35        | 33        |
|                     | Sound Level [dB(A)]                      |          |           |           | 70        | 67        | 64        | 62        | 60          | 58               | 57        | 56        | 54        | 53        | 52        | 51        |
| 17500               | Air Flow Speed [m/s] Pressure Drop [Pa]  |          |           |           |           | 9.7<br>66 | 8.1<br>59 | 6.9<br>55 | 6.1<br>51   | 5.4<br>48        | 4.9<br>45 | 4.4       | 4.1<br>41 | 3.7<br>39 | 3.5<br>38 | 3.2<br>36 |
| 17300               | Sound Level [dB(A)]                      |          |           |           |           | 70        | 67        | 65        | 63          | 61               | 60        | 58        | 57        | 56        | 55        | 54        |
|                     | Air Flow Speed [m/s]                     |          |           |           |           | 11.1      | 9.3       | 7.9       | 6.9         | 6.2              | 5.6       | 5.1       | 4.6       | 4.3       | 4.0       | 3.7       |
| 20000               | Pressure Drop [Pa]                       |          |           |           |           | 71        | 64        | 59        | 55          | 51               | 49        | 46        | 44        | 42        | 40        | 39        |
|                     | Sound Level [dB(A)]                      |          |           |           |           | 72        | 69        | 67        | 65          | 64               | 62        | 61        | 60        | 58        | 57        | 56        |
|                     | 1                                        |          |           |           |           |           | 1 30      | <u> </u>  |             |                  |           |           | - 50      |           |           |           |

#### PRODUCT SELECTION

## Sample Selection 1:

**Example:** In a system, 2500 m3/h air flow will be exhausted. Pressure loss should be less than 50Pa and sound power level should be less than 40DB. Make the product selection.

**Solution:** From the performance data table, the performance data is evaluated according to the area at an air flow rate of 2500m3/h. Accordingly, the velocity corresponding to 0.4m2 is 1.7m/s, the pressure loss is 26Pa, and the sound power level is 37dB. Flow areas table is used within the dimensions that can be selected in the size of 0.4m2. The product is chosen as 800x500mm.

### Sample Selection 2:

**Example:** In a system, an air flow of 2500m3/h will be exhausted. Make the product selection.

**Solution:** The quick selection table is used to select a standard non-return damper. Accordingly, 900x500, 800x600 or 1200x400 selections can be made from the quick selection table. For the performance data of the 800x600 sized product, the flow area is first found 0.48m2 by using the flow areas table. From the performance data table, values between 0.4m2 and 0.5m2 are interpolated for an air flow rate of 2500m3/h and the result is obtained. Accordingly, the speed is 1.5m/s, the pressure loss is 25Pa, and the sound power level is 36dB[A].

#### PRODUCT ORDER CODE

You can place your orders according to the coding format below.

VKG. < A >. MEK. < B >. < C >. < D >. < E >

| Α | Material        |                             |
|---|-----------------|-----------------------------|
|   | ALM             | Aluminum                    |
|   | GAL             | Galvanized                  |
| В | Туре            |                             |
|   | ST              | Without Balance Weight      |
|   | 01              | With Balance Weight         |
| С | Width (W) [mm]  |                             |
|   | 0000            | Standard Sizes              |
| D | Height (H) [mm] |                             |
|   | 0000            | Standard Sizes              |
| E | Paint           |                             |
|   | 00              | Unpainted                   |
|   | S1              | Standard Painted - RAL 9010 |
|   | S2              | Standard Painted - RAL 9016 |
|   | XX              | Special Painted             |

**Sample Codding:** VKG.ALM.MEK.ST.1000.0800.S1

| NOTES |                      |               |   |
|-------|----------------------|---------------|---|
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       | <u>iklimlendirme</u> | I HVAC SYSTEM | S |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |
|       |                      |               |   |



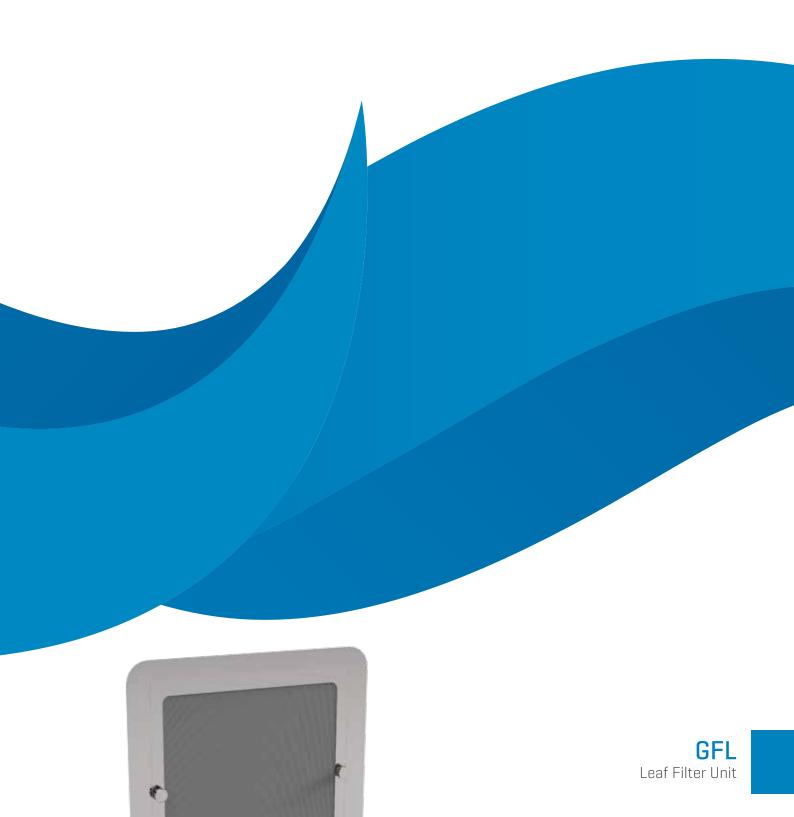




## Headquarter

İTOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TÜRKİYE Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

## **İstanbul Sales Office**


Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, İstanbul/TÜRKİYE Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56













# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing Energy-and Cost-Efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45,000 sqm. in which 25,000 sqm. indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 3 sales offices located in Istanbul, Ankara and Antalya in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSE, CE and GOST-R quality certifications.











- **©** GFL Leaf Filter Unit is an extract grille designed for sterile environments.
- lt is used to prevent fibers and particles in the exhausted air from entering the ventilation system.



# **MATERIAL**

- € Made of AISI 304 quality stainless steel
- Porous chrome mesh filter

# **SURFACE COATING**

- lt is produced from stainless steel as standard.
- © Optional
  - -Different RAL color codes

# **MOUNTING OPTIONS**

# **STANDARD DIMENSIONS**

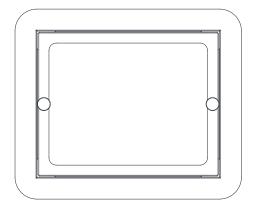







Table 1. Standard Dimensions

| W (mm)<br>(Width)  | 100 | - | 150 | - | 200 | - | 250 | - | 300 | - | 350 | - | 400 | - | 450 | - | 500 | - | 550 | - | 600 | - | 650 | - | 700 |
|--------------------|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|
| H (mm)<br>(Height) | 100 | - | 150 | - | 200 | - | 250 | - | 300 | - | 350 | - | 400 | - | 450 | - | 500 |   |     |   |     |   |     |   |     |

# **PERFORMANCE DATA**

# **EFFECTIVE AREA TABLE**

**Table 2.** Effective Area

| Effective Area<br>(mm²) |     | H (Height) (mm) |       |       |       |       |       |       |       |       |
|-------------------------|-----|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                         |     | 100             | 150   | 200   | 250   | 300   | 350   | 400   | 450   | 500   |
| W [Width] [mm]          | 100 | 0.006           | 0.010 | 0.015 | 0.020 | 0.025 | 0.030 | 0.035 | 0.039 | 0.044 |
|                         | 150 | 0.010           | 0.018 | 0.025 | 0.032 | 0.039 | 0.047 | 0.054 | 0.061 | 0.068 |
|                         | 200 | 0.015           | 0.025 | 0.035 | 0.044 | 0.054 | 0.064 | 0.073 | 0.083 | 0.092 |
|                         | 250 | 0.020           | 0.032 | 0.044 | 0.056 | 0.068 | 0.080 | 0.092 | 0.105 | 0.117 |
|                         | 300 | 0.025           | 0.039 | 0.054 | 0.068 | 0.083 | 0.097 | 0.112 | 0.126 | 0.141 |
|                         | 350 | 0.030           | 0.047 | 0.064 | 0.080 | 0.097 | 0.114 | 0.131 | 0.148 | 0.165 |
|                         | 400 | 0.035           | 0.054 | 0.073 | 0.092 | 0.112 | 0.131 | 0.150 | 0.170 | 0.189 |
|                         | 450 | 0.039           | 0.061 | 0.083 | 0.105 | 0.126 | 0.148 | 0.170 | 0.192 | 0.213 |
|                         | 500 | 0.044           | 0.068 | 0.092 | 0.117 | 0.141 | 0.165 | 0.189 | 0.213 | 0.237 |
|                         | 550 | 0.049           | 0.076 | 0.102 | 0.129 | 0.155 | 0.182 | 0.208 | 0.235 | 0.262 |
|                         | 600 | 0.054           | 0.083 | 0.112 | 0.141 | 0.170 | 0.199 | 0.228 | 0.257 | 0.286 |
|                         | 650 | 0.059           | 0.090 | 0.121 | 0.153 | 0.184 | 0.216 | 0.247 | 0.279 | 0.310 |
|                         | 700 | 0.064           | 0.097 | 0.131 | 0.165 | 0.199 | 0.233 | 0.266 | 0.300 | 0.334 |

# **EXTRACT AIR DATA TABLE**

Table 3. Extract Air Data

| Flow Rate |                              | Effective Speed (m/s) |        |        |        |       |       |  |  |
|-----------|------------------------------|-----------------------|--------|--------|--------|-------|-------|--|--|
| (m³/h)    |                              | 0.5                   | 1.0    | 1.5    | 2.0    | 2.5   | 3.0   |  |  |
|           | Effective Area [m²]          | 0.028                 | 0.0139 | 0.0093 | 0.0069 | 0.006 |       |  |  |
| 50        | Pressure Drop [Pa]           | 18                    | 50     | 90     | 136    | 188   |       |  |  |
|           | Sound Pressure Level [db(A)] | <15                   | 21     | 29     | 35     | 39    |       |  |  |
|           | Effective Area [m²]          | 0.0556                | 0.0278 | 0.019  | 0.014  | 0.011 |       |  |  |
| 100       | Pressure Drop [Pa]           | 17                    | 46     | 84     | 127    | 176   |       |  |  |
|           | Sound Pressure Level [db(A)] | <15                   | 23     | 31     | 37     | 41    |       |  |  |
|           | Effective Area [m²]          | 0.111                 | 0.056  | 0.037  | 0.028  | 0.022 |       |  |  |
| 200       | Pressure Drop [Pa]           | 16                    | 43     | 78     | 119    | 164   |       |  |  |
|           | Sound Pressure Level [db(A)] | <15                   | 25     | 33     | 39     | 44    |       |  |  |
|           | Effective Area [m²]          | 0.167                 | 0.083  | 0.056  | 0.042  | 0.033 |       |  |  |
| 300       | Pressure Drop [Pa]           | 15                    | 42     | 75     | 114    | 158   |       |  |  |
|           | Sound Pressure Level [db(A)] | <15                   | 27     | 35     | 41     | 45    |       |  |  |
|           | Effective Area [m²]          | 0.222                 | 0.111  | 0.074  | 0.056  | 0.044 | 0.037 |  |  |
| 400       | Pressure Drop [Pa]           | 15                    | 41     | 73     | 111    | 153   | 200   |  |  |
| -         | Sound Pressure Level [db(A)] | <15                   | 28     | 36     | 42     | 46    | 50    |  |  |
|           | Effective Area [m²]          | 0.278                 | 0.139  | 0.093  | 0.069  | 0.056 | 0.046 |  |  |
| 500       | Pressure Drop [Pa]           | 15                    | 40     | 71     | 108    | 150   | 195   |  |  |
| 000       | Sound Pressure Level [db(A)] | <15                   | 28     | 36     | 42     | 47    | 50    |  |  |
|           | Effective Area [m²]          | 0.333                 | 0.167  | 0.111  | 0.083  | 0.067 | 0.056 |  |  |
| 600       | Pressure Drop [Pa]           |                       | 39     |        |        | 147   | 192   |  |  |
| 600       | Sound Pressure Level [db(A)] | 14<br><15             | 29     | 70     | 107    | 47    | 51    |  |  |
|           |                              | V13                   |        |        |        |       | 0.065 |  |  |
|           | Effective Area [m²]          |                       | 0.194  | 0.130  | 0.097  | 0.078 | 189   |  |  |
| 700       | Pressure Drop [Pa]           |                       | 38     | 69     | 105    | 145   | 52    |  |  |
|           | Sound Pressure Level [db(A)] |                       | 29     | 38     | 43     | 48    |       |  |  |
|           | Effective Area [m²]          |                       | 0.222  | 0.148  | 0.111  | 0.089 | 0.074 |  |  |
| 800       | Pressure Drop [Pa]           |                       | 38     | 68     | 104    | 143   | 187   |  |  |
|           | Sound Pressure Level [db(A)] |                       | 30     | 38     | 44     | 48    | 52    |  |  |
| -         | Effective Area [m²]          |                       | 0.250  | 0.167  | 0.125  | 0.100 | 0.083 |  |  |
| 900       | Pressure Drop [Pa]           |                       | 37     | 67     | 102    | 142   | 184   |  |  |
|           | Sound Pressure Level [db(A)] |                       | 30     | 38     | 44     | 49    | 52    |  |  |
| -         | Effective Area [m²]          |                       | 0.278  | 0.185  | 0.139  | 0.111 | 0.093 |  |  |
| 1000      | Pressure Drop [Pa]           |                       | 37     | 67     | 101    | 140   | 183   |  |  |
|           | Sound Pressure Level [db(A)] |                       | 31     | 39     | 45     | 49    | 53    |  |  |
| -         | Effective Area [m²]          |                       |        | 0.231  | 0.174  | 0.139 | 0.116 |  |  |
| 1250      | Pressure Drop [Pa]           |                       |        | 65     | 99     | 137   | 179   |  |  |
|           | Sound Pressure Level [db(A)] |                       |        | 39     | 45     | 50    | 53    |  |  |
|           | Effective Area [m²]          |                       |        | 0.278  | 0.208  | 0.167 | 0.139 |  |  |
| 1500      | Pressure Drop [Pa]           |                       |        | 64     | 97     | 135   | 175   |  |  |
|           | Sound Pressure Level [db(A)] |                       |        | 40     | 46     | 50    | 54    |  |  |
|           | Effective Area [m²]          |                       |        | 0.324  | 0.243  | 0.194 | 0.162 |  |  |
| 1750      | Pressure Drop [Pa]           |                       |        | 63     | 96     | 133   | 173   |  |  |
|           | Sound Pressure Level [db(A)] |                       |        | 41     | 46     | 51    | 55    |  |  |
|           | Effective Area [m²]          |                       |        |        | 0.278  | 0.222 | 0.185 |  |  |
| 2000      | Pressure Drop [Pa]           |                       |        |        | 95     | 131   | 171   |  |  |
|           | Sound Pressure Level [db(A)] |                       |        |        | 47     | 51    | 55    |  |  |
|           | Effective Area [m²]          |                       |        |        |        | 0.278 | 0.231 |  |  |
| 2500      | Pressure Drop [Pa]           |                       |        |        |        | 128   | 167   |  |  |
|           | Sound Pressure Level [db(A)] |                       |        |        |        | 52    | 56    |  |  |
|           | Effective Area [m²]          |                       |        |        |        | 0.333 | 0.278 |  |  |
| 3000      | Pressure Drop [Pa]           |                       |        |        |        | 126   | 164   |  |  |
|           | Sound Pressure Level [db(A)] |                       |        |        |        | 53    | 56    |  |  |

#### **INSTALLATION**

#### 1. INTERNALLY SCREWED



#### **PRODUCT SELECTION**

**Example:** The total exhaust flow rate in the operating room has been determined as 2000 m<sup>3</sup>/h. 4 Leaf Filter Unit will be used. Make your product selection.

Solution: There is an air flow of 2000/4=500 m<sup>3</sup>/h for one grille.

For 500 m<sup>3</sup>/h air flow, effective areas corresponding to appropriate pressure loss and flow rate values are selected from the extract air data table.

For example, in an effective area of  $0.139 \text{ m}^2$ , the effective speed is 1 m/s, pressure loss is 40 Pa and sound pressure is 28 dB[A]. The appropriate grille size is selected from the effective area table (Table 2) as  $600 \text{ mm} \times 250 \text{ mm}$  corresponding to the value of  $0.139 \text{ m}^2$ .

#### **PRODUCT ORDER CODES**

You can place your orders according to the following coding format.

#### GFL.< A > . DZ .< B > . < C > . < D > . < E >

| Α | Raw Material Type   |                                     |
|---|---------------------|-------------------------------------|
|   | PAS                 | Stainless-Steel                     |
| В | Installation Method |                                     |
|   | IC                  | Internally Screwed                  |
| С | Width (W) (mm)      |                                     |
|   | 0000                | You can look at the standard sizes. |
| D | Height (H) (mm)     |                                     |
|   | 0000                | You can look at the standard sizes. |
| E | Paint               |                                     |
|   | 00                  | Unpainted                           |

Sample Coding: GFL.PAS.DZ.VD.0400.0400.00

| NOTES |    |        |       |    |        |        |     |  |
|-------|----|--------|-------|----|--------|--------|-----|--|
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    | <br>   |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        | ®   |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       | // |        |       |    |        |        |     |  |
|       |    | <br>   |       |    |        |        |     |  |
|       |    | İKLİML | ENDİR | ME | HVAC S | SYSTEM | IS. |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    | <br>   |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |
|       |    |        |       |    |        |        |     |  |

| NOTES |               |              |  |
|-------|---------------|--------------|--|
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       | iklimlendirme | HVAC SYSTEMS |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |
|       |               |              |  |



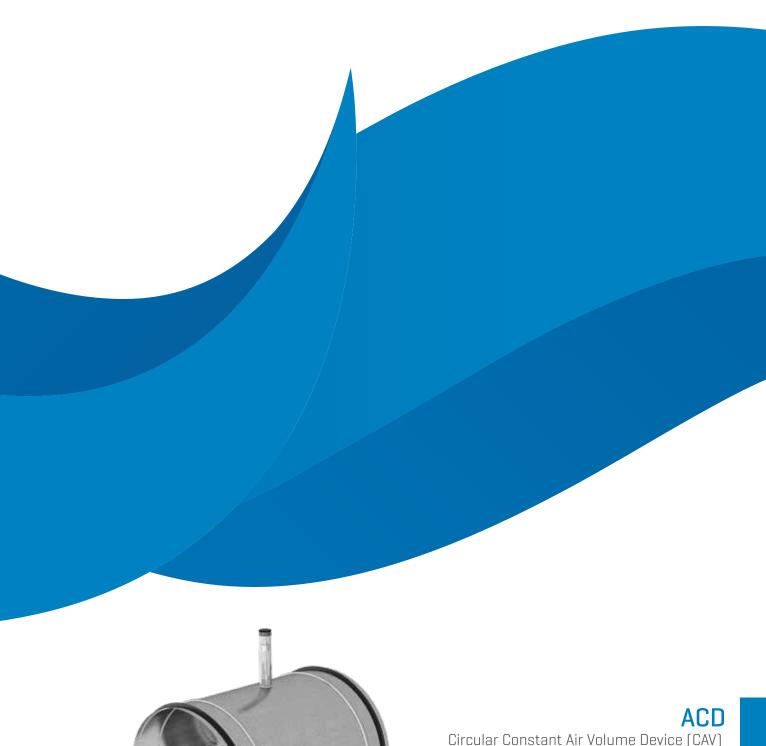




#### Headquarter

ITOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TURKEY Tel: +90 232 799 02 40 | Fax: +90 232 799 02 44

#### **Istanbul Sales Office**


Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, Istanbul/TURKEY Tel: +90 216 250 55 45 | Fax: +90 216 250 55 56















# Venues Breathe with DOGU HVAC Systems!

DOGU HVAC founded in 1999, and ever since has been manufacturing energy and cost efficient products as Air Handling Units, Air Distribution & Management & Movement Systems [HVAC Components] and constantly enhancing to provide an integrated solution for well-being. DOGU HVAC's core business products which are subsumed under 4 major groups as Air Handling Units, Heat/Energy Recovery Units, Air Distribution & Management Products and Kitchen Ventilation Equipment are all produced under the compliance with EU standarts. Particularly AHU and HRU-ER units are entitled under the "FOUR SEASONS" brand name for domestic and foreign markets. DOGU HVAC's, headquarter in Izmir/Turkey, operates in a large-sized plant spread over 2 factories, in total area of 45.000 sqm in which 25.000 sqm indoor space that enables DOGU HVAC manufactures 140 various type of products. Additionally, DOGU HVAC has a powerful sales network with 4 sales offices located in Istanbul, Ankara, Antalya and Adana in Turkey as well as authorized dealers in many other countries for sales and after sales operations. DOGU HVAC has been exporting to more than 50 countries.

Thanks to our "Customer Satisfaction", "Zero-Defect Policy" motto and reinforced by complete certified products, more than 250 employees. DOGU HVAC R&D center developed exclusive products, such as Double Skin Make-Up Kitchen Hood, Recirculated Laminar Airflow Unit, Single Piece Square Ceiling Diffuser and Ecology Units, for the first time have brought to the sector. DOGU HVAC R&D has the ability to make customized production which can meet the requirement of the customers by means of special software such as "ANSYS FLUENT". DOGU HVAC guaranteed its quality of management by having advantages of ISO 9001, ISO 14001, ISO 18001 certifications. Air Handling Units have EUROVENT, TUV Hygiene [in accordance with DIN1946-4, VDI 6022-1, DIN EN 13053 standarts], CE, TSEK, GOST-R certifications; Fire Dampers have EN 1366-2 and EN 13501-3 CE certifications; Smoke Control Dampers have EN 1366-10 and 12101-8 CE certifications; Kitchen Ventilation Products have TSEK, CE and GOST-R quality certifications.







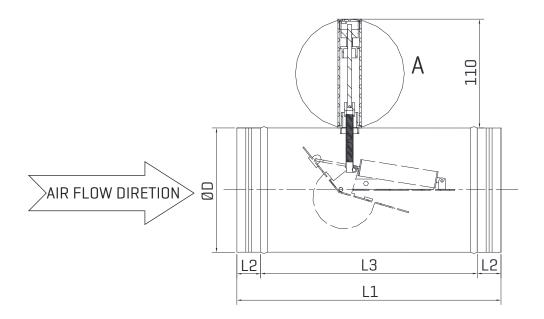




- ♠ ACD Circular Constant Air Volume Unit is used to control the air flow in projects where comfort and hygiene requirements are high, such as operating theaters, clean rooms, and special processes.
- © The desired air volume can be easily changed on the unit with the help of an allen wrench.
- lt can stabilize the pressure in the air duct between 20 Pa and 1000 Pa.
- All ACD units produced are calibrated in the HVAC calibration laboratory according to the flow rates specified in the order. In this laboratory, calibration is completed by testing one-to-one field conditions with 7 measuring stations, each of which has different diameters and nominal flow.
- Since it is a completely mechanical system, it does not require any power input. The stabilization of the air flow is based on meeting the pressure changes in the system. When the air flow decreases depending on the pressure and pressure in the duct, the torque acting on the blade of the ACD decreases and the wing opens. With the opening of the blade, the air flow through the duct increases and returns to the calibration value.
- © Conversely, when the air flow rate increases, the torque acting on the blade increases and the blade closes. With the closing of the blade, the air flow through the duct decreases and returns to the calibration value.
- The mechanism, which is precisely designed with the calibration spring according to the position of the blade, enables the ACD to work successfully with 10% deviation in the calibrated flow rate.
- lt has a specially designed air viscous piston to keep the blade oscillations at a minimum level due to increased turbulence at high pressures.
- € It complies with DIN EN 1946/4 and VDI 6022 hygiene standards.

#### **MATERIAL**

- The casing is manufactured from galvanized steel sheet as standard. AISI 304 quality stainless case option is available.
- Blades and air-viscous piston made of aluminium.
- Plastic tube for airflow calibration.
- Stainless steel calibration spring.
- Standard duct sealing.
- € Blade shaft is AISI 304 stainless, shaft bush is PTFE plastic.


#### **ACCESSORIES**

- Acoustic Insulation: In order to fulfill the acoustic comfort conditions in the selected product, it is insulated with an optional 19 mm thick foamed rubber. Rubber is surrounded by galvanized sheet metal.
- SSS\_K Duct Type Circular Silencer: Silencer option for the sound level to meet the desired comfort conditions available.



GSS\_K - Duct Type Circular Silencer

#### **STANDARD SIZES**



ALLEN WRENCH

(+) (-)

MAX [m³/h]

MIN [m³/h]

DETAIL A

Table 1. Standard Dimensions

| Sizes<br>[mm] | ØD<br>[mm] | L1-Total<br>[mm] | L2<br>[mm] | L3<br>[mm] | Vmin<br>[m³/h] | Vmax<br>[m³/h] |
|---------------|------------|------------------|------------|------------|----------------|----------------|
| ACD- 100      | 98         | 240              | 50         | 140        | 50             | 250            |
| ACD- 125      | 123        | 240              | 50         | 140        | 80             | 400            |
| ACD- 150      | 148        | 240              | 50         | 140        | 115            | 575            |
| ACD- 160      | 158        | 250              | 50         | 150        | 130            | 700            |
| ACD- 200      | 198        | 280              | 50         | 180        | 200            | 1000           |
| ACD- 250      | 248        | 280              | 50         | 180        | 350            | 1650           |
| ACD- 300      | 298        | 380              | 50         | 280        | 450            | 2400           |
| ACD- 315      | 313        | 380              | 50         | 280        | 540            | 2700           |
| ACD- 355      | 353        | 450              | 50         | 350        | 690            | 3400           |
| ACD- 400      | 398        | 450              | 50         | 350        | 880            | 4400           |

**Note:** When the duct velocity is less than 2m/s, the flow rate adjustment deviation will be  $\pm 20\%$ . Flow adjustment is made from the calibration tube with a 2 mm allen wrench.

## **PERFORMANCE DATA**

#### **VELOCITY & MINIMUM PRESSURE LOSS DATA**

Table 3. Velocity & Minimum Static Pressure Loss Data

| Air Velocity<br>[m/s] | Pressure Drop<br>[Pa] |
|-----------------------|-----------------------|
| 2                     | 32                    |
| 3                     | 40                    |
| 4                     | 49                    |
| 5                     | 60                    |
| 6                     | 73                    |
| 7                     | 90                    |
| 8                     | 110                   |
| 9                     | 135                   |
| 10                    | 166                   |

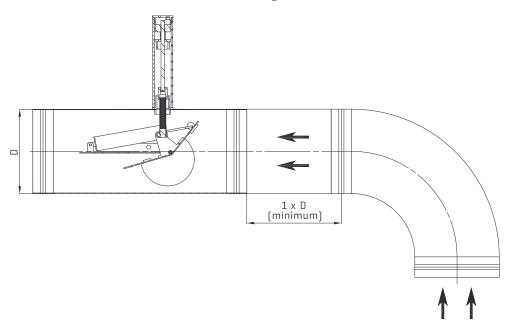
## **FLOW FIELD TABLE**

Table 3. Flow Field Table

| Flow Field<br>[m²] |
|--------------------|
| 0,008              |
| 0,012              |
| 0,018              |
| 0,020              |
| 0,031              |
| 0,049              |
| 0,071              |
| 0,078              |
| 0,099              |
| 0,126              |
|                    |

# **SOUND PRESSURE LEVEL DATA**

Table 4. Sound Pressure Level Table


|              |                       | Flow Rate<br>[m³/h] | Flow Sc     | und Pressı<br>[dB(A)] | Sound Pressure<br>Level Emitted from |              |                      |
|--------------|-----------------------|---------------------|-------------|-----------------------|--------------------------------------|--------------|----------------------|
| Size<br>[mm] | Air Velocity<br>[m/s] |                     | Differentia | al Pressure           | Value [Pa]                           | the Case     |                      |
|              |                       |                     | 100         | 200                   | 500                                  | Un-Insulated | Acoustic<br>Isolated |
|              | 2                     | 60                  | 26          | 33                    | 38                                   | <15          | <15                  |
|              | 4                     | 120                 | 33          | 40                    | 45                                   | 23           | <15                  |
| 100          | 6                     | 170                 | 37          | 44                    | 49                                   | 29           | 18                   |
|              | 8                     | 230                 | 41          | 48                    | 53                                   | 33           | 22                   |
|              | 10                    | 290                 | 44          | 51                    | 56                                   | 36           | 25                   |
|              | 2                     | 90                  | 29          | 36                    | 41                                   | <15          | <15                  |
|              | 4                     | 180                 | 36          | 43                    | 48                                   | 21           | <15                  |
| 125          | 6                     | 270                 | 40          | 47                    | 52                                   | 27           | 16                   |
|              | 8                     | 360                 | 43          | 50                    | 55                                   | 31           | 19                   |
|              | 10                    | 450                 | 46          | 53                    | 58                                   | 34           | 22                   |
|              | 2                     | 130                 | 33          | 40                    | 45                                   | 27           | <15                  |
|              | 4                     | 260                 | 37          | 44                    | 49                                   | 34           | 23                   |
| 150          | 6                     | 390                 | 40          | 47                    | 52                                   | 39           | 28                   |
|              | 8                     | 510                 | 42          | 49                    | 54                                   | 42           | 32                   |
|              | 10                    | 640                 | 43          | 50                    | 55                                   | 44           | 35                   |
|              | 2                     | 150                 | 33          | 40                    | 45                                   | 27           | 16                   |
|              | 4                     | 290                 | 37          | 44                    | 49                                   | 34           | 24                   |
| 160          | 6                     | 440                 | 40          | 47                    | 52                                   | 39           | 29                   |
| 100          | 8                     | 580                 | 42          | 49                    | 54                                   | 42           | 32                   |
|              |                       |                     |             |                       |                                      | 44           | 35                   |
|              | 10                    | 730                 | 43          | 50                    | 55                                   |              | 14                   |
|              | 2                     | 230                 | 34          | 41                    | 46                                   | 26           |                      |
|              | 4                     | 460                 | 38          | 45                    | 50                                   | 34           | 23                   |
| 200          | 6                     | 680                 | 40          | 47                    | 52                                   | 39           | 28                   |
|              | 8                     | 910                 | 42          | 49                    | 54                                   | 42           | 32                   |
|              | 10                    | 1140                | 44          | 51                    | 56                                   | 45           | 35                   |
|              | 2                     | 360                 | 36          | 43                    | 48                                   | 28           | 18                   |
|              | 4                     | 710                 | 37          | 44                    | 49                                   | 35           | 26                   |
| 250          | 6                     | 1060                | 38          | 45                    | 50                                   | 40           | 30                   |
|              | 8                     | 1420                | 39          | 46                    | 51                                   | 43           | 33                   |
|              | 10                    | 1770                | 39          | 46                    | 51                                   | 45           | 36                   |
|              | 2                     | 510                 | 33          | 40                    | 45                                   | 28           | 17                   |
|              | 4                     | 1020                | 35          | 42                    | 47                                   | 36           | 25                   |
| 300          | 6                     | 1530                | 37          | 44                    | 49                                   | 40           | 31                   |
|              | 8                     | 2040                | 38          | 45                    | 50                                   | 44           | 34                   |
|              | 10                    | 2550                | 39          | 46                    | 51                                   | 46           | 37                   |
|              | 2                     | 570                 | 33          | 40                    | 45                                   | 35           | 26                   |
|              | 4                     | 1130                | 35          | 42                    | 47                                   | 43           | 33                   |
| 315          | 6                     | 1690                | 37          | 44                    | 49                                   | 47           | 37                   |
| 323          | 8                     | 2250                | 38          | 45                    | 50                                   | 50           | 40                   |
|              | 10                    | 2810                | 39          | 46                    | 51                                   | 52           | 412                  |
|              | 2                     | 720                 | 26          | 33                    | 38                                   | 42           | 34                   |
|              | 4                     | 1430                | 33          | 40                    | 45                                   | 49           | 40                   |
| 255          | 6                     | 2140                | 37          | 44                    | 49                                   | 53           | 43                   |
| 355          |                       | 2850                | 41          | 48                    | 53                                   | 56           | 45                   |
|              | 8                     |                     |             |                       |                                      | 59           | 47                   |
|              | 10                    | 3570                | 44          | 51                    | 56                                   |              |                      |
|              | 2                     | 910                 | 40          | 47                    | 52                                   | 42           | 31                   |
| /100         | 4                     | 1810                | 42          | 49                    | 54                                   | 49           | 39                   |
| 400          | 6                     | 2720                | 43          | 50                    | 55                                   | 53           | 43                   |
|              | 8                     | 3620                | 44          | 51                    | 56                                   | 56           | 47                   |
|              | 10                    | 4530                | 44          | 51                    | 56                                   | 59           | 49                   |

Note: Data were obtained according to the VDI 2081 standard.

#### **INSTALLATION**

It is mounted to the duct by considering the air flow direction arrow on the ACD. The ACD product design complies with the EN 13180 standard for duct connections such as elbows, tees and reducers.

## Minimum channel length after elbows



Minimum duct length after duct equipment such as Te - Reduction

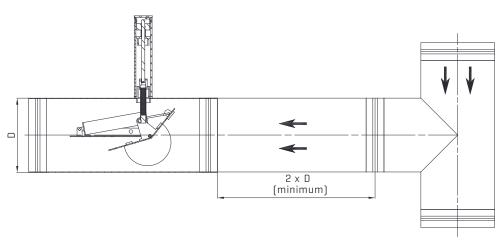



Table 5. Minimum Duct Length Table

| Fastener                                                         | Minimum Duct Length |
|------------------------------------------------------------------|---------------------|
| Elbow                                                            | 1×D                 |
| Other duct equipment [Duct equipment such as T-joint, reduction] | 2 x D               |
| Fire Damper                                                      | 2 x D               |
| Silencer                                                         | 2 x D               |

**Note:** It should be taken into account that turbulence will prevent the correct operation of the constant flow rate adjustment mechanism in cases where no additional channels are placed.

#### **PRODUCT SELECTION**

**Example:** The total air flow to be blown into the room is determined as 7500 m<sup>3</sup>/h. 10 ACD units will be used in the supply line. Make the product selection.

The air flow rate that will pass through the ACD will be  $7500/10 = 750m^3/h$ . ACD sizes to be selected accordingly Table 1. Dimensions between 0200 and 0355 can be selected from the Standard Dimensions Table.

#### From Table 3:

Flow area is 0.031 m<sup>2</sup> for ACD-200 and 0.099m<sup>2</sup> for ACD-355.

Velocity and minimum static pressure loss from the selected flow rate according to these areas:

ACD-200: Speed = 750/3600/0.031 = 6.72 m/s Minimum Static Pressure Loss [Table 2] = 82 Pa

ACD-355: Speed = 750/3600/0.099 = 2.1 m/s Minimum Static Pressure Loss (Table 2) = 32 Pa

Table 4. Sound Pressure Level Table is used by interpolation to evaluate sound pressure levels and additional acoustic insulation.

Sound data for values obtained with the selection of ACD - 200 and air velocity of 6.72 m/s:

Flow sound pressure level 41 dB(A)(100Pa), 48 dB(A)(200Pa), 53 dB(A)(500Pa)

Sound pressure level emanating from the case whic is non-insulated: 40 dB[A]

Sound pressure level emanating from the case which is acoustically isolated: 29 dB(A)

Sound data for 2.1 m/s air velocity in ACD – 355 selection:

Flow sound pressure level 26 dB[A][100Pa], 33 dB[A][200Pa], 38 dB[A][500Pa]

Sound pressure level emanating from the case without acoustic insulation: 35 dB[A]

Sound pressure level from the acoustically insulated case

# PRODUCT ORDER CODE

## ACD.< A >.KG.< B >.< C >

| Α | Raw Material Type |                     |
|---|-------------------|---------------------|
|   | GAL               | Galvanised          |
|   | PAS               | Stainless Steel     |
| В | Insulation        |                     |
|   | 00                | No insulation       |
|   | 04                | Acoustic Insulation |
| С | Product Size [mm] |                     |
|   | 0100              | 100 mm              |
|   | 0125              | 125 mm              |
|   | 0150              | 150 mm              |
|   | 0160              | 160 mm              |
|   | 0200              | 200 mm              |
|   | 0250              | 250 mm              |
|   | 0300              | 300 mm              |
|   | 0315              | 315 mm              |
|   | 0355              | 355 mm              |
|   | 0400              | 400 mm              |

Sample Coding; ACD.GAL.KG.00.0250

| NOTES    |                      |
|----------|----------------------|
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
| İKLİMLEN | DIRME I HVAC SYSTEMS |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |
|          |                      |







#### Headquarter

İTOB Organize Sanayi Bölgesi 10010 Sk. No: 4 35477 Tekeli, Menderes, İzmir/TÜRKİYE Tel.: +90 232 799 02 40 | Fax: +90 232 799 02 44

## **İstanbul Sales Office**

Barbaros Mah. Ciğdem Sk. No: 1 Ağaoğlu My Office Kat: 4/18 Ataşehir, İstanbul/TÜRKİYE Tel.:+90 216 250 55 45 | Fax:+90 216 250 55 56





